| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rpssre | Structured version Visualization version GIF version | ||
| Description: The positive reals are a subset of the reals. (Contributed by NM, 24-Feb-2008.) |
| Ref | Expression |
|---|---|
| rpssre | ⊢ ℝ+ ⊆ ℝ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-rp 12928 | . 2 ⊢ ℝ+ = {𝑥 ∈ ℝ ∣ 0 < 𝑥} | |
| 2 | 1 | ssrab3 4041 | 1 ⊢ ℝ+ ⊆ ℝ |
| Colors of variables: wff setvar class |
| Syntax hints: ⊆ wss 3911 class class class wbr 5102 ℝcr 11043 0cc0 11044 < clt 11184 ℝ+crp 12927 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3403 df-ss 3928 df-rp 12928 |
| This theorem is referenced by: rpre 12936 rpred 12971 rpexpcl 14021 rpexpmord 14109 01sqrexlem3 15186 fsumrpcl 15679 o1fsum 15755 divrcnv 15794 fprodrpcl 15898 rprisefaccl 15965 lebnumlem2 24894 bcthlem1 25257 bcthlem5 25261 aalioulem2 26274 efcvx 26392 pilem2 26395 pilem3 26396 dvrelog 26579 relogcn 26580 logcn 26589 advlog 26596 advlogexp 26597 loglesqrt 26704 rlimcnp 26908 rlimcnp3 26910 cxplim 26915 cxp2lim 26920 cxploglim 26921 divsqrtsumo1 26927 amgmlem 26933 logexprlim 27169 chto1ub 27420 chpo1ub 27424 chpo1ubb 27425 vmadivsum 27426 vmadivsumb 27427 rpvmasumlem 27431 dchrmusum2 27438 dchrvmasumlem2 27442 dchrvmasumiflem2 27446 dchrisum0fno1 27455 rpvmasum2 27456 dchrisum0lem1 27460 dchrisum0lem2a 27461 dchrisum0lem2 27462 dchrisum0 27464 dchrmusumlem 27466 rplogsum 27471 dirith2 27472 mudivsum 27474 mulogsumlem 27475 mulogsum 27476 mulog2sumlem2 27479 mulog2sumlem3 27480 log2sumbnd 27488 selberglem1 27489 selberglem2 27490 selberg2lem 27494 selberg2 27495 pntrmax 27508 pntrsumo1 27509 selbergr 27512 pntlem3 27553 pnt2 27557 rpdp2cl 32852 dp2lt10 32854 dp2lt 32855 dp2ltc 32857 xrge0iifhom 33920 omssubadd 34284 signsplypnf 34534 signsply0 34535 rpsqrtcn 34577 taupilem2 37303 taupi 37304 ptrecube 37607 heicant 37642 totbndbnd 37776 dvrelog2 42045 dvrelog3 42046 rpsscn 42280 seff 44291 rpex 45335 rpssxr 45469 ioorrnopnlem 46295 vonioolem1 46671 lamberte 46882 elbigolo1 48539 amgmwlem 49784 amgmlemALT 49785 |
| Copyright terms: Public domain | W3C validator |