MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rrgval Structured version   Visualization version   GIF version

Theorem rrgval 20613
Description: Value of the set or left-regular elements in a ring. (Contributed by Stefan O'Rear, 22-Mar-2015.)
Hypotheses
Ref Expression
rrgval.e 𝐸 = (RLReg‘𝑅)
rrgval.b 𝐵 = (Base‘𝑅)
rrgval.t · = (.r𝑅)
rrgval.z 0 = (0g𝑅)
Assertion
Ref Expression
rrgval 𝐸 = {𝑥𝐵 ∣ ∀𝑦𝐵 ((𝑥 · 𝑦) = 0𝑦 = 0 )}
Distinct variable groups:   𝑥,𝐵,𝑦   𝑥,𝑅,𝑦
Allowed substitution hints:   · (𝑥,𝑦)   𝐸(𝑥,𝑦)   0 (𝑥,𝑦)

Proof of Theorem rrgval
Dummy variable 𝑟 is distinct from all other variables.
StepHypRef Expression
1 rrgval.e . 2 𝐸 = (RLReg‘𝑅)
2 fveq2 6861 . . . . . 6 (𝑟 = 𝑅 → (Base‘𝑟) = (Base‘𝑅))
3 rrgval.b . . . . . 6 𝐵 = (Base‘𝑅)
42, 3eqtr4di 2783 . . . . 5 (𝑟 = 𝑅 → (Base‘𝑟) = 𝐵)
5 fveq2 6861 . . . . . . . . . 10 (𝑟 = 𝑅 → (.r𝑟) = (.r𝑅))
6 rrgval.t . . . . . . . . . 10 · = (.r𝑅)
75, 6eqtr4di 2783 . . . . . . . . 9 (𝑟 = 𝑅 → (.r𝑟) = · )
87oveqd 7407 . . . . . . . 8 (𝑟 = 𝑅 → (𝑥(.r𝑟)𝑦) = (𝑥 · 𝑦))
9 fveq2 6861 . . . . . . . . 9 (𝑟 = 𝑅 → (0g𝑟) = (0g𝑅))
10 rrgval.z . . . . . . . . 9 0 = (0g𝑅)
119, 10eqtr4di 2783 . . . . . . . 8 (𝑟 = 𝑅 → (0g𝑟) = 0 )
128, 11eqeq12d 2746 . . . . . . 7 (𝑟 = 𝑅 → ((𝑥(.r𝑟)𝑦) = (0g𝑟) ↔ (𝑥 · 𝑦) = 0 ))
1311eqeq2d 2741 . . . . . . 7 (𝑟 = 𝑅 → (𝑦 = (0g𝑟) ↔ 𝑦 = 0 ))
1412, 13imbi12d 344 . . . . . 6 (𝑟 = 𝑅 → (((𝑥(.r𝑟)𝑦) = (0g𝑟) → 𝑦 = (0g𝑟)) ↔ ((𝑥 · 𝑦) = 0𝑦 = 0 )))
154, 14raleqbidv 3321 . . . . 5 (𝑟 = 𝑅 → (∀𝑦 ∈ (Base‘𝑟)((𝑥(.r𝑟)𝑦) = (0g𝑟) → 𝑦 = (0g𝑟)) ↔ ∀𝑦𝐵 ((𝑥 · 𝑦) = 0𝑦 = 0 )))
164, 15rabeqbidv 3427 . . . 4 (𝑟 = 𝑅 → {𝑥 ∈ (Base‘𝑟) ∣ ∀𝑦 ∈ (Base‘𝑟)((𝑥(.r𝑟)𝑦) = (0g𝑟) → 𝑦 = (0g𝑟))} = {𝑥𝐵 ∣ ∀𝑦𝐵 ((𝑥 · 𝑦) = 0𝑦 = 0 )})
17 df-rlreg 20610 . . . 4 RLReg = (𝑟 ∈ V ↦ {𝑥 ∈ (Base‘𝑟) ∣ ∀𝑦 ∈ (Base‘𝑟)((𝑥(.r𝑟)𝑦) = (0g𝑟) → 𝑦 = (0g𝑟))})
183fvexi 6875 . . . . 5 𝐵 ∈ V
1918rabex 5297 . . . 4 {𝑥𝐵 ∣ ∀𝑦𝐵 ((𝑥 · 𝑦) = 0𝑦 = 0 )} ∈ V
2016, 17, 19fvmpt 6971 . . 3 (𝑅 ∈ V → (RLReg‘𝑅) = {𝑥𝐵 ∣ ∀𝑦𝐵 ((𝑥 · 𝑦) = 0𝑦 = 0 )})
21 fvprc 6853 . . . 4 𝑅 ∈ V → (RLReg‘𝑅) = ∅)
22 fvprc 6853 . . . . . . 7 𝑅 ∈ V → (Base‘𝑅) = ∅)
233, 22eqtrid 2777 . . . . . 6 𝑅 ∈ V → 𝐵 = ∅)
2423rabeqdv 3424 . . . . 5 𝑅 ∈ V → {𝑥𝐵 ∣ ∀𝑦𝐵 ((𝑥 · 𝑦) = 0𝑦 = 0 )} = {𝑥 ∈ ∅ ∣ ∀𝑦𝐵 ((𝑥 · 𝑦) = 0𝑦 = 0 )})
25 rab0 4352 . . . . 5 {𝑥 ∈ ∅ ∣ ∀𝑦𝐵 ((𝑥 · 𝑦) = 0𝑦 = 0 )} = ∅
2624, 25eqtrdi 2781 . . . 4 𝑅 ∈ V → {𝑥𝐵 ∣ ∀𝑦𝐵 ((𝑥 · 𝑦) = 0𝑦 = 0 )} = ∅)
2721, 26eqtr4d 2768 . . 3 𝑅 ∈ V → (RLReg‘𝑅) = {𝑥𝐵 ∣ ∀𝑦𝐵 ((𝑥 · 𝑦) = 0𝑦 = 0 )})
2820, 27pm2.61i 182 . 2 (RLReg‘𝑅) = {𝑥𝐵 ∣ ∀𝑦𝐵 ((𝑥 · 𝑦) = 0𝑦 = 0 )}
291, 28eqtri 2753 1 𝐸 = {𝑥𝐵 ∣ ∀𝑦𝐵 ((𝑥 · 𝑦) = 0𝑦 = 0 )}
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1540  wcel 2109  wral 3045  {crab 3408  Vcvv 3450  c0 4299  cfv 6514  (class class class)co 7390  Basecbs 17186  .rcmulr 17228  0gc0g 17409  RLRegcrlreg 20607
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-iota 6467  df-fun 6516  df-fv 6522  df-ov 7393  df-rlreg 20610
This theorem is referenced by:  isrrg  20614  rrgeq0  20616  rrgss  20618
  Copyright terms: Public domain W3C validator