MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rightval Structured version   Visualization version   GIF version

Theorem rightval 27367
Description: The value of the right options function. (Contributed by Scott Fenton, 9-Oct-2024.)
Assertion
Ref Expression
rightval ( R ‘𝐴) = {𝑥 ∈ ( O ‘( bday 𝐴)) ∣ 𝐴 <s 𝑥}
Distinct variable group:   𝑥,𝐴

Proof of Theorem rightval
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 2fveq3 6896 . . . 4 (𝑦 = 𝐴 → ( O ‘( bday 𝑦)) = ( O ‘( bday 𝐴)))
2 breq1 5151 . . . 4 (𝑦 = 𝐴 → (𝑦 <s 𝑥𝐴 <s 𝑥))
31, 2rabeqbidv 3449 . . 3 (𝑦 = 𝐴 → {𝑥 ∈ ( O ‘( bday 𝑦)) ∣ 𝑦 <s 𝑥} = {𝑥 ∈ ( O ‘( bday 𝐴)) ∣ 𝐴 <s 𝑥})
4 df-right 27354 . . 3 R = (𝑦 No ↦ {𝑥 ∈ ( O ‘( bday 𝑦)) ∣ 𝑦 <s 𝑥})
5 fvex 6904 . . . 4 ( O ‘( bday 𝐴)) ∈ V
65rabex 5332 . . 3 {𝑥 ∈ ( O ‘( bday 𝐴)) ∣ 𝐴 <s 𝑥} ∈ V
73, 4, 6fvmpt 6998 . 2 (𝐴 No → ( R ‘𝐴) = {𝑥 ∈ ( O ‘( bday 𝐴)) ∣ 𝐴 <s 𝑥})
84fvmptndm 7028 . . 3 𝐴 No → ( R ‘𝐴) = ∅)
9 bdaydm 27283 . . . . . . . . 9 dom bday = No
109eleq2i 2825 . . . . . . . 8 (𝐴 ∈ dom bday 𝐴 No )
11 ndmfv 6926 . . . . . . . 8 𝐴 ∈ dom bday → ( bday 𝐴) = ∅)
1210, 11sylnbir 330 . . . . . . 7 𝐴 No → ( bday 𝐴) = ∅)
1312fveq2d 6895 . . . . . 6 𝐴 No → ( O ‘( bday 𝐴)) = ( O ‘∅))
14 old0 27362 . . . . . 6 ( O ‘∅) = ∅
1513, 14eqtrdi 2788 . . . . 5 𝐴 No → ( O ‘( bday 𝐴)) = ∅)
1615rabeqdv 3447 . . . 4 𝐴 No → {𝑥 ∈ ( O ‘( bday 𝐴)) ∣ 𝐴 <s 𝑥} = {𝑥 ∈ ∅ ∣ 𝐴 <s 𝑥})
17 rab0 4382 . . . 4 {𝑥 ∈ ∅ ∣ 𝐴 <s 𝑥} = ∅
1816, 17eqtrdi 2788 . . 3 𝐴 No → {𝑥 ∈ ( O ‘( bday 𝐴)) ∣ 𝐴 <s 𝑥} = ∅)
198, 18eqtr4d 2775 . 2 𝐴 No → ( R ‘𝐴) = {𝑥 ∈ ( O ‘( bday 𝐴)) ∣ 𝐴 <s 𝑥})
207, 19pm2.61i 182 1 ( R ‘𝐴) = {𝑥 ∈ ( O ‘( bday 𝐴)) ∣ 𝐴 <s 𝑥}
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1541  wcel 2106  {crab 3432  c0 4322   class class class wbr 5148  dom cdm 5676  cfv 6543   No csur 27150   <s cslt 27151   bday cbday 27152   O cold 27346   R cright 27349
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pr 5427  ax-un 7727
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-ov 7414  df-2nd 7978  df-frecs 8268  df-wrecs 8299  df-recs 8373  df-1o 8468  df-no 27153  df-bday 27155  df-made 27350  df-old 27351  df-right 27354
This theorem is referenced by:  ssltright  27374  rightssold  27382  right1s  27398  lrold  27399  madebdaylemlrcut  27401  0elright  27413  cofcutr  27420  cofcutrtime  27423  addsproplem2  27463  addsproplem5  27466  addsproplem6  27467  sleadd1  27482  negsproplem5  27516  negsproplem6  27517  negsid  27525  mulsproplem12  27593  precsexlem8  27670  precsexlem9  27671  precsexlem11  27673
  Copyright terms: Public domain W3C validator