| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rightval | Structured version Visualization version GIF version | ||
| Description: The value of the right options function. (Contributed by Scott Fenton, 9-Oct-2024.) |
| Ref | Expression |
|---|---|
| rightval | ⊢ ( R ‘𝐴) = {𝑥 ∈ ( O ‘( bday ‘𝐴)) ∣ 𝐴 <s 𝑥} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2fveq3 6827 | . . . 4 ⊢ (𝑦 = 𝐴 → ( O ‘( bday ‘𝑦)) = ( O ‘( bday ‘𝐴))) | |
| 2 | breq1 5094 | . . . 4 ⊢ (𝑦 = 𝐴 → (𝑦 <s 𝑥 ↔ 𝐴 <s 𝑥)) | |
| 3 | 1, 2 | rabeqbidv 3413 | . . 3 ⊢ (𝑦 = 𝐴 → {𝑥 ∈ ( O ‘( bday ‘𝑦)) ∣ 𝑦 <s 𝑥} = {𝑥 ∈ ( O ‘( bday ‘𝐴)) ∣ 𝐴 <s 𝑥}) |
| 4 | df-right 27790 | . . 3 ⊢ R = (𝑦 ∈ No ↦ {𝑥 ∈ ( O ‘( bday ‘𝑦)) ∣ 𝑦 <s 𝑥}) | |
| 5 | fvex 6835 | . . . 4 ⊢ ( O ‘( bday ‘𝐴)) ∈ V | |
| 6 | 5 | rabex 5277 | . . 3 ⊢ {𝑥 ∈ ( O ‘( bday ‘𝐴)) ∣ 𝐴 <s 𝑥} ∈ V |
| 7 | 3, 4, 6 | fvmpt 6929 | . 2 ⊢ (𝐴 ∈ No → ( R ‘𝐴) = {𝑥 ∈ ( O ‘( bday ‘𝐴)) ∣ 𝐴 <s 𝑥}) |
| 8 | 4 | fvmptndm 6960 | . . 3 ⊢ (¬ 𝐴 ∈ No → ( R ‘𝐴) = ∅) |
| 9 | bdaydm 27711 | . . . . . . . . 9 ⊢ dom bday = No | |
| 10 | 9 | eleq2i 2823 | . . . . . . . 8 ⊢ (𝐴 ∈ dom bday ↔ 𝐴 ∈ No ) |
| 11 | ndmfv 6854 | . . . . . . . 8 ⊢ (¬ 𝐴 ∈ dom bday → ( bday ‘𝐴) = ∅) | |
| 12 | 10, 11 | sylnbir 331 | . . . . . . 7 ⊢ (¬ 𝐴 ∈ No → ( bday ‘𝐴) = ∅) |
| 13 | 12 | fveq2d 6826 | . . . . . 6 ⊢ (¬ 𝐴 ∈ No → ( O ‘( bday ‘𝐴)) = ( O ‘∅)) |
| 14 | old0 27798 | . . . . . 6 ⊢ ( O ‘∅) = ∅ | |
| 15 | 13, 14 | eqtrdi 2782 | . . . . 5 ⊢ (¬ 𝐴 ∈ No → ( O ‘( bday ‘𝐴)) = ∅) |
| 16 | 15 | rabeqdv 3410 | . . . 4 ⊢ (¬ 𝐴 ∈ No → {𝑥 ∈ ( O ‘( bday ‘𝐴)) ∣ 𝐴 <s 𝑥} = {𝑥 ∈ ∅ ∣ 𝐴 <s 𝑥}) |
| 17 | rab0 4336 | . . . 4 ⊢ {𝑥 ∈ ∅ ∣ 𝐴 <s 𝑥} = ∅ | |
| 18 | 16, 17 | eqtrdi 2782 | . . 3 ⊢ (¬ 𝐴 ∈ No → {𝑥 ∈ ( O ‘( bday ‘𝐴)) ∣ 𝐴 <s 𝑥} = ∅) |
| 19 | 8, 18 | eqtr4d 2769 | . 2 ⊢ (¬ 𝐴 ∈ No → ( R ‘𝐴) = {𝑥 ∈ ( O ‘( bday ‘𝐴)) ∣ 𝐴 <s 𝑥}) |
| 20 | 7, 19 | pm2.61i 182 | 1 ⊢ ( R ‘𝐴) = {𝑥 ∈ ( O ‘( bday ‘𝐴)) ∣ 𝐴 <s 𝑥} |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 = wceq 1541 ∈ wcel 2111 {crab 3395 ∅c0 4283 class class class wbr 5091 dom cdm 5616 ‘cfv 6481 No csur 27576 <s cslt 27577 bday cbday 27578 O cold 27782 R cright 27785 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-ov 7349 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-1o 8385 df-no 27579 df-bday 27581 df-made 27786 df-old 27787 df-right 27790 |
| This theorem is referenced by: elright 27805 ssltright 27814 rightssold 27823 right1s 27839 lrold 27840 madebdaylemlrcut 27842 cofcutr 27866 cofcutrtime 27869 addsproplem2 27911 |
| Copyright terms: Public domain | W3C validator |