![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rpssre | Structured version Visualization version GIF version |
Description: The positive reals are a subset of the reals. (Contributed by NM, 24-Feb-2008.) |
Ref | Expression |
---|---|
rpssre | ⊢ ℝ+ ⊆ ℝ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-rp 13058 | . 2 ⊢ ℝ+ = {𝑥 ∈ ℝ ∣ 0 < 𝑥} | |
2 | 1 | ssrab3 4105 | 1 ⊢ ℝ+ ⊆ ℝ |
Colors of variables: wff setvar class |
Syntax hints: ⊆ wss 3976 class class class wbr 5166 ℝcr 11183 0cc0 11184 < clt 11324 ℝ+crp 13057 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-rab 3444 df-ss 3993 df-rp 13058 |
This theorem is referenced by: rpre 13065 rpred 13099 rpexpcl 14131 rpexpmord 14218 01sqrexlem3 15293 fsumrpcl 15785 o1fsum 15861 divrcnv 15900 fprodrpcl 16004 rprisefaccl 16071 lebnumlem2 25013 bcthlem1 25377 bcthlem5 25381 aalioulem2 26393 efcvx 26511 pilem2 26514 pilem3 26515 dvrelog 26697 relogcn 26698 logcn 26707 advlog 26714 advlogexp 26715 loglesqrt 26822 rlimcnp 27026 rlimcnp3 27028 cxplim 27033 cxp2lim 27038 cxploglim 27039 divsqrtsumo1 27045 amgmlem 27051 logexprlim 27287 chto1ub 27538 chpo1ub 27542 chpo1ubb 27543 vmadivsum 27544 vmadivsumb 27545 rpvmasumlem 27549 dchrmusum2 27556 dchrvmasumlem2 27560 dchrvmasumiflem2 27564 dchrisum0fno1 27573 rpvmasum2 27574 dchrisum0lem1 27578 dchrisum0lem2a 27579 dchrisum0lem2 27580 dchrisum0 27582 dchrmusumlem 27584 rplogsum 27589 dirith2 27590 mudivsum 27592 mulogsumlem 27593 mulogsum 27594 mulog2sumlem2 27597 mulog2sumlem3 27598 log2sumbnd 27606 selberglem1 27607 selberglem2 27608 selberg2lem 27612 selberg2 27613 pntrmax 27626 pntrsumo1 27627 selbergr 27630 pntlem3 27671 pnt2 27675 rpdp2cl 32846 dp2lt10 32848 dp2lt 32849 dp2ltc 32851 xrge0iifhom 33883 omssubadd 34265 signsplypnf 34527 signsply0 34528 rpsqrtcn 34570 taupilem2 37288 taupi 37289 ptrecube 37580 heicant 37615 totbndbnd 37749 dvrelog2 42021 dvrelog3 42022 seff 44278 rpssxr 45396 ioorrnopnlem 46225 vonioolem1 46601 elbigolo1 48291 amgmwlem 48896 amgmlemALT 48897 |
Copyright terms: Public domain | W3C validator |