![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rpssre | Structured version Visualization version GIF version |
Description: The positive reals are a subset of the reals. (Contributed by NM, 24-Feb-2008.) |
Ref | Expression |
---|---|
rpssre | ⊢ ℝ+ ⊆ ℝ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-rp 13033 | . 2 ⊢ ℝ+ = {𝑥 ∈ ℝ ∣ 0 < 𝑥} | |
2 | 1 | ssrab3 4092 | 1 ⊢ ℝ+ ⊆ ℝ |
Colors of variables: wff setvar class |
Syntax hints: ⊆ wss 3963 class class class wbr 5148 ℝcr 11152 0cc0 11153 < clt 11293 ℝ+crp 13032 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-rab 3434 df-ss 3980 df-rp 13033 |
This theorem is referenced by: rpre 13041 rpred 13075 rpexpcl 14118 rpexpmord 14205 01sqrexlem3 15280 fsumrpcl 15770 o1fsum 15846 divrcnv 15885 fprodrpcl 15989 rprisefaccl 16056 lebnumlem2 25008 bcthlem1 25372 bcthlem5 25376 aalioulem2 26390 efcvx 26508 pilem2 26511 pilem3 26512 dvrelog 26694 relogcn 26695 logcn 26704 advlog 26711 advlogexp 26712 loglesqrt 26819 rlimcnp 27023 rlimcnp3 27025 cxplim 27030 cxp2lim 27035 cxploglim 27036 divsqrtsumo1 27042 amgmlem 27048 logexprlim 27284 chto1ub 27535 chpo1ub 27539 chpo1ubb 27540 vmadivsum 27541 vmadivsumb 27542 rpvmasumlem 27546 dchrmusum2 27553 dchrvmasumlem2 27557 dchrvmasumiflem2 27561 dchrisum0fno1 27570 rpvmasum2 27571 dchrisum0lem1 27575 dchrisum0lem2a 27576 dchrisum0lem2 27577 dchrisum0 27579 dchrmusumlem 27581 rplogsum 27586 dirith2 27587 mudivsum 27589 mulogsumlem 27590 mulogsum 27591 mulog2sumlem2 27594 mulog2sumlem3 27595 log2sumbnd 27603 selberglem1 27604 selberglem2 27605 selberg2lem 27609 selberg2 27610 pntrmax 27623 pntrsumo1 27624 selbergr 27627 pntlem3 27668 pnt2 27672 rpdp2cl 32849 dp2lt10 32851 dp2lt 32852 dp2ltc 32854 xrge0iifhom 33898 omssubadd 34282 signsplypnf 34544 signsply0 34545 rpsqrtcn 34587 taupilem2 37305 taupi 37306 ptrecube 37607 heicant 37642 totbndbnd 37776 dvrelog2 42046 dvrelog3 42047 rpsscn 42312 seff 44305 rpex 45296 rpssxr 45431 ioorrnopnlem 46260 vonioolem1 46636 elbigolo1 48407 amgmwlem 49033 amgmlemALT 49034 |
Copyright terms: Public domain | W3C validator |