| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rpssre | Structured version Visualization version GIF version | ||
| Description: The positive reals are a subset of the reals. (Contributed by NM, 24-Feb-2008.) |
| Ref | Expression |
|---|---|
| rpssre | ⊢ ℝ+ ⊆ ℝ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-rp 13014 | . 2 ⊢ ℝ+ = {𝑥 ∈ ℝ ∣ 0 < 𝑥} | |
| 2 | 1 | ssrab3 4062 | 1 ⊢ ℝ+ ⊆ ℝ |
| Colors of variables: wff setvar class |
| Syntax hints: ⊆ wss 3931 class class class wbr 5124 ℝcr 11133 0cc0 11134 < clt 11274 ℝ+crp 13013 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-rab 3421 df-ss 3948 df-rp 13014 |
| This theorem is referenced by: rpre 13022 rpred 13056 rpexpcl 14103 rpexpmord 14191 01sqrexlem3 15268 fsumrpcl 15758 o1fsum 15834 divrcnv 15873 fprodrpcl 15977 rprisefaccl 16044 lebnumlem2 24917 bcthlem1 25281 bcthlem5 25285 aalioulem2 26298 efcvx 26416 pilem2 26419 pilem3 26420 dvrelog 26603 relogcn 26604 logcn 26613 advlog 26620 advlogexp 26621 loglesqrt 26728 rlimcnp 26932 rlimcnp3 26934 cxplim 26939 cxp2lim 26944 cxploglim 26945 divsqrtsumo1 26951 amgmlem 26957 logexprlim 27193 chto1ub 27444 chpo1ub 27448 chpo1ubb 27449 vmadivsum 27450 vmadivsumb 27451 rpvmasumlem 27455 dchrmusum2 27462 dchrvmasumlem2 27466 dchrvmasumiflem2 27470 dchrisum0fno1 27479 rpvmasum2 27480 dchrisum0lem1 27484 dchrisum0lem2a 27485 dchrisum0lem2 27486 dchrisum0 27488 dchrmusumlem 27490 rplogsum 27495 dirith2 27496 mudivsum 27498 mulogsumlem 27499 mulogsum 27500 mulog2sumlem2 27503 mulog2sumlem3 27504 log2sumbnd 27512 selberglem1 27513 selberglem2 27514 selberg2lem 27518 selberg2 27519 pntrmax 27532 pntrsumo1 27533 selbergr 27536 pntlem3 27577 pnt2 27581 rpdp2cl 32861 dp2lt10 32863 dp2lt 32864 dp2ltc 32866 xrge0iifhom 33973 omssubadd 34337 signsplypnf 34587 signsply0 34588 rpsqrtcn 34630 taupilem2 37345 taupi 37346 ptrecube 37649 heicant 37684 totbndbnd 37818 dvrelog2 42082 dvrelog3 42083 rpsscn 42317 seff 44308 rpex 45353 rpssxr 45487 ioorrnopnlem 46313 vonioolem1 46689 lamberte 46900 elbigolo1 48517 amgmwlem 49646 amgmlemALT 49647 |
| Copyright terms: Public domain | W3C validator |