| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rpssre | Structured version Visualization version GIF version | ||
| Description: The positive reals are a subset of the reals. (Contributed by NM, 24-Feb-2008.) |
| Ref | Expression |
|---|---|
| rpssre | ⊢ ℝ+ ⊆ ℝ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-rp 12894 | . 2 ⊢ ℝ+ = {𝑥 ∈ ℝ ∣ 0 < 𝑥} | |
| 2 | 1 | ssrab3 4033 | 1 ⊢ ℝ+ ⊆ ℝ |
| Colors of variables: wff setvar class |
| Syntax hints: ⊆ wss 3903 class class class wbr 5092 ℝcr 11008 0cc0 11009 < clt 11149 ℝ+crp 12893 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3395 df-ss 3920 df-rp 12894 |
| This theorem is referenced by: rpre 12902 rpred 12937 rpexpcl 13987 rpexpmord 14075 01sqrexlem3 15151 fsumrpcl 15644 o1fsum 15720 divrcnv 15759 fprodrpcl 15863 rprisefaccl 15930 lebnumlem2 24859 bcthlem1 25222 bcthlem5 25226 aalioulem2 26239 efcvx 26357 pilem2 26360 pilem3 26361 dvrelog 26544 relogcn 26545 logcn 26554 advlog 26561 advlogexp 26562 loglesqrt 26669 rlimcnp 26873 rlimcnp3 26875 cxplim 26880 cxp2lim 26885 cxploglim 26886 divsqrtsumo1 26892 amgmlem 26898 logexprlim 27134 chto1ub 27385 chpo1ub 27389 chpo1ubb 27390 vmadivsum 27391 vmadivsumb 27392 rpvmasumlem 27396 dchrmusum2 27403 dchrvmasumlem2 27407 dchrvmasumiflem2 27411 dchrisum0fno1 27420 rpvmasum2 27421 dchrisum0lem1 27425 dchrisum0lem2a 27426 dchrisum0lem2 27427 dchrisum0 27429 dchrmusumlem 27431 rplogsum 27436 dirith2 27437 mudivsum 27439 mulogsumlem 27440 mulogsum 27441 mulog2sumlem2 27444 mulog2sumlem3 27445 log2sumbnd 27453 selberglem1 27454 selberglem2 27455 selberg2lem 27459 selberg2 27460 pntrmax 27473 pntrsumo1 27474 selbergr 27477 pntlem3 27518 pnt2 27522 rpdp2cl 32831 dp2lt10 32833 dp2lt 32834 dp2ltc 32836 xrge0iifhom 33920 omssubadd 34284 signsplypnf 34534 signsply0 34535 rpsqrtcn 34577 taupilem2 37316 taupi 37317 ptrecube 37620 heicant 37655 totbndbnd 37789 dvrelog2 42057 dvrelog3 42058 rpsscn 42292 seff 44302 rpex 45346 rpssxr 45479 ioorrnopnlem 46305 vonioolem1 46681 lamberte 46892 elbigolo1 48562 amgmwlem 49807 amgmlemALT 49808 |
| Copyright terms: Public domain | W3C validator |