MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  scmatval Structured version   Visualization version   GIF version

Theorem scmatval 21109
Description: The set of 𝑁 x 𝑁 scalar matrices over (a ring) 𝑅. (Contributed by AV, 18-Dec-2019.)
Hypotheses
Ref Expression
scmatval.k 𝐾 = (Base‘𝑅)
scmatval.a 𝐴 = (𝑁 Mat 𝑅)
scmatval.b 𝐵 = (Base‘𝐴)
scmatval.1 1 = (1r𝐴)
scmatval.t · = ( ·𝑠𝐴)
scmatval.s 𝑆 = (𝑁 ScMat 𝑅)
Assertion
Ref Expression
scmatval ((𝑁 ∈ Fin ∧ 𝑅𝑉) → 𝑆 = {𝑚𝐵 ∣ ∃𝑐𝐾 𝑚 = (𝑐 · 1 )})
Distinct variable groups:   𝐵,𝑚   𝐾,𝑐   𝑁,𝑐,𝑚   𝑅,𝑐,𝑚
Allowed substitution hints:   𝐴(𝑚,𝑐)   𝐵(𝑐)   𝑆(𝑚,𝑐)   · (𝑚,𝑐)   1 (𝑚,𝑐)   𝐾(𝑚)   𝑉(𝑚,𝑐)

Proof of Theorem scmatval
Dummy variables 𝑛 𝑟 𝑎 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 scmatval.s . 2 𝑆 = (𝑁 ScMat 𝑅)
2 df-scmat 21096 . . . 4 ScMat = (𝑛 ∈ Fin, 𝑟 ∈ V ↦ (𝑛 Mat 𝑟) / 𝑎{𝑚 ∈ (Base‘𝑎) ∣ ∃𝑐 ∈ (Base‘𝑟)𝑚 = (𝑐( ·𝑠𝑎)(1r𝑎))})
32a1i 11 . . 3 ((𝑁 ∈ Fin ∧ 𝑅𝑉) → ScMat = (𝑛 ∈ Fin, 𝑟 ∈ V ↦ (𝑛 Mat 𝑟) / 𝑎{𝑚 ∈ (Base‘𝑎) ∣ ∃𝑐 ∈ (Base‘𝑟)𝑚 = (𝑐( ·𝑠𝑎)(1r𝑎))}))
4 ovexd 7170 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅𝑉) ∧ (𝑛 = 𝑁𝑟 = 𝑅)) → (𝑛 Mat 𝑟) ∈ V)
5 fveq2 6645 . . . . . . 7 (𝑎 = (𝑛 Mat 𝑟) → (Base‘𝑎) = (Base‘(𝑛 Mat 𝑟)))
6 fveq2 6645 . . . . . . . . . 10 (𝑎 = (𝑛 Mat 𝑟) → ( ·𝑠𝑎) = ( ·𝑠 ‘(𝑛 Mat 𝑟)))
7 eqidd 2799 . . . . . . . . . 10 (𝑎 = (𝑛 Mat 𝑟) → 𝑐 = 𝑐)
8 fveq2 6645 . . . . . . . . . 10 (𝑎 = (𝑛 Mat 𝑟) → (1r𝑎) = (1r‘(𝑛 Mat 𝑟)))
96, 7, 8oveq123d 7156 . . . . . . . . 9 (𝑎 = (𝑛 Mat 𝑟) → (𝑐( ·𝑠𝑎)(1r𝑎)) = (𝑐( ·𝑠 ‘(𝑛 Mat 𝑟))(1r‘(𝑛 Mat 𝑟))))
109eqeq2d 2809 . . . . . . . 8 (𝑎 = (𝑛 Mat 𝑟) → (𝑚 = (𝑐( ·𝑠𝑎)(1r𝑎)) ↔ 𝑚 = (𝑐( ·𝑠 ‘(𝑛 Mat 𝑟))(1r‘(𝑛 Mat 𝑟)))))
1110rexbidv 3256 . . . . . . 7 (𝑎 = (𝑛 Mat 𝑟) → (∃𝑐 ∈ (Base‘𝑟)𝑚 = (𝑐( ·𝑠𝑎)(1r𝑎)) ↔ ∃𝑐 ∈ (Base‘𝑟)𝑚 = (𝑐( ·𝑠 ‘(𝑛 Mat 𝑟))(1r‘(𝑛 Mat 𝑟)))))
125, 11rabeqbidv 3433 . . . . . 6 (𝑎 = (𝑛 Mat 𝑟) → {𝑚 ∈ (Base‘𝑎) ∣ ∃𝑐 ∈ (Base‘𝑟)𝑚 = (𝑐( ·𝑠𝑎)(1r𝑎))} = {𝑚 ∈ (Base‘(𝑛 Mat 𝑟)) ∣ ∃𝑐 ∈ (Base‘𝑟)𝑚 = (𝑐( ·𝑠 ‘(𝑛 Mat 𝑟))(1r‘(𝑛 Mat 𝑟)))})
1312adantl 485 . . . . 5 ((((𝑁 ∈ Fin ∧ 𝑅𝑉) ∧ (𝑛 = 𝑁𝑟 = 𝑅)) ∧ 𝑎 = (𝑛 Mat 𝑟)) → {𝑚 ∈ (Base‘𝑎) ∣ ∃𝑐 ∈ (Base‘𝑟)𝑚 = (𝑐( ·𝑠𝑎)(1r𝑎))} = {𝑚 ∈ (Base‘(𝑛 Mat 𝑟)) ∣ ∃𝑐 ∈ (Base‘𝑟)𝑚 = (𝑐( ·𝑠 ‘(𝑛 Mat 𝑟))(1r‘(𝑛 Mat 𝑟)))})
144, 13csbied 3864 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅𝑉) ∧ (𝑛 = 𝑁𝑟 = 𝑅)) → (𝑛 Mat 𝑟) / 𝑎{𝑚 ∈ (Base‘𝑎) ∣ ∃𝑐 ∈ (Base‘𝑟)𝑚 = (𝑐( ·𝑠𝑎)(1r𝑎))} = {𝑚 ∈ (Base‘(𝑛 Mat 𝑟)) ∣ ∃𝑐 ∈ (Base‘𝑟)𝑚 = (𝑐( ·𝑠 ‘(𝑛 Mat 𝑟))(1r‘(𝑛 Mat 𝑟)))})
15 oveq12 7144 . . . . . . . 8 ((𝑛 = 𝑁𝑟 = 𝑅) → (𝑛 Mat 𝑟) = (𝑁 Mat 𝑅))
1615fveq2d 6649 . . . . . . 7 ((𝑛 = 𝑁𝑟 = 𝑅) → (Base‘(𝑛 Mat 𝑟)) = (Base‘(𝑁 Mat 𝑅)))
17 scmatval.b . . . . . . . 8 𝐵 = (Base‘𝐴)
18 scmatval.a . . . . . . . . 9 𝐴 = (𝑁 Mat 𝑅)
1918fveq2i 6648 . . . . . . . 8 (Base‘𝐴) = (Base‘(𝑁 Mat 𝑅))
2017, 19eqtri 2821 . . . . . . 7 𝐵 = (Base‘(𝑁 Mat 𝑅))
2116, 20eqtr4di 2851 . . . . . 6 ((𝑛 = 𝑁𝑟 = 𝑅) → (Base‘(𝑛 Mat 𝑟)) = 𝐵)
22 fveq2 6645 . . . . . . . . 9 (𝑟 = 𝑅 → (Base‘𝑟) = (Base‘𝑅))
23 scmatval.k . . . . . . . . 9 𝐾 = (Base‘𝑅)
2422, 23eqtr4di 2851 . . . . . . . 8 (𝑟 = 𝑅 → (Base‘𝑟) = 𝐾)
2524adantl 485 . . . . . . 7 ((𝑛 = 𝑁𝑟 = 𝑅) → (Base‘𝑟) = 𝐾)
2615fveq2d 6649 . . . . . . . . . 10 ((𝑛 = 𝑁𝑟 = 𝑅) → ( ·𝑠 ‘(𝑛 Mat 𝑟)) = ( ·𝑠 ‘(𝑁 Mat 𝑅)))
27 scmatval.t . . . . . . . . . . 11 · = ( ·𝑠𝐴)
2818fveq2i 6648 . . . . . . . . . . 11 ( ·𝑠𝐴) = ( ·𝑠 ‘(𝑁 Mat 𝑅))
2927, 28eqtri 2821 . . . . . . . . . 10 · = ( ·𝑠 ‘(𝑁 Mat 𝑅))
3026, 29eqtr4di 2851 . . . . . . . . 9 ((𝑛 = 𝑁𝑟 = 𝑅) → ( ·𝑠 ‘(𝑛 Mat 𝑟)) = · )
31 eqidd 2799 . . . . . . . . 9 ((𝑛 = 𝑁𝑟 = 𝑅) → 𝑐 = 𝑐)
3215fveq2d 6649 . . . . . . . . . 10 ((𝑛 = 𝑁𝑟 = 𝑅) → (1r‘(𝑛 Mat 𝑟)) = (1r‘(𝑁 Mat 𝑅)))
33 scmatval.1 . . . . . . . . . . 11 1 = (1r𝐴)
3418fveq2i 6648 . . . . . . . . . . 11 (1r𝐴) = (1r‘(𝑁 Mat 𝑅))
3533, 34eqtri 2821 . . . . . . . . . 10 1 = (1r‘(𝑁 Mat 𝑅))
3632, 35eqtr4di 2851 . . . . . . . . 9 ((𝑛 = 𝑁𝑟 = 𝑅) → (1r‘(𝑛 Mat 𝑟)) = 1 )
3730, 31, 36oveq123d 7156 . . . . . . . 8 ((𝑛 = 𝑁𝑟 = 𝑅) → (𝑐( ·𝑠 ‘(𝑛 Mat 𝑟))(1r‘(𝑛 Mat 𝑟))) = (𝑐 · 1 ))
3837eqeq2d 2809 . . . . . . 7 ((𝑛 = 𝑁𝑟 = 𝑅) → (𝑚 = (𝑐( ·𝑠 ‘(𝑛 Mat 𝑟))(1r‘(𝑛 Mat 𝑟))) ↔ 𝑚 = (𝑐 · 1 )))
3925, 38rexeqbidv 3355 . . . . . 6 ((𝑛 = 𝑁𝑟 = 𝑅) → (∃𝑐 ∈ (Base‘𝑟)𝑚 = (𝑐( ·𝑠 ‘(𝑛 Mat 𝑟))(1r‘(𝑛 Mat 𝑟))) ↔ ∃𝑐𝐾 𝑚 = (𝑐 · 1 )))
4021, 39rabeqbidv 3433 . . . . 5 ((𝑛 = 𝑁𝑟 = 𝑅) → {𝑚 ∈ (Base‘(𝑛 Mat 𝑟)) ∣ ∃𝑐 ∈ (Base‘𝑟)𝑚 = (𝑐( ·𝑠 ‘(𝑛 Mat 𝑟))(1r‘(𝑛 Mat 𝑟)))} = {𝑚𝐵 ∣ ∃𝑐𝐾 𝑚 = (𝑐 · 1 )})
4140adantl 485 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅𝑉) ∧ (𝑛 = 𝑁𝑟 = 𝑅)) → {𝑚 ∈ (Base‘(𝑛 Mat 𝑟)) ∣ ∃𝑐 ∈ (Base‘𝑟)𝑚 = (𝑐( ·𝑠 ‘(𝑛 Mat 𝑟))(1r‘(𝑛 Mat 𝑟)))} = {𝑚𝐵 ∣ ∃𝑐𝐾 𝑚 = (𝑐 · 1 )})
4214, 41eqtrd 2833 . . 3 (((𝑁 ∈ Fin ∧ 𝑅𝑉) ∧ (𝑛 = 𝑁𝑟 = 𝑅)) → (𝑛 Mat 𝑟) / 𝑎{𝑚 ∈ (Base‘𝑎) ∣ ∃𝑐 ∈ (Base‘𝑟)𝑚 = (𝑐( ·𝑠𝑎)(1r𝑎))} = {𝑚𝐵 ∣ ∃𝑐𝐾 𝑚 = (𝑐 · 1 )})
43 simpl 486 . . 3 ((𝑁 ∈ Fin ∧ 𝑅𝑉) → 𝑁 ∈ Fin)
44 elex 3459 . . . 4 (𝑅𝑉𝑅 ∈ V)
4544adantl 485 . . 3 ((𝑁 ∈ Fin ∧ 𝑅𝑉) → 𝑅 ∈ V)
4617fvexi 6659 . . . . 5 𝐵 ∈ V
4746rabex 5199 . . . 4 {𝑚𝐵 ∣ ∃𝑐𝐾 𝑚 = (𝑐 · 1 )} ∈ V
4847a1i 11 . . 3 ((𝑁 ∈ Fin ∧ 𝑅𝑉) → {𝑚𝐵 ∣ ∃𝑐𝐾 𝑚 = (𝑐 · 1 )} ∈ V)
493, 42, 43, 45, 48ovmpod 7281 . 2 ((𝑁 ∈ Fin ∧ 𝑅𝑉) → (𝑁 ScMat 𝑅) = {𝑚𝐵 ∣ ∃𝑐𝐾 𝑚 = (𝑐 · 1 )})
501, 49syl5eq 2845 1 ((𝑁 ∈ Fin ∧ 𝑅𝑉) → 𝑆 = {𝑚𝐵 ∣ ∃𝑐𝐾 𝑚 = (𝑐 · 1 )})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1538  wcel 2111  wrex 3107  {crab 3110  Vcvv 3441  csb 3828  cfv 6324  (class class class)co 7135  cmpo 7137  Fincfn 8492  Basecbs 16475   ·𝑠 cvsca 16561  1rcur 19244   Mat cmat 21012   ScMat cscmat 21094
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pr 5295
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ral 3111  df-rex 3112  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-br 5031  df-opab 5093  df-id 5425  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-iota 6283  df-fun 6326  df-fv 6332  df-ov 7138  df-oprab 7139  df-mpo 7140  df-scmat 21096
This theorem is referenced by:  scmatel  21110  scmatmats  21116  scmatlss  21130
  Copyright terms: Public domain W3C validator