| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rightval | Structured version Visualization version GIF version | ||
| Description: The value of the right options function. (Contributed by Scott Fenton, 9-Oct-2024.) |
| Ref | Expression |
|---|---|
| rightval | ⊢ ( R ‘𝐴) = {𝑥 ∈ ( O ‘( bday ‘𝐴)) ∣ 𝐴 <s 𝑥} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2fveq3 6866 | . . . 4 ⊢ (𝑦 = 𝐴 → ( O ‘( bday ‘𝑦)) = ( O ‘( bday ‘𝐴))) | |
| 2 | breq1 5113 | . . . 4 ⊢ (𝑦 = 𝐴 → (𝑦 <s 𝑥 ↔ 𝐴 <s 𝑥)) | |
| 3 | 1, 2 | rabeqbidv 3427 | . . 3 ⊢ (𝑦 = 𝐴 → {𝑥 ∈ ( O ‘( bday ‘𝑦)) ∣ 𝑦 <s 𝑥} = {𝑥 ∈ ( O ‘( bday ‘𝐴)) ∣ 𝐴 <s 𝑥}) |
| 4 | df-right 27766 | . . 3 ⊢ R = (𝑦 ∈ No ↦ {𝑥 ∈ ( O ‘( bday ‘𝑦)) ∣ 𝑦 <s 𝑥}) | |
| 5 | fvex 6874 | . . . 4 ⊢ ( O ‘( bday ‘𝐴)) ∈ V | |
| 6 | 5 | rabex 5297 | . . 3 ⊢ {𝑥 ∈ ( O ‘( bday ‘𝐴)) ∣ 𝐴 <s 𝑥} ∈ V |
| 7 | 3, 4, 6 | fvmpt 6971 | . 2 ⊢ (𝐴 ∈ No → ( R ‘𝐴) = {𝑥 ∈ ( O ‘( bday ‘𝐴)) ∣ 𝐴 <s 𝑥}) |
| 8 | 4 | fvmptndm 7002 | . . 3 ⊢ (¬ 𝐴 ∈ No → ( R ‘𝐴) = ∅) |
| 9 | bdaydm 27693 | . . . . . . . . 9 ⊢ dom bday = No | |
| 10 | 9 | eleq2i 2821 | . . . . . . . 8 ⊢ (𝐴 ∈ dom bday ↔ 𝐴 ∈ No ) |
| 11 | ndmfv 6896 | . . . . . . . 8 ⊢ (¬ 𝐴 ∈ dom bday → ( bday ‘𝐴) = ∅) | |
| 12 | 10, 11 | sylnbir 331 | . . . . . . 7 ⊢ (¬ 𝐴 ∈ No → ( bday ‘𝐴) = ∅) |
| 13 | 12 | fveq2d 6865 | . . . . . 6 ⊢ (¬ 𝐴 ∈ No → ( O ‘( bday ‘𝐴)) = ( O ‘∅)) |
| 14 | old0 27774 | . . . . . 6 ⊢ ( O ‘∅) = ∅ | |
| 15 | 13, 14 | eqtrdi 2781 | . . . . 5 ⊢ (¬ 𝐴 ∈ No → ( O ‘( bday ‘𝐴)) = ∅) |
| 16 | 15 | rabeqdv 3424 | . . . 4 ⊢ (¬ 𝐴 ∈ No → {𝑥 ∈ ( O ‘( bday ‘𝐴)) ∣ 𝐴 <s 𝑥} = {𝑥 ∈ ∅ ∣ 𝐴 <s 𝑥}) |
| 17 | rab0 4352 | . . . 4 ⊢ {𝑥 ∈ ∅ ∣ 𝐴 <s 𝑥} = ∅ | |
| 18 | 16, 17 | eqtrdi 2781 | . . 3 ⊢ (¬ 𝐴 ∈ No → {𝑥 ∈ ( O ‘( bday ‘𝐴)) ∣ 𝐴 <s 𝑥} = ∅) |
| 19 | 8, 18 | eqtr4d 2768 | . 2 ⊢ (¬ 𝐴 ∈ No → ( R ‘𝐴) = {𝑥 ∈ ( O ‘( bday ‘𝐴)) ∣ 𝐴 <s 𝑥}) |
| 20 | 7, 19 | pm2.61i 182 | 1 ⊢ ( R ‘𝐴) = {𝑥 ∈ ( O ‘( bday ‘𝐴)) ∣ 𝐴 <s 𝑥} |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 = wceq 1540 ∈ wcel 2109 {crab 3408 ∅c0 4299 class class class wbr 5110 dom cdm 5641 ‘cfv 6514 No csur 27558 <s cslt 27559 bday cbday 27560 O cold 27758 R cright 27761 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-ov 7393 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-1o 8437 df-no 27561 df-bday 27563 df-made 27762 df-old 27763 df-right 27766 |
| This theorem is referenced by: elright 27781 ssltright 27790 rightssold 27798 right1s 27814 lrold 27815 madebdaylemlrcut 27817 cofcutr 27839 cofcutrtime 27842 addsproplem2 27884 |
| Copyright terms: Public domain | W3C validator |