| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rpssre | Structured version Visualization version GIF version | ||
| Description: The positive reals are a subset of the reals. (Contributed by NM, 24-Feb-2008.) |
| Ref | Expression |
|---|---|
| rpssre | ⊢ ℝ+ ⊆ ℝ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-rp 12891 | . 2 ⊢ ℝ+ = {𝑥 ∈ ℝ ∣ 0 < 𝑥} | |
| 2 | 1 | ssrab3 4029 | 1 ⊢ ℝ+ ⊆ ℝ |
| Colors of variables: wff setvar class |
| Syntax hints: ⊆ wss 3897 class class class wbr 5089 ℝcr 11005 0cc0 11006 < clt 11146 ℝ+crp 12890 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-rab 3396 df-ss 3914 df-rp 12891 |
| This theorem is referenced by: rpre 12899 rpred 12934 rpexpcl 13987 rpexpmord 14075 01sqrexlem3 15151 fsumrpcl 15644 o1fsum 15720 divrcnv 15759 fprodrpcl 15863 rprisefaccl 15930 lebnumlem2 24888 bcthlem1 25251 bcthlem5 25255 aalioulem2 26268 efcvx 26386 pilem2 26389 pilem3 26390 dvrelog 26573 relogcn 26574 logcn 26583 advlog 26590 advlogexp 26591 loglesqrt 26698 rlimcnp 26902 rlimcnp3 26904 cxplim 26909 cxp2lim 26914 cxploglim 26915 divsqrtsumo1 26921 amgmlem 26927 logexprlim 27163 chto1ub 27414 chpo1ub 27418 chpo1ubb 27419 vmadivsum 27420 vmadivsumb 27421 rpvmasumlem 27425 dchrmusum2 27432 dchrvmasumlem2 27436 dchrvmasumiflem2 27440 dchrisum0fno1 27449 rpvmasum2 27450 dchrisum0lem1 27454 dchrisum0lem2a 27455 dchrisum0lem2 27456 dchrisum0 27458 dchrmusumlem 27460 rplogsum 27465 dirith2 27466 mudivsum 27468 mulogsumlem 27469 mulogsum 27470 mulog2sumlem2 27473 mulog2sumlem3 27474 log2sumbnd 27482 selberglem1 27483 selberglem2 27484 selberg2lem 27488 selberg2 27489 pntrmax 27502 pntrsumo1 27503 selbergr 27506 pntlem3 27547 pnt2 27551 rpdp2cl 32862 dp2lt10 32864 dp2lt 32865 dp2ltc 32867 xrge0iifhom 33950 omssubadd 34313 signsplypnf 34563 signsply0 34564 rpsqrtcn 34606 taupilem2 37366 taupi 37367 ptrecube 37659 heicant 37694 totbndbnd 37828 dvrelog2 42156 dvrelog3 42157 rpsscn 42391 seff 44401 rpex 45444 rpssxr 45577 ioorrnopnlem 46401 vonioolem1 46777 lamberte 46987 elbigolo1 48657 amgmwlem 49902 amgmlemALT 49903 |
| Copyright terms: Public domain | W3C validator |