![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ioorp | Structured version Visualization version GIF version |
Description: The set of positive reals expressed as an open interval. (Contributed by Steve Rodriguez, 25-Nov-2007.) |
Ref | Expression |
---|---|
ioorp | ⊢ (0(,)+∞) = ℝ+ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ioopos 13461 | . 2 ⊢ (0(,)+∞) = {𝑥 ∈ ℝ ∣ 0 < 𝑥} | |
2 | df-rp 13033 | . 2 ⊢ ℝ+ = {𝑥 ∈ ℝ ∣ 0 < 𝑥} | |
3 | 1, 2 | eqtr4i 2766 | 1 ⊢ (0(,)+∞) = ℝ+ |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 {crab 3433 class class class wbr 5148 (class class class)co 7431 ℝcr 11152 0cc0 11153 +∞cpnf 11290 < clt 11293 ℝ+crp 13032 (,)cioo 13384 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-cnex 11209 ax-resscn 11210 ax-1cn 11211 ax-addrcl 11214 ax-rnegex 11224 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-po 5597 df-so 5598 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-ov 7434 df-oprab 7435 df-mpo 7436 df-1st 8013 df-2nd 8014 df-er 8744 df-en 8985 df-dom 8986 df-sdom 8987 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-rp 13033 df-ioo 13388 |
This theorem is referenced by: rpsup 13903 advlog 26711 advlogexp 26712 logccv 26720 cxpcn3 26806 loglesqrt 26819 rlimcnp 27023 rlimcnp2 27024 divsqrtsumlem 27038 amgmlem 27048 logfacbnd3 27282 logexprlim 27284 dchrisum0lem2a 27576 logdivsum 27592 log2sumbnd 27603 elxrge02 32899 xrge0iifcnv 33894 xrge0iifiso 33896 xrge0iifhom 33898 xrge0mulc1cn 33902 esumdivc 34064 signsply0 34545 rpsqrtcn 34587 logdivsqrle 34644 itg2gt0cn 37662 dvasin 37691 redvmptabs 42369 hoicvrrex 46512 amgmwlem 49033 |
Copyright terms: Public domain | W3C validator |