![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elrp | Structured version Visualization version GIF version |
Description: Membership in the set of positive reals. (Contributed by NM, 27-Oct-2007.) |
Ref | Expression |
---|---|
elrp | ⊢ (𝐴 ∈ ℝ+ ↔ (𝐴 ∈ ℝ ∧ 0 < 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breq2 5142 | . 2 ⊢ (𝑥 = 𝐴 → (0 < 𝑥 ↔ 0 < 𝐴)) | |
2 | df-rp 12972 | . 2 ⊢ ℝ+ = {𝑥 ∈ ℝ ∣ 0 < 𝑥} | |
3 | 1, 2 | elrab2 3678 | 1 ⊢ (𝐴 ∈ ℝ+ ↔ (𝐴 ∈ ℝ ∧ 0 < 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 395 ∈ wcel 2098 class class class wbr 5138 ℝcr 11105 0cc0 11106 < clt 11245 ℝ+crp 12971 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2695 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-sb 2060 df-clab 2702 df-cleq 2716 df-clel 2802 df-rab 3425 df-v 3468 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-nul 4315 df-if 4521 df-sn 4621 df-pr 4623 df-op 4627 df-br 5139 df-rp 12972 |
This theorem is referenced by: elrpii 12974 nnrp 12982 rpgt0 12983 rpregt0 12985 ralrp 12991 rexrp 12992 rpaddcl 12993 rpmulcl 12994 rpdivcl 12996 rpgecl 12999 rphalflt 13000 ge0p1rp 13002 rpneg 13003 negelrp 13004 ltsubrp 13007 ltaddrp 13008 difrp 13009 elrpd 13010 infmrp1 13320 dfrp2 13370 iccdil 13464 icccntr 13466 1mod 13865 expgt0 14058 resqrex 15194 sqrtdiv 15209 sqrtneglem 15210 mulcn2 15537 ef01bndlem 16124 sinltx 16129 met1stc 24352 met2ndci 24353 bcthlem4 25177 itg2mulc 25599 dvferm1 25839 dvne0 25866 reeff1o 26301 ellogdm 26489 cxpge0 26533 cxple2a 26549 cxpcn3lem 26598 cxpaddlelem 26602 cxpaddle 26603 atanbnd 26774 rlimcnp 26813 amgm 26839 chtub 27061 chebbnd1 27321 chto1ub 27325 pntlem3 27458 blocni 30527 rpdp2cl 32515 dp2ltc 32520 dplti 32538 dpgti 32539 dpexpp1 32541 dpmul4 32547 fdvposlt 34100 hgt750lem 34152 unbdqndv2lem2 35876 heiborlem8 37176 dvrelog2 41422 dvrelog3 41423 2xp3dxp2ge1d 41515 sqrtcvallem1 42871 wallispilem4 45269 perfectALTVlem2 46875 regt1loggt0 47410 |
Copyright terms: Public domain | W3C validator |