![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elrp | Structured version Visualization version GIF version |
Description: Membership in the set of positive reals. (Contributed by NM, 27-Oct-2007.) |
Ref | Expression |
---|---|
elrp | ⊢ (𝐴 ∈ ℝ+ ↔ (𝐴 ∈ ℝ ∧ 0 < 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breq2 5151 | . 2 ⊢ (𝑥 = 𝐴 → (0 < 𝑥 ↔ 0 < 𝐴)) | |
2 | df-rp 13032 | . 2 ⊢ ℝ+ = {𝑥 ∈ ℝ ∣ 0 < 𝑥} | |
3 | 1, 2 | elrab2 3697 | 1 ⊢ (𝐴 ∈ ℝ+ ↔ (𝐴 ∈ ℝ ∧ 0 < 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∧ wa 395 ∈ wcel 2105 class class class wbr 5147 ℝcr 11151 0cc0 11152 < clt 11292 ℝ+crp 13031 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-ext 2705 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-sb 2062 df-clab 2712 df-cleq 2726 df-clel 2813 df-rab 3433 df-v 3479 df-dif 3965 df-un 3967 df-ss 3979 df-nul 4339 df-if 4531 df-sn 4631 df-pr 4633 df-op 4637 df-br 5148 df-rp 13032 |
This theorem is referenced by: elrpii 13034 nnrp 13043 rpgt0 13044 rpregt0 13046 ralrp 13052 rexrp 13053 rpaddcl 13054 rpmulcl 13055 rpdivcl 13057 rpgecl 13060 rphalflt 13061 ge0p1rp 13063 rpneg 13064 negelrp 13065 ltsubrp 13068 ltaddrp 13069 difrp 13070 elrpd 13071 infmrp1 13382 dfrp2 13432 iccdil 13526 icccntr 13528 1mod 13939 expgt0 14132 resqrex 15285 sqrtdiv 15300 sqrtneglem 15301 mulcn2 15628 ef01bndlem 16216 sinltx 16221 met1stc 24549 met2ndci 24550 bcthlem4 25374 itg2mulc 25796 dvferm1 26037 dvne0 26064 reeff1o 26505 ellogdm 26695 cxpge0 26739 cxple2a 26755 cxpcn3lem 26804 cxpaddlelem 26808 cxpaddle 26809 atanbnd 26983 rlimcnp 27022 amgm 27048 chtub 27270 chebbnd1 27530 chto1ub 27534 pntlem3 27667 blocni 30833 rpdp2cl 32848 dp2ltc 32853 dplti 32871 dpgti 32872 dpexpp1 32874 dpmul4 32880 fdvposlt 34592 hgt750lem 34644 unbdqndv2lem2 36492 heiborlem8 37804 dvrelog2 42045 dvrelog3 42046 2xp3dxp2ge1d 42222 sqrtcvallem1 43620 wallispilem4 46023 perfectALTVlem2 47646 regt1loggt0 48385 |
Copyright terms: Public domain | W3C validator |