Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > elrp | Structured version Visualization version GIF version |
Description: Membership in the set of positive reals. (Contributed by NM, 27-Oct-2007.) |
Ref | Expression |
---|---|
elrp | ⊢ (𝐴 ∈ ℝ+ ↔ (𝐴 ∈ ℝ ∧ 0 < 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breq2 5074 | . 2 ⊢ (𝑥 = 𝐴 → (0 < 𝑥 ↔ 0 < 𝐴)) | |
2 | df-rp 12660 | . 2 ⊢ ℝ+ = {𝑥 ∈ ℝ ∣ 0 < 𝑥} | |
3 | 1, 2 | elrab2 3620 | 1 ⊢ (𝐴 ∈ ℝ+ ↔ (𝐴 ∈ ℝ ∧ 0 < 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 395 ∈ wcel 2108 class class class wbr 5070 ℝcr 10801 0cc0 10802 < clt 10940 ℝ+crp 12659 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-br 5071 df-rp 12660 |
This theorem is referenced by: elrpii 12662 nnrp 12670 rpgt0 12671 rpregt0 12673 ralrp 12679 rexrp 12680 rpaddcl 12681 rpmulcl 12682 rpdivcl 12684 rpgecl 12687 rphalflt 12688 ge0p1rp 12690 rpneg 12691 negelrp 12692 ltsubrp 12695 ltaddrp 12696 difrp 12697 elrpd 12698 infmrp1 13007 dfrp2 13057 iccdil 13151 icccntr 13153 1mod 13551 expgt0 13744 resqrex 14890 sqrtdiv 14905 sqrtneglem 14906 mulcn2 15233 ef01bndlem 15821 sinltx 15826 met1stc 23583 met2ndci 23584 bcthlem4 24396 itg2mulc 24817 dvferm1 25054 dvne0 25080 reeff1o 25511 ellogdm 25699 cxpge0 25743 cxple2a 25759 cxpcn3lem 25805 cxpaddlelem 25809 cxpaddle 25810 atanbnd 25981 rlimcnp 26020 amgm 26045 chtub 26265 chebbnd1 26525 chto1ub 26529 pntlem3 26662 blocni 29068 rpdp2cl 31058 dp2ltc 31063 dplti 31081 dpgti 31082 dpexpp1 31084 dpmul4 31090 fdvposlt 32479 hgt750lem 32531 unbdqndv2lem2 34617 heiborlem8 35903 dvrelog2 40000 dvrelog3 40001 2xp3dxp2ge1d 40090 sqrtcvallem1 41128 wallispilem4 43499 perfectALTVlem2 45062 regt1loggt0 45770 |
Copyright terms: Public domain | W3C validator |