| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ioorp | Structured version Visualization version GIF version | ||
| Description: The set of positive reals expressed as an open interval. (Contributed by Steve Rodriguez, 25-Nov-2007.) |
| Ref | Expression |
|---|---|
| ioorp | ⊢ (0(,)+∞) = ℝ+ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ioopos 13441 | . 2 ⊢ (0(,)+∞) = {𝑥 ∈ ℝ ∣ 0 < 𝑥} | |
| 2 | df-rp 13009 | . 2 ⊢ ℝ+ = {𝑥 ∈ ℝ ∣ 0 < 𝑥} | |
| 3 | 1, 2 | eqtr4i 2761 | 1 ⊢ (0(,)+∞) = ℝ+ |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 {crab 3415 class class class wbr 5119 (class class class)co 7405 ℝcr 11128 0cc0 11129 +∞cpnf 11266 < clt 11269 ℝ+crp 13008 (,)cioo 13362 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-cnex 11185 ax-resscn 11186 ax-1cn 11187 ax-addrcl 11190 ax-rnegex 11200 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-po 5561 df-so 5562 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-ov 7408 df-oprab 7409 df-mpo 7410 df-1st 7988 df-2nd 7989 df-er 8719 df-en 8960 df-dom 8961 df-sdom 8962 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-rp 13009 df-ioo 13366 |
| This theorem is referenced by: rpsup 13883 advlog 26615 advlogexp 26616 logccv 26624 cxpcn3 26710 loglesqrt 26723 rlimcnp 26927 rlimcnp2 26928 divsqrtsumlem 26942 amgmlem 26952 logfacbnd3 27186 logexprlim 27188 dchrisum0lem2a 27480 logdivsum 27496 log2sumbnd 27507 elxrge02 32906 xrge0iifcnv 33964 xrge0iifiso 33966 xrge0iifhom 33968 xrge0mulc1cn 33972 esumdivc 34114 signsply0 34583 rpsqrtcn 34625 logdivsqrle 34682 itg2gt0cn 37699 dvasin 37728 redvmptabs 42403 hoicvrrex 46585 amgmwlem 49666 |
| Copyright terms: Public domain | W3C validator |