| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elrp | Structured version Visualization version GIF version | ||
| Description: Membership in the set of positive reals. (Contributed by NM, 27-Oct-2007.) |
| Ref | Expression |
|---|---|
| elrp | ⊢ (𝐴 ∈ ℝ+ ↔ (𝐴 ∈ ℝ ∧ 0 < 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | breq2 5127 | . 2 ⊢ (𝑥 = 𝐴 → (0 < 𝑥 ↔ 0 < 𝐴)) | |
| 2 | df-rp 13017 | . 2 ⊢ ℝ+ = {𝑥 ∈ ℝ ∣ 0 < 𝑥} | |
| 3 | 1, 2 | elrab2 3678 | 1 ⊢ (𝐴 ∈ ℝ+ ↔ (𝐴 ∈ ℝ ∧ 0 < 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∈ wcel 2107 class class class wbr 5123 ℝcr 11136 0cc0 11137 < clt 11277 ℝ+crp 13016 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-rab 3420 df-v 3465 df-dif 3934 df-un 3936 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-br 5124 df-rp 13017 |
| This theorem is referenced by: elrpii 13019 nnrp 13028 rpgt0 13029 rpregt0 13031 ralrp 13037 rexrp 13038 rpaddcl 13039 rpmulcl 13040 rpdivcl 13042 rpgecl 13045 rphalflt 13046 ge0p1rp 13048 rpneg 13049 negelrp 13050 ltsubrp 13053 ltaddrp 13054 difrp 13055 elrpd 13056 infmrp1 13368 dfrp2 13418 iccdil 13512 icccntr 13514 1mod 13925 expgt0 14118 resqrex 15272 sqrtdiv 15287 sqrtneglem 15288 mulcn2 15615 ef01bndlem 16203 sinltx 16208 met1stc 24479 met2ndci 24480 bcthlem4 25298 itg2mulc 25719 dvferm1 25960 dvne0 25987 reeff1o 26428 ellogdm 26618 cxpge0 26662 cxple2a 26678 cxpcn3lem 26727 cxpaddlelem 26731 cxpaddle 26732 atanbnd 26906 rlimcnp 26945 amgm 26971 chtub 27193 chebbnd1 27453 chto1ub 27457 pntlem3 27590 blocni 30753 rpdp2cl 32809 dp2ltc 32814 dplti 32832 dpgti 32833 dpexpp1 32835 dpmul4 32841 fdvposlt 34589 hgt750lem 34641 unbdqndv2lem2 36486 heiborlem8 37800 dvrelog2 42040 dvrelog3 42041 2xp3dxp2ge1d 42217 sqrtcvallem1 43621 wallispilem4 46055 perfectALTVlem2 47682 regt1loggt0 48430 |
| Copyright terms: Public domain | W3C validator |