| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rpssre | Structured version Visualization version GIF version | ||
| Description: The positive reals are a subset of the reals. (Contributed by NM, 24-Feb-2008.) |
| Ref | Expression |
|---|---|
| rpssre | ⊢ ℝ+ ⊆ ℝ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-rp 12952 | . 2 ⊢ ℝ+ = {𝑥 ∈ ℝ ∣ 0 < 𝑥} | |
| 2 | 1 | ssrab3 4045 | 1 ⊢ ℝ+ ⊆ ℝ |
| Colors of variables: wff setvar class |
| Syntax hints: ⊆ wss 3914 class class class wbr 5107 ℝcr 11067 0cc0 11068 < clt 11208 ℝ+crp 12951 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3406 df-ss 3931 df-rp 12952 |
| This theorem is referenced by: rpre 12960 rpred 12995 rpexpcl 14045 rpexpmord 14133 01sqrexlem3 15210 fsumrpcl 15703 o1fsum 15779 divrcnv 15818 fprodrpcl 15922 rprisefaccl 15989 lebnumlem2 24861 bcthlem1 25224 bcthlem5 25228 aalioulem2 26241 efcvx 26359 pilem2 26362 pilem3 26363 dvrelog 26546 relogcn 26547 logcn 26556 advlog 26563 advlogexp 26564 loglesqrt 26671 rlimcnp 26875 rlimcnp3 26877 cxplim 26882 cxp2lim 26887 cxploglim 26888 divsqrtsumo1 26894 amgmlem 26900 logexprlim 27136 chto1ub 27387 chpo1ub 27391 chpo1ubb 27392 vmadivsum 27393 vmadivsumb 27394 rpvmasumlem 27398 dchrmusum2 27405 dchrvmasumlem2 27409 dchrvmasumiflem2 27413 dchrisum0fno1 27422 rpvmasum2 27423 dchrisum0lem1 27427 dchrisum0lem2a 27428 dchrisum0lem2 27429 dchrisum0 27431 dchrmusumlem 27433 rplogsum 27438 dirith2 27439 mudivsum 27441 mulogsumlem 27442 mulogsum 27443 mulog2sumlem2 27446 mulog2sumlem3 27447 log2sumbnd 27455 selberglem1 27456 selberglem2 27457 selberg2lem 27461 selberg2 27462 pntrmax 27475 pntrsumo1 27476 selbergr 27479 pntlem3 27520 pnt2 27524 rpdp2cl 32802 dp2lt10 32804 dp2lt 32805 dp2ltc 32807 xrge0iifhom 33927 omssubadd 34291 signsplypnf 34541 signsply0 34542 rpsqrtcn 34584 taupilem2 37310 taupi 37311 ptrecube 37614 heicant 37649 totbndbnd 37783 dvrelog2 42052 dvrelog3 42053 rpsscn 42287 seff 44298 rpex 45342 rpssxr 45476 ioorrnopnlem 46302 vonioolem1 46678 lamberte 46889 elbigolo1 48546 amgmwlem 49791 amgmlemALT 49792 |
| Copyright terms: Public domain | W3C validator |