Detailed syntax breakdown of Definition df-domn
| Step | Hyp | Ref
| Expression |
| 1 | | cdomn 20692 |
. 2
class
Domn |
| 2 | | vx |
. . . . . . . . . . 11
setvar 𝑥 |
| 3 | 2 | cv 1539 |
. . . . . . . . . 10
class 𝑥 |
| 4 | | vy |
. . . . . . . . . . 11
setvar 𝑦 |
| 5 | 4 | cv 1539 |
. . . . . . . . . 10
class 𝑦 |
| 6 | | vr |
. . . . . . . . . . . 12
setvar 𝑟 |
| 7 | 6 | cv 1539 |
. . . . . . . . . . 11
class 𝑟 |
| 8 | | cmulr 17298 |
. . . . . . . . . . 11
class
.r |
| 9 | 7, 8 | cfv 6561 |
. . . . . . . . . 10
class
(.r‘𝑟) |
| 10 | 3, 5, 9 | co 7431 |
. . . . . . . . 9
class (𝑥(.r‘𝑟)𝑦) |
| 11 | | vz |
. . . . . . . . . 10
setvar 𝑧 |
| 12 | 11 | cv 1539 |
. . . . . . . . 9
class 𝑧 |
| 13 | 10, 12 | wceq 1540 |
. . . . . . . 8
wff (𝑥(.r‘𝑟)𝑦) = 𝑧 |
| 14 | 2, 11 | weq 1962 |
. . . . . . . . 9
wff 𝑥 = 𝑧 |
| 15 | 4, 11 | weq 1962 |
. . . . . . . . 9
wff 𝑦 = 𝑧 |
| 16 | 14, 15 | wo 848 |
. . . . . . . 8
wff (𝑥 = 𝑧 ∨ 𝑦 = 𝑧) |
| 17 | 13, 16 | wi 4 |
. . . . . . 7
wff ((𝑥(.r‘𝑟)𝑦) = 𝑧 → (𝑥 = 𝑧 ∨ 𝑦 = 𝑧)) |
| 18 | | vb |
. . . . . . . 8
setvar 𝑏 |
| 19 | 18 | cv 1539 |
. . . . . . 7
class 𝑏 |
| 20 | 17, 4, 19 | wral 3061 |
. . . . . 6
wff
∀𝑦 ∈
𝑏 ((𝑥(.r‘𝑟)𝑦) = 𝑧 → (𝑥 = 𝑧 ∨ 𝑦 = 𝑧)) |
| 21 | 20, 2, 19 | wral 3061 |
. . . . 5
wff
∀𝑥 ∈
𝑏 ∀𝑦 ∈ 𝑏 ((𝑥(.r‘𝑟)𝑦) = 𝑧 → (𝑥 = 𝑧 ∨ 𝑦 = 𝑧)) |
| 22 | | c0g 17484 |
. . . . . 6
class
0g |
| 23 | 7, 22 | cfv 6561 |
. . . . 5
class
(0g‘𝑟) |
| 24 | 21, 11, 23 | wsbc 3788 |
. . . 4
wff
[(0g‘𝑟) / 𝑧]∀𝑥 ∈ 𝑏 ∀𝑦 ∈ 𝑏 ((𝑥(.r‘𝑟)𝑦) = 𝑧 → (𝑥 = 𝑧 ∨ 𝑦 = 𝑧)) |
| 25 | | cbs 17247 |
. . . . 5
class
Base |
| 26 | 7, 25 | cfv 6561 |
. . . 4
class
(Base‘𝑟) |
| 27 | 24, 18, 26 | wsbc 3788 |
. . 3
wff
[(Base‘𝑟) / 𝑏][(0g‘𝑟) / 𝑧]∀𝑥 ∈ 𝑏 ∀𝑦 ∈ 𝑏 ((𝑥(.r‘𝑟)𝑦) = 𝑧 → (𝑥 = 𝑧 ∨ 𝑦 = 𝑧)) |
| 28 | | cnzr 20512 |
. . 3
class
NzRing |
| 29 | 27, 6, 28 | crab 3436 |
. 2
class {𝑟 ∈ NzRing ∣
[(Base‘𝑟) /
𝑏][(0g‘𝑟) / 𝑧]∀𝑥 ∈ 𝑏 ∀𝑦 ∈ 𝑏 ((𝑥(.r‘𝑟)𝑦) = 𝑧 → (𝑥 = 𝑧 ∨ 𝑦 = 𝑧))} |
| 30 | 1, 29 | wceq 1540 |
1
wff Domn =
{𝑟 ∈ NzRing ∣
[(Base‘𝑟) /
𝑏][(0g‘𝑟) / 𝑧]∀𝑥 ∈ 𝑏 ∀𝑦 ∈ 𝑏 ((𝑥(.r‘𝑟)𝑦) = 𝑧 → (𝑥 = 𝑧 ∨ 𝑦 = 𝑧))} |