| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elrp | Structured version Visualization version GIF version | ||
| Description: Membership in the set of positive reals. (Contributed by NM, 27-Oct-2007.) |
| Ref | Expression |
|---|---|
| elrp | ⊢ (𝐴 ∈ ℝ+ ↔ (𝐴 ∈ ℝ ∧ 0 < 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | breq2 5123 | . 2 ⊢ (𝑥 = 𝐴 → (0 < 𝑥 ↔ 0 < 𝐴)) | |
| 2 | df-rp 13007 | . 2 ⊢ ℝ+ = {𝑥 ∈ ℝ ∣ 0 < 𝑥} | |
| 3 | 1, 2 | elrab2 3674 | 1 ⊢ (𝐴 ∈ ℝ+ ↔ (𝐴 ∈ ℝ ∧ 0 < 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∈ wcel 2108 class class class wbr 5119 ℝcr 11126 0cc0 11127 < clt 11267 ℝ+crp 13006 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-br 5120 df-rp 13007 |
| This theorem is referenced by: elrpii 13009 nnrp 13018 rpgt0 13019 rpregt0 13021 ralrp 13027 rexrp 13028 rpaddcl 13029 rpmulcl 13030 rpdivcl 13032 rpgecl 13035 rphalflt 13036 ge0p1rp 13038 rpneg 13039 negelrp 13040 ltsubrp 13043 ltaddrp 13044 difrp 13045 elrpd 13046 infmrp1 13359 dfrp2 13409 iccdil 13505 icccntr 13507 1mod 13918 expgt0 14111 resqrex 15267 sqrtdiv 15282 sqrtneglem 15283 mulcn2 15610 ef01bndlem 16200 sinltx 16205 met1stc 24458 met2ndci 24459 bcthlem4 25277 itg2mulc 25698 dvferm1 25939 dvne0 25966 reeff1o 26407 ellogdm 26598 cxpge0 26642 cxple2a 26658 cxpcn3lem 26707 cxpaddlelem 26711 cxpaddle 26712 atanbnd 26886 rlimcnp 26925 amgm 26951 chtub 27173 chebbnd1 27433 chto1ub 27437 pntlem3 27570 blocni 30732 rpdp2cl 32802 dp2ltc 32807 dplti 32825 dpgti 32826 dpexpp1 32828 dpmul4 32834 fdvposlt 34577 hgt750lem 34629 unbdqndv2lem2 36474 heiborlem8 37788 dvrelog2 42023 dvrelog3 42024 2xp3dxp2ge1d 42200 sqrtcvallem1 43602 wallispilem4 46045 perfectALTVlem2 47684 regt1loggt0 48464 |
| Copyright terms: Public domain | W3C validator |