| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ioorp | Structured version Visualization version GIF version | ||
| Description: The set of positive reals expressed as an open interval. (Contributed by Steve Rodriguez, 25-Nov-2007.) |
| Ref | Expression |
|---|---|
| ioorp | ⊢ (0(,)+∞) = ℝ+ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ioopos 13334 | . 2 ⊢ (0(,)+∞) = {𝑥 ∈ ℝ ∣ 0 < 𝑥} | |
| 2 | df-rp 12901 | . 2 ⊢ ℝ+ = {𝑥 ∈ ℝ ∣ 0 < 𝑥} | |
| 3 | 1, 2 | eqtr4i 2759 | 1 ⊢ (0(,)+∞) = ℝ+ |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 {crab 3397 class class class wbr 5095 (class class class)co 7355 ℝcr 11015 0cc0 11016 +∞cpnf 11153 < clt 11156 ℝ+crp 12900 (,)cioo 13255 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 ax-cnex 11072 ax-resscn 11073 ax-1cn 11074 ax-addrcl 11077 ax-rnegex 11087 ax-cnre 11089 ax-pre-lttri 11090 ax-pre-lttrn 11091 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2883 df-ne 2931 df-nel 3035 df-ral 3050 df-rex 3059 df-rab 3398 df-v 3440 df-sbc 3739 df-csb 3848 df-dif 3902 df-un 3904 df-in 3906 df-ss 3916 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5516 df-po 5529 df-so 5530 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-ov 7358 df-oprab 7359 df-mpo 7360 df-1st 7930 df-2nd 7931 df-er 8631 df-en 8879 df-dom 8880 df-sdom 8881 df-pnf 11158 df-mnf 11159 df-xr 11160 df-ltxr 11161 df-le 11162 df-rp 12901 df-ioo 13259 |
| This theorem is referenced by: rpsup 13780 advlog 26600 advlogexp 26601 logccv 26609 cxpcn3 26695 loglesqrt 26708 rlimcnp 26912 rlimcnp2 26913 divsqrtsumlem 26927 amgmlem 26937 logfacbnd3 27171 logexprlim 27173 dchrisum0lem2a 27465 logdivsum 27481 log2sumbnd 27492 elxrge02 32923 xrge0iifcnv 33957 xrge0iifiso 33959 xrge0iifhom 33961 xrge0mulc1cn 33965 esumdivc 34107 signsply0 34575 rpsqrtcn 34617 logdivsqrle 34674 itg2gt0cn 37725 dvasin 37754 redvmptabs 42468 hoicvrrex 46668 amgmwlem 49917 |
| Copyright terms: Public domain | W3C validator |