| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rpssre | Structured version Visualization version GIF version | ||
| Description: The positive reals are a subset of the reals. (Contributed by NM, 24-Feb-2008.) |
| Ref | Expression |
|---|---|
| rpssre | ⊢ ℝ+ ⊆ ℝ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-rp 13018 | . 2 ⊢ ℝ+ = {𝑥 ∈ ℝ ∣ 0 < 𝑥} | |
| 2 | 1 | ssrab3 4064 | 1 ⊢ ℝ+ ⊆ ℝ |
| Colors of variables: wff setvar class |
| Syntax hints: ⊆ wss 3933 class class class wbr 5125 ℝcr 11137 0cc0 11138 < clt 11278 ℝ+crp 13017 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-rab 3421 df-ss 3950 df-rp 13018 |
| This theorem is referenced by: rpre 13026 rpred 13060 rpexpcl 14104 rpexpmord 14191 01sqrexlem3 15266 fsumrpcl 15756 o1fsum 15832 divrcnv 15871 fprodrpcl 15975 rprisefaccl 16042 lebnumlem2 24949 bcthlem1 25313 bcthlem5 25317 aalioulem2 26330 efcvx 26448 pilem2 26451 pilem3 26452 dvrelog 26634 relogcn 26635 logcn 26644 advlog 26651 advlogexp 26652 loglesqrt 26759 rlimcnp 26963 rlimcnp3 26965 cxplim 26970 cxp2lim 26975 cxploglim 26976 divsqrtsumo1 26982 amgmlem 26988 logexprlim 27224 chto1ub 27475 chpo1ub 27479 chpo1ubb 27480 vmadivsum 27481 vmadivsumb 27482 rpvmasumlem 27486 dchrmusum2 27493 dchrvmasumlem2 27497 dchrvmasumiflem2 27501 dchrisum0fno1 27510 rpvmasum2 27511 dchrisum0lem1 27515 dchrisum0lem2a 27516 dchrisum0lem2 27517 dchrisum0 27519 dchrmusumlem 27521 rplogsum 27526 dirith2 27527 mudivsum 27529 mulogsumlem 27530 mulogsum 27531 mulog2sumlem2 27534 mulog2sumlem3 27535 log2sumbnd 27543 selberglem1 27544 selberglem2 27545 selberg2lem 27549 selberg2 27550 pntrmax 27563 pntrsumo1 27564 selbergr 27567 pntlem3 27608 pnt2 27612 rpdp2cl 32811 dp2lt10 32813 dp2lt 32814 dp2ltc 32816 xrge0iifhom 33877 omssubadd 34243 signsplypnf 34506 signsply0 34507 rpsqrtcn 34549 taupilem2 37264 taupi 37265 ptrecube 37568 heicant 37603 totbndbnd 37737 dvrelog2 42006 dvrelog3 42007 rpsscn 42278 seff 44273 rpex 45302 rpssxr 45436 ioorrnopnlem 46264 vonioolem1 46640 elbigolo1 48424 amgmwlem 49317 amgmlemALT 49318 |
| Copyright terms: Public domain | W3C validator |