| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elrp | Structured version Visualization version GIF version | ||
| Description: Membership in the set of positive reals. (Contributed by NM, 27-Oct-2007.) |
| Ref | Expression |
|---|---|
| elrp | ⊢ (𝐴 ∈ ℝ+ ↔ (𝐴 ∈ ℝ ∧ 0 < 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | breq2 5093 | . 2 ⊢ (𝑥 = 𝐴 → (0 < 𝑥 ↔ 0 < 𝐴)) | |
| 2 | df-rp 12891 | . 2 ⊢ ℝ+ = {𝑥 ∈ ℝ ∣ 0 < 𝑥} | |
| 3 | 1, 2 | elrab2 3645 | 1 ⊢ (𝐴 ∈ ℝ+ ↔ (𝐴 ∈ ℝ ∧ 0 < 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∈ wcel 2111 class class class wbr 5089 ℝcr 11005 0cc0 11006 < clt 11146 ℝ+crp 12890 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-br 5090 df-rp 12891 |
| This theorem is referenced by: elrpii 12893 nnrp 12902 rpgt0 12903 rpregt0 12905 ralrp 12912 rexrp 12913 rpaddcl 12914 rpmulcl 12915 rpdivcl 12917 rpgecl 12920 rphalflt 12921 ge0p1rp 12923 rpneg 12924 negelrp 12925 ltsubrp 12928 ltaddrp 12929 difrp 12930 elrpd 12931 infmrp1 13244 dfrp2 13294 iccdil 13390 icccntr 13392 1mod 13807 expgt0 14002 resqrex 15157 sqrtdiv 15172 sqrtneglem 15173 mulcn2 15503 ef01bndlem 16093 sinltx 16098 met1stc 24436 met2ndci 24437 bcthlem4 25254 itg2mulc 25675 dvferm1 25916 dvne0 25943 reeff1o 26384 ellogdm 26575 cxpge0 26619 cxple2a 26635 cxpcn3lem 26684 cxpaddlelem 26688 cxpaddle 26689 atanbnd 26863 rlimcnp 26902 amgm 26928 chtub 27150 chebbnd1 27410 chto1ub 27414 pntlem3 27547 blocni 30785 rpdp2cl 32862 dp2ltc 32867 dplti 32885 dpgti 32886 dpexpp1 32888 dpmul4 32894 fdvposlt 34612 hgt750lem 34664 unbdqndv2lem2 36554 heiborlem8 37857 dvrelog2 42156 dvrelog3 42157 sqrtcvallem1 43723 wallispilem4 46165 perfectALTVlem2 47821 regt1loggt0 48636 |
| Copyright terms: Public domain | W3C validator |