MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rightval Structured version   Visualization version   GIF version

Theorem rightval 27903
Description: The value of the right options function. (Contributed by Scott Fenton, 9-Oct-2024.)
Assertion
Ref Expression
rightval ( R ‘𝐴) = {𝑥 ∈ ( O ‘( bday 𝐴)) ∣ 𝐴 <s 𝑥}
Distinct variable group:   𝑥,𝐴

Proof of Theorem rightval
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 2fveq3 6911 . . . 4 (𝑦 = 𝐴 → ( O ‘( bday 𝑦)) = ( O ‘( bday 𝐴)))
2 breq1 5146 . . . 4 (𝑦 = 𝐴 → (𝑦 <s 𝑥𝐴 <s 𝑥))
31, 2rabeqbidv 3455 . . 3 (𝑦 = 𝐴 → {𝑥 ∈ ( O ‘( bday 𝑦)) ∣ 𝑦 <s 𝑥} = {𝑥 ∈ ( O ‘( bday 𝐴)) ∣ 𝐴 <s 𝑥})
4 df-right 27890 . . 3 R = (𝑦 No ↦ {𝑥 ∈ ( O ‘( bday 𝑦)) ∣ 𝑦 <s 𝑥})
5 fvex 6919 . . . 4 ( O ‘( bday 𝐴)) ∈ V
65rabex 5339 . . 3 {𝑥 ∈ ( O ‘( bday 𝐴)) ∣ 𝐴 <s 𝑥} ∈ V
73, 4, 6fvmpt 7016 . 2 (𝐴 No → ( R ‘𝐴) = {𝑥 ∈ ( O ‘( bday 𝐴)) ∣ 𝐴 <s 𝑥})
84fvmptndm 7047 . . 3 𝐴 No → ( R ‘𝐴) = ∅)
9 bdaydm 27819 . . . . . . . . 9 dom bday = No
109eleq2i 2833 . . . . . . . 8 (𝐴 ∈ dom bday 𝐴 No )
11 ndmfv 6941 . . . . . . . 8 𝐴 ∈ dom bday → ( bday 𝐴) = ∅)
1210, 11sylnbir 331 . . . . . . 7 𝐴 No → ( bday 𝐴) = ∅)
1312fveq2d 6910 . . . . . 6 𝐴 No → ( O ‘( bday 𝐴)) = ( O ‘∅))
14 old0 27898 . . . . . 6 ( O ‘∅) = ∅
1513, 14eqtrdi 2793 . . . . 5 𝐴 No → ( O ‘( bday 𝐴)) = ∅)
1615rabeqdv 3452 . . . 4 𝐴 No → {𝑥 ∈ ( O ‘( bday 𝐴)) ∣ 𝐴 <s 𝑥} = {𝑥 ∈ ∅ ∣ 𝐴 <s 𝑥})
17 rab0 4386 . . . 4 {𝑥 ∈ ∅ ∣ 𝐴 <s 𝑥} = ∅
1816, 17eqtrdi 2793 . . 3 𝐴 No → {𝑥 ∈ ( O ‘( bday 𝐴)) ∣ 𝐴 <s 𝑥} = ∅)
198, 18eqtr4d 2780 . 2 𝐴 No → ( R ‘𝐴) = {𝑥 ∈ ( O ‘( bday 𝐴)) ∣ 𝐴 <s 𝑥})
207, 19pm2.61i 182 1 ( R ‘𝐴) = {𝑥 ∈ ( O ‘( bday 𝐴)) ∣ 𝐴 <s 𝑥}
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1540  wcel 2108  {crab 3436  c0 4333   class class class wbr 5143  dom cdm 5685  cfv 6561   No csur 27684   <s cslt 27685   bday cbday 27686   O cold 27882   R cright 27885
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-ov 7434  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-1o 8506  df-no 27687  df-bday 27689  df-made 27886  df-old 27887  df-right 27890
This theorem is referenced by:  ssltright  27910  rightssold  27918  right1s  27934  lrold  27935  madebdaylemlrcut  27937  0elright  27949  cofcutr  27958  cofcutrtime  27961  addsproplem2  28003  addsproplem5  28006  addsproplem6  28007  sleadd1  28022  negsproplem5  28064  negsproplem6  28065  negsid  28073  mulsproplem12  28153  precsexlem8  28238  precsexlem9  28239  precsexlem11  28241
  Copyright terms: Public domain W3C validator