![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rightval | Structured version Visualization version GIF version |
Description: The value of the right options function. (Contributed by Scott Fenton, 9-Oct-2024.) |
Ref | Expression |
---|---|
rightval | ⊢ ( R ‘𝐴) = {𝑥 ∈ ( O ‘( bday ‘𝐴)) ∣ 𝐴 <s 𝑥} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2fveq3 6901 | . . . 4 ⊢ (𝑦 = 𝐴 → ( O ‘( bday ‘𝑦)) = ( O ‘( bday ‘𝐴))) | |
2 | breq1 5152 | . . . 4 ⊢ (𝑦 = 𝐴 → (𝑦 <s 𝑥 ↔ 𝐴 <s 𝑥)) | |
3 | 1, 2 | rabeqbidv 3436 | . . 3 ⊢ (𝑦 = 𝐴 → {𝑥 ∈ ( O ‘( bday ‘𝑦)) ∣ 𝑦 <s 𝑥} = {𝑥 ∈ ( O ‘( bday ‘𝐴)) ∣ 𝐴 <s 𝑥}) |
4 | df-right 27824 | . . 3 ⊢ R = (𝑦 ∈ No ↦ {𝑥 ∈ ( O ‘( bday ‘𝑦)) ∣ 𝑦 <s 𝑥}) | |
5 | fvex 6909 | . . . 4 ⊢ ( O ‘( bday ‘𝐴)) ∈ V | |
6 | 5 | rabex 5335 | . . 3 ⊢ {𝑥 ∈ ( O ‘( bday ‘𝐴)) ∣ 𝐴 <s 𝑥} ∈ V |
7 | 3, 4, 6 | fvmpt 7004 | . 2 ⊢ (𝐴 ∈ No → ( R ‘𝐴) = {𝑥 ∈ ( O ‘( bday ‘𝐴)) ∣ 𝐴 <s 𝑥}) |
8 | 4 | fvmptndm 7035 | . . 3 ⊢ (¬ 𝐴 ∈ No → ( R ‘𝐴) = ∅) |
9 | bdaydm 27753 | . . . . . . . . 9 ⊢ dom bday = No | |
10 | 9 | eleq2i 2817 | . . . . . . . 8 ⊢ (𝐴 ∈ dom bday ↔ 𝐴 ∈ No ) |
11 | ndmfv 6931 | . . . . . . . 8 ⊢ (¬ 𝐴 ∈ dom bday → ( bday ‘𝐴) = ∅) | |
12 | 10, 11 | sylnbir 330 | . . . . . . 7 ⊢ (¬ 𝐴 ∈ No → ( bday ‘𝐴) = ∅) |
13 | 12 | fveq2d 6900 | . . . . . 6 ⊢ (¬ 𝐴 ∈ No → ( O ‘( bday ‘𝐴)) = ( O ‘∅)) |
14 | old0 27832 | . . . . . 6 ⊢ ( O ‘∅) = ∅ | |
15 | 13, 14 | eqtrdi 2781 | . . . . 5 ⊢ (¬ 𝐴 ∈ No → ( O ‘( bday ‘𝐴)) = ∅) |
16 | 15 | rabeqdv 3434 | . . . 4 ⊢ (¬ 𝐴 ∈ No → {𝑥 ∈ ( O ‘( bday ‘𝐴)) ∣ 𝐴 <s 𝑥} = {𝑥 ∈ ∅ ∣ 𝐴 <s 𝑥}) |
17 | rab0 4384 | . . . 4 ⊢ {𝑥 ∈ ∅ ∣ 𝐴 <s 𝑥} = ∅ | |
18 | 16, 17 | eqtrdi 2781 | . . 3 ⊢ (¬ 𝐴 ∈ No → {𝑥 ∈ ( O ‘( bday ‘𝐴)) ∣ 𝐴 <s 𝑥} = ∅) |
19 | 8, 18 | eqtr4d 2768 | . 2 ⊢ (¬ 𝐴 ∈ No → ( R ‘𝐴) = {𝑥 ∈ ( O ‘( bday ‘𝐴)) ∣ 𝐴 <s 𝑥}) |
20 | 7, 19 | pm2.61i 182 | 1 ⊢ ( R ‘𝐴) = {𝑥 ∈ ( O ‘( bday ‘𝐴)) ∣ 𝐴 <s 𝑥} |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1533 ∈ wcel 2098 {crab 3418 ∅c0 4322 class class class wbr 5149 dom cdm 5678 ‘cfv 6549 No csur 27618 <s cslt 27619 bday cbday 27620 O cold 27816 R cright 27819 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5365 ax-pr 5429 ax-un 7741 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2930 df-ral 3051 df-rex 3060 df-reu 3364 df-rab 3419 df-v 3463 df-sbc 3774 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3964 df-nul 4323 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4910 df-iun 4999 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-we 5635 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-pred 6307 df-ord 6374 df-on 6375 df-suc 6377 df-iota 6501 df-fun 6551 df-fn 6552 df-f 6553 df-f1 6554 df-fo 6555 df-f1o 6556 df-fv 6557 df-ov 7422 df-2nd 7995 df-frecs 8287 df-wrecs 8318 df-recs 8392 df-1o 8487 df-no 27621 df-bday 27623 df-made 27820 df-old 27821 df-right 27824 |
This theorem is referenced by: ssltright 27844 rightssold 27852 right1s 27868 lrold 27869 madebdaylemlrcut 27871 0elright 27883 cofcutr 27890 cofcutrtime 27893 addsproplem2 27933 addsproplem5 27936 addsproplem6 27937 sleadd1 27952 negsproplem5 27990 negsproplem6 27991 negsid 27999 mulsproplem12 28077 precsexlem8 28162 precsexlem9 28163 precsexlem11 28165 |
Copyright terms: Public domain | W3C validator |