Detailed syntax breakdown of Definition df-rlreg
Step | Hyp | Ref
| Expression |
1 | | crlreg 20317 |
. 2
class
RLReg |
2 | | vr |
. . 3
setvar 𝑟 |
3 | | cvv 3408 |
. . 3
class
V |
4 | | vx |
. . . . . . . . 9
setvar 𝑥 |
5 | 4 | cv 1542 |
. . . . . . . 8
class 𝑥 |
6 | | vy |
. . . . . . . . 9
setvar 𝑦 |
7 | 6 | cv 1542 |
. . . . . . . 8
class 𝑦 |
8 | 2 | cv 1542 |
. . . . . . . . 9
class 𝑟 |
9 | | cmulr 16803 |
. . . . . . . . 9
class
.r |
10 | 8, 9 | cfv 6380 |
. . . . . . . 8
class
(.r‘𝑟) |
11 | 5, 7, 10 | co 7213 |
. . . . . . 7
class (𝑥(.r‘𝑟)𝑦) |
12 | | c0g 16944 |
. . . . . . . 8
class
0g |
13 | 8, 12 | cfv 6380 |
. . . . . . 7
class
(0g‘𝑟) |
14 | 11, 13 | wceq 1543 |
. . . . . 6
wff (𝑥(.r‘𝑟)𝑦) = (0g‘𝑟) |
15 | 7, 13 | wceq 1543 |
. . . . . 6
wff 𝑦 = (0g‘𝑟) |
16 | 14, 15 | wi 4 |
. . . . 5
wff ((𝑥(.r‘𝑟)𝑦) = (0g‘𝑟) → 𝑦 = (0g‘𝑟)) |
17 | | cbs 16760 |
. . . . . 6
class
Base |
18 | 8, 17 | cfv 6380 |
. . . . 5
class
(Base‘𝑟) |
19 | 16, 6, 18 | wral 3061 |
. . . 4
wff
∀𝑦 ∈
(Base‘𝑟)((𝑥(.r‘𝑟)𝑦) = (0g‘𝑟) → 𝑦 = (0g‘𝑟)) |
20 | 19, 4, 18 | crab 3065 |
. . 3
class {𝑥 ∈ (Base‘𝑟) ∣ ∀𝑦 ∈ (Base‘𝑟)((𝑥(.r‘𝑟)𝑦) = (0g‘𝑟) → 𝑦 = (0g‘𝑟))} |
21 | 2, 3, 20 | cmpt 5135 |
. 2
class (𝑟 ∈ V ↦ {𝑥 ∈ (Base‘𝑟) ∣ ∀𝑦 ∈ (Base‘𝑟)((𝑥(.r‘𝑟)𝑦) = (0g‘𝑟) → 𝑦 = (0g‘𝑟))}) |
22 | 1, 21 | wceq 1543 |
1
wff RLReg =
(𝑟 ∈ V ↦ {𝑥 ∈ (Base‘𝑟) ∣ ∀𝑦 ∈ (Base‘𝑟)((𝑥(.r‘𝑟)𝑦) = (0g‘𝑟) → 𝑦 = (0g‘𝑟))}) |