![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rightval | Structured version Visualization version GIF version |
Description: The value of the right options function. (Contributed by Scott Fenton, 9-Oct-2024.) |
Ref | Expression |
---|---|
rightval | ⊢ ( R ‘𝐴) = {𝑥 ∈ ( O ‘( bday ‘𝐴)) ∣ 𝐴 <s 𝑥} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2fveq3 6897 | . . . 4 ⊢ (𝑦 = 𝐴 → ( O ‘( bday ‘𝑦)) = ( O ‘( bday ‘𝐴))) | |
2 | breq1 5152 | . . . 4 ⊢ (𝑦 = 𝐴 → (𝑦 <s 𝑥 ↔ 𝐴 <s 𝑥)) | |
3 | 1, 2 | rabeqbidv 3448 | . . 3 ⊢ (𝑦 = 𝐴 → {𝑥 ∈ ( O ‘( bday ‘𝑦)) ∣ 𝑦 <s 𝑥} = {𝑥 ∈ ( O ‘( bday ‘𝐴)) ∣ 𝐴 <s 𝑥}) |
4 | df-right 27580 | . . 3 ⊢ R = (𝑦 ∈ No ↦ {𝑥 ∈ ( O ‘( bday ‘𝑦)) ∣ 𝑦 <s 𝑥}) | |
5 | fvex 6905 | . . . 4 ⊢ ( O ‘( bday ‘𝐴)) ∈ V | |
6 | 5 | rabex 5333 | . . 3 ⊢ {𝑥 ∈ ( O ‘( bday ‘𝐴)) ∣ 𝐴 <s 𝑥} ∈ V |
7 | 3, 4, 6 | fvmpt 6999 | . 2 ⊢ (𝐴 ∈ No → ( R ‘𝐴) = {𝑥 ∈ ( O ‘( bday ‘𝐴)) ∣ 𝐴 <s 𝑥}) |
8 | 4 | fvmptndm 7029 | . . 3 ⊢ (¬ 𝐴 ∈ No → ( R ‘𝐴) = ∅) |
9 | bdaydm 27509 | . . . . . . . . 9 ⊢ dom bday = No | |
10 | 9 | eleq2i 2824 | . . . . . . . 8 ⊢ (𝐴 ∈ dom bday ↔ 𝐴 ∈ No ) |
11 | ndmfv 6927 | . . . . . . . 8 ⊢ (¬ 𝐴 ∈ dom bday → ( bday ‘𝐴) = ∅) | |
12 | 10, 11 | sylnbir 330 | . . . . . . 7 ⊢ (¬ 𝐴 ∈ No → ( bday ‘𝐴) = ∅) |
13 | 12 | fveq2d 6896 | . . . . . 6 ⊢ (¬ 𝐴 ∈ No → ( O ‘( bday ‘𝐴)) = ( O ‘∅)) |
14 | old0 27588 | . . . . . 6 ⊢ ( O ‘∅) = ∅ | |
15 | 13, 14 | eqtrdi 2787 | . . . . 5 ⊢ (¬ 𝐴 ∈ No → ( O ‘( bday ‘𝐴)) = ∅) |
16 | 15 | rabeqdv 3446 | . . . 4 ⊢ (¬ 𝐴 ∈ No → {𝑥 ∈ ( O ‘( bday ‘𝐴)) ∣ 𝐴 <s 𝑥} = {𝑥 ∈ ∅ ∣ 𝐴 <s 𝑥}) |
17 | rab0 4383 | . . . 4 ⊢ {𝑥 ∈ ∅ ∣ 𝐴 <s 𝑥} = ∅ | |
18 | 16, 17 | eqtrdi 2787 | . . 3 ⊢ (¬ 𝐴 ∈ No → {𝑥 ∈ ( O ‘( bday ‘𝐴)) ∣ 𝐴 <s 𝑥} = ∅) |
19 | 8, 18 | eqtr4d 2774 | . 2 ⊢ (¬ 𝐴 ∈ No → ( R ‘𝐴) = {𝑥 ∈ ( O ‘( bday ‘𝐴)) ∣ 𝐴 <s 𝑥}) |
20 | 7, 19 | pm2.61i 182 | 1 ⊢ ( R ‘𝐴) = {𝑥 ∈ ( O ‘( bday ‘𝐴)) ∣ 𝐴 <s 𝑥} |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1540 ∈ wcel 2105 {crab 3431 ∅c0 4323 class class class wbr 5149 dom cdm 5677 ‘cfv 6544 No csur 27376 <s cslt 27377 bday cbday 27378 O cold 27572 R cright 27575 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pr 5428 ax-un 7728 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-ral 3061 df-rex 3070 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6301 df-ord 6368 df-on 6369 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-ov 7415 df-2nd 7979 df-frecs 8269 df-wrecs 8300 df-recs 8374 df-1o 8469 df-no 27379 df-bday 27381 df-made 27576 df-old 27577 df-right 27580 |
This theorem is referenced by: ssltright 27600 rightssold 27608 right1s 27624 lrold 27625 madebdaylemlrcut 27627 0elright 27639 cofcutr 27646 cofcutrtime 27649 addsproplem2 27689 addsproplem5 27692 addsproplem6 27693 sleadd1 27708 negsproplem5 27742 negsproplem6 27743 negsid 27751 mulsproplem12 27819 precsexlem8 27896 precsexlem9 27897 precsexlem11 27899 |
Copyright terms: Public domain | W3C validator |