| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ioorp | Structured version Visualization version GIF version | ||
| Description: The set of positive reals expressed as an open interval. (Contributed by Steve Rodriguez, 25-Nov-2007.) |
| Ref | Expression |
|---|---|
| ioorp | ⊢ (0(,)+∞) = ℝ+ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ioopos 13464 | . 2 ⊢ (0(,)+∞) = {𝑥 ∈ ℝ ∣ 0 < 𝑥} | |
| 2 | df-rp 13035 | . 2 ⊢ ℝ+ = {𝑥 ∈ ℝ ∣ 0 < 𝑥} | |
| 3 | 1, 2 | eqtr4i 2768 | 1 ⊢ (0(,)+∞) = ℝ+ |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 {crab 3436 class class class wbr 5143 (class class class)co 7431 ℝcr 11154 0cc0 11155 +∞cpnf 11292 < clt 11295 ℝ+crp 13034 (,)cioo 13387 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-cnex 11211 ax-resscn 11212 ax-1cn 11213 ax-addrcl 11216 ax-rnegex 11226 ax-cnre 11228 ax-pre-lttri 11229 ax-pre-lttrn 11230 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-id 5578 df-po 5592 df-so 5593 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-ov 7434 df-oprab 7435 df-mpo 7436 df-1st 8014 df-2nd 8015 df-er 8745 df-en 8986 df-dom 8987 df-sdom 8988 df-pnf 11297 df-mnf 11298 df-xr 11299 df-ltxr 11300 df-le 11301 df-rp 13035 df-ioo 13391 |
| This theorem is referenced by: rpsup 13906 advlog 26696 advlogexp 26697 logccv 26705 cxpcn3 26791 loglesqrt 26804 rlimcnp 27008 rlimcnp2 27009 divsqrtsumlem 27023 amgmlem 27033 logfacbnd3 27267 logexprlim 27269 dchrisum0lem2a 27561 logdivsum 27577 log2sumbnd 27588 elxrge02 32914 xrge0iifcnv 33932 xrge0iifiso 33934 xrge0iifhom 33936 xrge0mulc1cn 33940 esumdivc 34084 signsply0 34566 rpsqrtcn 34608 logdivsqrle 34665 itg2gt0cn 37682 dvasin 37711 redvmptabs 42390 hoicvrrex 46571 amgmwlem 49321 |
| Copyright terms: Public domain | W3C validator |