| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elrp | Structured version Visualization version GIF version | ||
| Description: Membership in the set of positive reals. (Contributed by NM, 27-Oct-2007.) |
| Ref | Expression |
|---|---|
| elrp | ⊢ (𝐴 ∈ ℝ+ ↔ (𝐴 ∈ ℝ ∧ 0 < 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | breq2 5114 | . 2 ⊢ (𝑥 = 𝐴 → (0 < 𝑥 ↔ 0 < 𝐴)) | |
| 2 | df-rp 12959 | . 2 ⊢ ℝ+ = {𝑥 ∈ ℝ ∣ 0 < 𝑥} | |
| 3 | 1, 2 | elrab2 3665 | 1 ⊢ (𝐴 ∈ ℝ+ ↔ (𝐴 ∈ ℝ ∧ 0 < 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∈ wcel 2109 class class class wbr 5110 ℝcr 11074 0cc0 11075 < clt 11215 ℝ+crp 12958 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-br 5111 df-rp 12959 |
| This theorem is referenced by: elrpii 12961 nnrp 12970 rpgt0 12971 rpregt0 12973 ralrp 12980 rexrp 12981 rpaddcl 12982 rpmulcl 12983 rpdivcl 12985 rpgecl 12988 rphalflt 12989 ge0p1rp 12991 rpneg 12992 negelrp 12993 ltsubrp 12996 ltaddrp 12997 difrp 12998 elrpd 12999 infmrp1 13312 dfrp2 13362 iccdil 13458 icccntr 13460 1mod 13872 expgt0 14067 resqrex 15223 sqrtdiv 15238 sqrtneglem 15239 mulcn2 15569 ef01bndlem 16159 sinltx 16164 met1stc 24416 met2ndci 24417 bcthlem4 25234 itg2mulc 25655 dvferm1 25896 dvne0 25923 reeff1o 26364 ellogdm 26555 cxpge0 26599 cxple2a 26615 cxpcn3lem 26664 cxpaddlelem 26668 cxpaddle 26669 atanbnd 26843 rlimcnp 26882 amgm 26908 chtub 27130 chebbnd1 27390 chto1ub 27394 pntlem3 27527 blocni 30741 rpdp2cl 32809 dp2ltc 32814 dplti 32832 dpgti 32833 dpexpp1 32835 dpmul4 32841 fdvposlt 34597 hgt750lem 34649 unbdqndv2lem2 36505 heiborlem8 37819 dvrelog2 42059 dvrelog3 42060 sqrtcvallem1 43627 wallispilem4 46073 perfectALTVlem2 47727 regt1loggt0 48529 |
| Copyright terms: Public domain | W3C validator |