MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rrgval Structured version   Visualization version   GIF version

Theorem rrgval 21223
Description: Value of the set or left-regular elements in a ring. (Contributed by Stefan O'Rear, 22-Mar-2015.)
Hypotheses
Ref Expression
rrgval.e 𝐸 = (RLReg‘𝑅)
rrgval.b 𝐵 = (Base‘𝑅)
rrgval.t · = (.r𝑅)
rrgval.z 0 = (0g𝑅)
Assertion
Ref Expression
rrgval 𝐸 = {𝑥𝐵 ∣ ∀𝑦𝐵 ((𝑥 · 𝑦) = 0𝑦 = 0 )}
Distinct variable groups:   𝑥,𝐵,𝑦   𝑥,𝑅,𝑦
Allowed substitution hints:   · (𝑥,𝑦)   𝐸(𝑥,𝑦)   0 (𝑥,𝑦)

Proof of Theorem rrgval
Dummy variable 𝑟 is distinct from all other variables.
StepHypRef Expression
1 rrgval.e . 2 𝐸 = (RLReg‘𝑅)
2 fveq2 6891 . . . . . 6 (𝑟 = 𝑅 → (Base‘𝑟) = (Base‘𝑅))
3 rrgval.b . . . . . 6 𝐵 = (Base‘𝑅)
42, 3eqtr4di 2785 . . . . 5 (𝑟 = 𝑅 → (Base‘𝑟) = 𝐵)
5 fveq2 6891 . . . . . . . . . 10 (𝑟 = 𝑅 → (.r𝑟) = (.r𝑅))
6 rrgval.t . . . . . . . . . 10 · = (.r𝑅)
75, 6eqtr4di 2785 . . . . . . . . 9 (𝑟 = 𝑅 → (.r𝑟) = · )
87oveqd 7431 . . . . . . . 8 (𝑟 = 𝑅 → (𝑥(.r𝑟)𝑦) = (𝑥 · 𝑦))
9 fveq2 6891 . . . . . . . . 9 (𝑟 = 𝑅 → (0g𝑟) = (0g𝑅))
10 rrgval.z . . . . . . . . 9 0 = (0g𝑅)
119, 10eqtr4di 2785 . . . . . . . 8 (𝑟 = 𝑅 → (0g𝑟) = 0 )
128, 11eqeq12d 2743 . . . . . . 7 (𝑟 = 𝑅 → ((𝑥(.r𝑟)𝑦) = (0g𝑟) ↔ (𝑥 · 𝑦) = 0 ))
1311eqeq2d 2738 . . . . . . 7 (𝑟 = 𝑅 → (𝑦 = (0g𝑟) ↔ 𝑦 = 0 ))
1412, 13imbi12d 344 . . . . . 6 (𝑟 = 𝑅 → (((𝑥(.r𝑟)𝑦) = (0g𝑟) → 𝑦 = (0g𝑟)) ↔ ((𝑥 · 𝑦) = 0𝑦 = 0 )))
154, 14raleqbidv 3337 . . . . 5 (𝑟 = 𝑅 → (∀𝑦 ∈ (Base‘𝑟)((𝑥(.r𝑟)𝑦) = (0g𝑟) → 𝑦 = (0g𝑟)) ↔ ∀𝑦𝐵 ((𝑥 · 𝑦) = 0𝑦 = 0 )))
164, 15rabeqbidv 3444 . . . 4 (𝑟 = 𝑅 → {𝑥 ∈ (Base‘𝑟) ∣ ∀𝑦 ∈ (Base‘𝑟)((𝑥(.r𝑟)𝑦) = (0g𝑟) → 𝑦 = (0g𝑟))} = {𝑥𝐵 ∣ ∀𝑦𝐵 ((𝑥 · 𝑦) = 0𝑦 = 0 )})
17 df-rlreg 21219 . . . 4 RLReg = (𝑟 ∈ V ↦ {𝑥 ∈ (Base‘𝑟) ∣ ∀𝑦 ∈ (Base‘𝑟)((𝑥(.r𝑟)𝑦) = (0g𝑟) → 𝑦 = (0g𝑟))})
183fvexi 6905 . . . . 5 𝐵 ∈ V
1918rabex 5328 . . . 4 {𝑥𝐵 ∣ ∀𝑦𝐵 ((𝑥 · 𝑦) = 0𝑦 = 0 )} ∈ V
2016, 17, 19fvmpt 6999 . . 3 (𝑅 ∈ V → (RLReg‘𝑅) = {𝑥𝐵 ∣ ∀𝑦𝐵 ((𝑥 · 𝑦) = 0𝑦 = 0 )})
21 fvprc 6883 . . . 4 𝑅 ∈ V → (RLReg‘𝑅) = ∅)
22 fvprc 6883 . . . . . . 7 𝑅 ∈ V → (Base‘𝑅) = ∅)
233, 22eqtrid 2779 . . . . . 6 𝑅 ∈ V → 𝐵 = ∅)
2423rabeqdv 3442 . . . . 5 𝑅 ∈ V → {𝑥𝐵 ∣ ∀𝑦𝐵 ((𝑥 · 𝑦) = 0𝑦 = 0 )} = {𝑥 ∈ ∅ ∣ ∀𝑦𝐵 ((𝑥 · 𝑦) = 0𝑦 = 0 )})
25 rab0 4378 . . . . 5 {𝑥 ∈ ∅ ∣ ∀𝑦𝐵 ((𝑥 · 𝑦) = 0𝑦 = 0 )} = ∅
2624, 25eqtrdi 2783 . . . 4 𝑅 ∈ V → {𝑥𝐵 ∣ ∀𝑦𝐵 ((𝑥 · 𝑦) = 0𝑦 = 0 )} = ∅)
2721, 26eqtr4d 2770 . . 3 𝑅 ∈ V → (RLReg‘𝑅) = {𝑥𝐵 ∣ ∀𝑦𝐵 ((𝑥 · 𝑦) = 0𝑦 = 0 )})
2820, 27pm2.61i 182 . 2 (RLReg‘𝑅) = {𝑥𝐵 ∣ ∀𝑦𝐵 ((𝑥 · 𝑦) = 0𝑦 = 0 )}
291, 28eqtri 2755 1 𝐸 = {𝑥𝐵 ∣ ∀𝑦𝐵 ((𝑥 · 𝑦) = 0𝑦 = 0 )}
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1534  wcel 2099  wral 3056  {crab 3427  Vcvv 3469  c0 4318  cfv 6542  (class class class)co 7414  Basecbs 17171  .rcmulr 17225  0gc0g 17412  RLRegcrlreg 21215
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2164  ax-ext 2698  ax-sep 5293  ax-nul 5300  ax-pr 5423
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2936  df-ral 3057  df-rex 3066  df-rab 3428  df-v 3471  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-nul 4319  df-if 4525  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-br 5143  df-opab 5205  df-mpt 5226  df-id 5570  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-iota 6494  df-fun 6544  df-fv 6550  df-ov 7417  df-rlreg 21219
This theorem is referenced by:  isrrg  21224  rrgeq0  21226  rrgss  21228
  Copyright terms: Public domain W3C validator