Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rpssre | Structured version Visualization version GIF version |
Description: The positive reals are a subset of the reals. (Contributed by NM, 24-Feb-2008.) |
Ref | Expression |
---|---|
rpssre | ⊢ ℝ+ ⊆ ℝ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-rp 12660 | . 2 ⊢ ℝ+ = {𝑥 ∈ ℝ ∣ 0 < 𝑥} | |
2 | 1 | ssrab3 4011 | 1 ⊢ ℝ+ ⊆ ℝ |
Colors of variables: wff setvar class |
Syntax hints: ⊆ wss 3883 class class class wbr 5070 ℝcr 10801 0cc0 10802 < clt 10940 ℝ+crp 12659 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-rab 3072 df-v 3424 df-in 3890 df-ss 3900 df-rp 12660 |
This theorem is referenced by: rpre 12667 rpred 12701 rpexpcl 13729 rpexpmord 13814 sqrlem3 14884 fsumrpcl 15377 o1fsum 15453 divrcnv 15492 fprodrpcl 15594 rprisefaccl 15661 lebnumlem2 24031 bcthlem1 24393 bcthlem5 24397 aalioulem2 25398 efcvx 25513 pilem2 25516 pilem3 25517 dvrelog 25697 relogcn 25698 logcn 25707 advlog 25714 advlogexp 25715 loglesqrt 25816 rlimcnp 26020 rlimcnp3 26022 cxplim 26026 cxp2lim 26031 cxploglim 26032 divsqrtsumo1 26038 amgmlem 26044 logexprlim 26278 chto1ub 26529 chpo1ub 26533 chpo1ubb 26534 vmadivsum 26535 vmadivsumb 26536 rpvmasumlem 26540 dchrmusum2 26547 dchrvmasumlem2 26551 dchrvmasumiflem2 26555 dchrisum0fno1 26564 rpvmasum2 26565 dchrisum0lem1 26569 dchrisum0lem2a 26570 dchrisum0lem2 26571 dchrisum0 26573 dchrmusumlem 26575 rplogsum 26580 dirith2 26581 mudivsum 26583 mulogsumlem 26584 mulogsum 26585 mulog2sumlem2 26588 mulog2sumlem3 26589 log2sumbnd 26597 selberglem1 26598 selberglem2 26599 selberg2lem 26603 selberg2 26604 pntrmax 26617 pntrsumo1 26618 selbergr 26621 pntlem3 26662 pnt2 26666 rpdp2cl 31058 dp2lt10 31060 dp2lt 31061 dp2ltc 31063 xrge0iifhom 31789 omssubadd 32167 signsplypnf 32429 signsply0 32430 rpsqrtcn 32473 taupilem2 35420 taupi 35421 ptrecube 35704 heicant 35739 totbndbnd 35874 dvrelog2 40000 dvrelog3 40001 seff 41816 rpssxr 42911 ioorrnopnlem 43735 vonioolem1 44108 elbigolo1 45791 amgmwlem 46392 amgmlemALT 46393 |
Copyright terms: Public domain | W3C validator |