| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elrp | Structured version Visualization version GIF version | ||
| Description: Membership in the set of positive reals. (Contributed by NM, 27-Oct-2007.) |
| Ref | Expression |
|---|---|
| elrp | ⊢ (𝐴 ∈ ℝ+ ↔ (𝐴 ∈ ℝ ∧ 0 < 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | breq2 5111 | . 2 ⊢ (𝑥 = 𝐴 → (0 < 𝑥 ↔ 0 < 𝐴)) | |
| 2 | df-rp 12952 | . 2 ⊢ ℝ+ = {𝑥 ∈ ℝ ∣ 0 < 𝑥} | |
| 3 | 1, 2 | elrab2 3662 | 1 ⊢ (𝐴 ∈ ℝ+ ↔ (𝐴 ∈ ℝ ∧ 0 < 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∈ wcel 2109 class class class wbr 5107 ℝcr 11067 0cc0 11068 < clt 11208 ℝ+crp 12951 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-br 5108 df-rp 12952 |
| This theorem is referenced by: elrpii 12954 nnrp 12963 rpgt0 12964 rpregt0 12966 ralrp 12973 rexrp 12974 rpaddcl 12975 rpmulcl 12976 rpdivcl 12978 rpgecl 12981 rphalflt 12982 ge0p1rp 12984 rpneg 12985 negelrp 12986 ltsubrp 12989 ltaddrp 12990 difrp 12991 elrpd 12992 infmrp1 13305 dfrp2 13355 iccdil 13451 icccntr 13453 1mod 13865 expgt0 14060 resqrex 15216 sqrtdiv 15231 sqrtneglem 15232 mulcn2 15562 ef01bndlem 16152 sinltx 16157 met1stc 24409 met2ndci 24410 bcthlem4 25227 itg2mulc 25648 dvferm1 25889 dvne0 25916 reeff1o 26357 ellogdm 26548 cxpge0 26592 cxple2a 26608 cxpcn3lem 26657 cxpaddlelem 26661 cxpaddle 26662 atanbnd 26836 rlimcnp 26875 amgm 26901 chtub 27123 chebbnd1 27383 chto1ub 27387 pntlem3 27520 blocni 30734 rpdp2cl 32802 dp2ltc 32807 dplti 32825 dpgti 32826 dpexpp1 32828 dpmul4 32834 fdvposlt 34590 hgt750lem 34642 unbdqndv2lem2 36498 heiborlem8 37812 dvrelog2 42052 dvrelog3 42053 sqrtcvallem1 43620 wallispilem4 46066 perfectALTVlem2 47723 regt1loggt0 48525 |
| Copyright terms: Public domain | W3C validator |