| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elrp | Structured version Visualization version GIF version | ||
| Description: Membership in the set of positive reals. (Contributed by NM, 27-Oct-2007.) |
| Ref | Expression |
|---|---|
| elrp | ⊢ (𝐴 ∈ ℝ+ ↔ (𝐴 ∈ ℝ ∧ 0 < 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | breq2 5096 | . 2 ⊢ (𝑥 = 𝐴 → (0 < 𝑥 ↔ 0 < 𝐴)) | |
| 2 | df-rp 12894 | . 2 ⊢ ℝ+ = {𝑥 ∈ ℝ ∣ 0 < 𝑥} | |
| 3 | 1, 2 | elrab2 3651 | 1 ⊢ (𝐴 ∈ ℝ+ ↔ (𝐴 ∈ ℝ ∧ 0 < 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∈ wcel 2109 class class class wbr 5092 ℝcr 11008 0cc0 11009 < clt 11149 ℝ+crp 12893 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3395 df-v 3438 df-dif 3906 df-un 3908 df-ss 3920 df-nul 4285 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-br 5093 df-rp 12894 |
| This theorem is referenced by: elrpii 12896 nnrp 12905 rpgt0 12906 rpregt0 12908 ralrp 12915 rexrp 12916 rpaddcl 12917 rpmulcl 12918 rpdivcl 12920 rpgecl 12923 rphalflt 12924 ge0p1rp 12926 rpneg 12927 negelrp 12928 ltsubrp 12931 ltaddrp 12932 difrp 12933 elrpd 12934 infmrp1 13247 dfrp2 13297 iccdil 13393 icccntr 13395 1mod 13807 expgt0 14002 resqrex 15157 sqrtdiv 15172 sqrtneglem 15173 mulcn2 15503 ef01bndlem 16093 sinltx 16098 met1stc 24407 met2ndci 24408 bcthlem4 25225 itg2mulc 25646 dvferm1 25887 dvne0 25914 reeff1o 26355 ellogdm 26546 cxpge0 26590 cxple2a 26606 cxpcn3lem 26655 cxpaddlelem 26659 cxpaddle 26660 atanbnd 26834 rlimcnp 26873 amgm 26899 chtub 27121 chebbnd1 27381 chto1ub 27385 pntlem3 27518 blocni 30749 rpdp2cl 32823 dp2ltc 32828 dplti 32846 dpgti 32847 dpexpp1 32849 dpmul4 32855 fdvposlt 34573 hgt750lem 34625 unbdqndv2lem2 36494 heiborlem8 37808 dvrelog2 42047 dvrelog3 42048 sqrtcvallem1 43614 wallispilem4 46059 perfectALTVlem2 47716 regt1loggt0 48531 |
| Copyright terms: Public domain | W3C validator |