![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elrp | Structured version Visualization version GIF version |
Description: Membership in the set of positive reals. (Contributed by NM, 27-Oct-2007.) |
Ref | Expression |
---|---|
elrp | ⊢ (𝐴 ∈ ℝ+ ↔ (𝐴 ∈ ℝ ∧ 0 < 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breq2 5170 | . 2 ⊢ (𝑥 = 𝐴 → (0 < 𝑥 ↔ 0 < 𝐴)) | |
2 | df-rp 13058 | . 2 ⊢ ℝ+ = {𝑥 ∈ ℝ ∣ 0 < 𝑥} | |
3 | 1, 2 | elrab2 3711 | 1 ⊢ (𝐴 ∈ ℝ+ ↔ (𝐴 ∈ ℝ ∧ 0 < 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∧ wa 395 ∈ wcel 2108 class class class wbr 5166 ℝcr 11183 0cc0 11184 < clt 11324 ℝ+crp 13057 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-br 5167 df-rp 13058 |
This theorem is referenced by: elrpii 13060 nnrp 13068 rpgt0 13069 rpregt0 13071 ralrp 13077 rexrp 13078 rpaddcl 13079 rpmulcl 13080 rpdivcl 13082 rpgecl 13085 rphalflt 13086 ge0p1rp 13088 rpneg 13089 negelrp 13090 ltsubrp 13093 ltaddrp 13094 difrp 13095 elrpd 13096 infmrp1 13406 dfrp2 13456 iccdil 13550 icccntr 13552 1mod 13954 expgt0 14146 resqrex 15299 sqrtdiv 15314 sqrtneglem 15315 mulcn2 15642 ef01bndlem 16232 sinltx 16237 met1stc 24555 met2ndci 24556 bcthlem4 25380 itg2mulc 25802 dvferm1 26043 dvne0 26070 reeff1o 26509 ellogdm 26699 cxpge0 26743 cxple2a 26759 cxpcn3lem 26808 cxpaddlelem 26812 cxpaddle 26813 atanbnd 26987 rlimcnp 27026 amgm 27052 chtub 27274 chebbnd1 27534 chto1ub 27538 pntlem3 27671 blocni 30837 rpdp2cl 32846 dp2ltc 32851 dplti 32869 dpgti 32870 dpexpp1 32872 dpmul4 32878 fdvposlt 34576 hgt750lem 34628 unbdqndv2lem2 36476 heiborlem8 37778 dvrelog2 42021 dvrelog3 42022 2xp3dxp2ge1d 42198 sqrtcvallem1 43593 wallispilem4 45989 perfectALTVlem2 47596 regt1loggt0 48270 |
Copyright terms: Public domain | W3C validator |