| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-rp | Structured version Visualization version GIF version | ||
| Description: Define the set of positive reals. Definition of positive numbers in [Apostol] p. 20. (Contributed by NM, 27-Oct-2007.) |
| Ref | Expression |
|---|---|
| df-rp | ⊢ ℝ+ = {𝑥 ∈ ℝ ∣ 0 < 𝑥} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | crp 13034 | . 2 class ℝ+ | |
| 2 | cc0 11155 | . . . 4 class 0 | |
| 3 | vx | . . . . 5 setvar 𝑥 | |
| 4 | 3 | cv 1539 | . . . 4 class 𝑥 |
| 5 | clt 11295 | . . . 4 class < | |
| 6 | 2, 4, 5 | wbr 5143 | . . 3 wff 0 < 𝑥 |
| 7 | cr 11154 | . . 3 class ℝ | |
| 8 | 6, 3, 7 | crab 3436 | . 2 class {𝑥 ∈ ℝ ∣ 0 < 𝑥} |
| 9 | 1, 8 | wceq 1540 | 1 wff ℝ+ = {𝑥 ∈ ℝ ∣ 0 < 𝑥} |
| Colors of variables: wff setvar class |
| This definition is referenced by: elrp 13036 rpssre 13042 ioorp 13465 |
| Copyright terms: Public domain | W3C validator |