Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ioorp | Structured version Visualization version GIF version |
Description: The set of positive reals expressed as an open interval. (Contributed by Steve Rodriguez, 25-Nov-2007.) |
Ref | Expression |
---|---|
ioorp | ⊢ (0(,)+∞) = ℝ+ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ioopos 13085 | . 2 ⊢ (0(,)+∞) = {𝑥 ∈ ℝ ∣ 0 < 𝑥} | |
2 | df-rp 12660 | . 2 ⊢ ℝ+ = {𝑥 ∈ ℝ ∣ 0 < 𝑥} | |
3 | 1, 2 | eqtr4i 2769 | 1 ⊢ (0(,)+∞) = ℝ+ |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 {crab 3067 class class class wbr 5070 (class class class)co 7255 ℝcr 10801 0cc0 10802 +∞cpnf 10937 < clt 10940 ℝ+crp 12659 (,)cioo 13008 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-addrcl 10863 ax-rnegex 10873 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-po 5494 df-so 5495 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-ov 7258 df-oprab 7259 df-mpo 7260 df-1st 7804 df-2nd 7805 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-rp 12660 df-ioo 13012 |
This theorem is referenced by: rpsup 13514 advlog 25714 advlogexp 25715 logccv 25723 cxpcn3 25806 loglesqrt 25816 rlimcnp 26020 rlimcnp2 26021 divsqrtsumlem 26034 amgmlem 26044 logfacbnd3 26276 logexprlim 26278 dchrisum0lem2a 26570 logdivsum 26586 log2sumbnd 26597 elxrge02 31108 xrge0iifcnv 31785 xrge0iifiso 31787 xrge0iifhom 31789 xrge0mulc1cn 31793 esumdivc 31951 signsply0 32430 rpsqrtcn 32473 logdivsqrle 32530 itg2gt0cn 35759 dvasin 35788 hoicvrrex 43984 amgmwlem 46392 |
Copyright terms: Public domain | W3C validator |