| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elrp | Structured version Visualization version GIF version | ||
| Description: Membership in the set of positive reals. (Contributed by NM, 27-Oct-2007.) |
| Ref | Expression |
|---|---|
| elrp | ⊢ (𝐴 ∈ ℝ+ ↔ (𝐴 ∈ ℝ ∧ 0 < 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | breq2 5106 | . 2 ⊢ (𝑥 = 𝐴 → (0 < 𝑥 ↔ 0 < 𝐴)) | |
| 2 | df-rp 12928 | . 2 ⊢ ℝ+ = {𝑥 ∈ ℝ ∣ 0 < 𝑥} | |
| 3 | 1, 2 | elrab2 3659 | 1 ⊢ (𝐴 ∈ ℝ+ ↔ (𝐴 ∈ ℝ ∧ 0 < 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∈ wcel 2109 class class class wbr 5102 ℝcr 11043 0cc0 11044 < clt 11184 ℝ+crp 12927 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-br 5103 df-rp 12928 |
| This theorem is referenced by: elrpii 12930 nnrp 12939 rpgt0 12940 rpregt0 12942 ralrp 12949 rexrp 12950 rpaddcl 12951 rpmulcl 12952 rpdivcl 12954 rpgecl 12957 rphalflt 12958 ge0p1rp 12960 rpneg 12961 negelrp 12962 ltsubrp 12965 ltaddrp 12966 difrp 12967 elrpd 12968 infmrp1 13281 dfrp2 13331 iccdil 13427 icccntr 13429 1mod 13841 expgt0 14036 resqrex 15192 sqrtdiv 15207 sqrtneglem 15208 mulcn2 15538 ef01bndlem 16128 sinltx 16133 met1stc 24442 met2ndci 24443 bcthlem4 25260 itg2mulc 25681 dvferm1 25922 dvne0 25949 reeff1o 26390 ellogdm 26581 cxpge0 26625 cxple2a 26641 cxpcn3lem 26690 cxpaddlelem 26694 cxpaddle 26695 atanbnd 26869 rlimcnp 26908 amgm 26934 chtub 27156 chebbnd1 27416 chto1ub 27420 pntlem3 27553 blocni 30784 rpdp2cl 32852 dp2ltc 32857 dplti 32875 dpgti 32876 dpexpp1 32878 dpmul4 32884 fdvposlt 34583 hgt750lem 34635 unbdqndv2lem2 36491 heiborlem8 37805 dvrelog2 42045 dvrelog3 42046 sqrtcvallem1 43613 wallispilem4 46059 perfectALTVlem2 47716 regt1loggt0 48518 |
| Copyright terms: Public domain | W3C validator |