| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rpssre | Structured version Visualization version GIF version | ||
| Description: The positive reals are a subset of the reals. (Contributed by NM, 24-Feb-2008.) |
| Ref | Expression |
|---|---|
| rpssre | ⊢ ℝ+ ⊆ ℝ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-rp 13017 | . 2 ⊢ ℝ+ = {𝑥 ∈ ℝ ∣ 0 < 𝑥} | |
| 2 | 1 | ssrab3 4062 | 1 ⊢ ℝ+ ⊆ ℝ |
| Colors of variables: wff setvar class |
| Syntax hints: ⊆ wss 3931 class class class wbr 5123 ℝcr 11136 0cc0 11137 < clt 11277 ℝ+crp 13016 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-rab 3420 df-ss 3948 df-rp 13017 |
| This theorem is referenced by: rpre 13025 rpred 13059 rpexpcl 14103 rpexpmord 14190 01sqrexlem3 15265 fsumrpcl 15755 o1fsum 15831 divrcnv 15870 fprodrpcl 15974 rprisefaccl 16041 lebnumlem2 24930 bcthlem1 25294 bcthlem5 25298 aalioulem2 26311 efcvx 26429 pilem2 26432 pilem3 26433 dvrelog 26615 relogcn 26616 logcn 26625 advlog 26632 advlogexp 26633 loglesqrt 26740 rlimcnp 26944 rlimcnp3 26946 cxplim 26951 cxp2lim 26956 cxploglim 26957 divsqrtsumo1 26963 amgmlem 26969 logexprlim 27205 chto1ub 27456 chpo1ub 27460 chpo1ubb 27461 vmadivsum 27462 vmadivsumb 27463 rpvmasumlem 27467 dchrmusum2 27474 dchrvmasumlem2 27478 dchrvmasumiflem2 27482 dchrisum0fno1 27491 rpvmasum2 27492 dchrisum0lem1 27496 dchrisum0lem2a 27497 dchrisum0lem2 27498 dchrisum0 27500 dchrmusumlem 27502 rplogsum 27507 dirith2 27508 mudivsum 27510 mulogsumlem 27511 mulogsum 27512 mulog2sumlem2 27515 mulog2sumlem3 27516 log2sumbnd 27524 selberglem1 27525 selberglem2 27526 selberg2lem 27530 selberg2 27531 pntrmax 27544 pntrsumo1 27545 selbergr 27548 pntlem3 27589 pnt2 27593 rpdp2cl 32804 dp2lt10 32806 dp2lt 32807 dp2ltc 32809 xrge0iifhom 33895 omssubadd 34261 signsplypnf 34524 signsply0 34525 rpsqrtcn 34567 taupilem2 37282 taupi 37283 ptrecube 37586 heicant 37621 totbndbnd 37755 dvrelog2 42024 dvrelog3 42025 rpsscn 42296 seff 44285 rpex 45314 rpssxr 45448 ioorrnopnlem 46276 vonioolem1 46652 elbigolo1 48436 amgmwlem 49329 amgmlemALT 49330 |
| Copyright terms: Public domain | W3C validator |