Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > elrp | Structured version Visualization version GIF version |
Description: Membership in the set of positive reals. (Contributed by NM, 27-Oct-2007.) |
Ref | Expression |
---|---|
elrp | ⊢ (𝐴 ∈ ℝ+ ↔ (𝐴 ∈ ℝ ∧ 0 < 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breq2 5078 | . 2 ⊢ (𝑥 = 𝐴 → (0 < 𝑥 ↔ 0 < 𝐴)) | |
2 | df-rp 12731 | . 2 ⊢ ℝ+ = {𝑥 ∈ ℝ ∣ 0 < 𝑥} | |
3 | 1, 2 | elrab2 3627 | 1 ⊢ (𝐴 ∈ ℝ+ ↔ (𝐴 ∈ ℝ ∧ 0 < 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 396 ∈ wcel 2106 class class class wbr 5074 ℝcr 10870 0cc0 10871 < clt 11009 ℝ+crp 12730 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-br 5075 df-rp 12731 |
This theorem is referenced by: elrpii 12733 nnrp 12741 rpgt0 12742 rpregt0 12744 ralrp 12750 rexrp 12751 rpaddcl 12752 rpmulcl 12753 rpdivcl 12755 rpgecl 12758 rphalflt 12759 ge0p1rp 12761 rpneg 12762 negelrp 12763 ltsubrp 12766 ltaddrp 12767 difrp 12768 elrpd 12769 infmrp1 13078 dfrp2 13128 iccdil 13222 icccntr 13224 1mod 13623 expgt0 13816 resqrex 14962 sqrtdiv 14977 sqrtneglem 14978 mulcn2 15305 ef01bndlem 15893 sinltx 15898 met1stc 23677 met2ndci 23678 bcthlem4 24491 itg2mulc 24912 dvferm1 25149 dvne0 25175 reeff1o 25606 ellogdm 25794 cxpge0 25838 cxple2a 25854 cxpcn3lem 25900 cxpaddlelem 25904 cxpaddle 25905 atanbnd 26076 rlimcnp 26115 amgm 26140 chtub 26360 chebbnd1 26620 chto1ub 26624 pntlem3 26757 blocni 29167 rpdp2cl 31156 dp2ltc 31161 dplti 31179 dpgti 31180 dpexpp1 31182 dpmul4 31188 fdvposlt 32579 hgt750lem 32631 unbdqndv2lem2 34690 heiborlem8 35976 dvrelog2 40072 dvrelog3 40073 2xp3dxp2ge1d 40162 sqrtcvallem1 41239 wallispilem4 43609 perfectALTVlem2 45174 regt1loggt0 45882 |
Copyright terms: Public domain | W3C validator |