MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  scmatval Structured version   Visualization version   GIF version

Theorem scmatval 22398
Description: The set of 𝑁 x 𝑁 scalar matrices over (a ring) 𝑅. (Contributed by AV, 18-Dec-2019.)
Hypotheses
Ref Expression
scmatval.k 𝐾 = (Base‘𝑅)
scmatval.a 𝐴 = (𝑁 Mat 𝑅)
scmatval.b 𝐵 = (Base‘𝐴)
scmatval.1 1 = (1r𝐴)
scmatval.t · = ( ·𝑠𝐴)
scmatval.s 𝑆 = (𝑁 ScMat 𝑅)
Assertion
Ref Expression
scmatval ((𝑁 ∈ Fin ∧ 𝑅𝑉) → 𝑆 = {𝑚𝐵 ∣ ∃𝑐𝐾 𝑚 = (𝑐 · 1 )})
Distinct variable groups:   𝐵,𝑚   𝐾,𝑐   𝑁,𝑐,𝑚   𝑅,𝑐,𝑚
Allowed substitution hints:   𝐴(𝑚,𝑐)   𝐵(𝑐)   𝑆(𝑚,𝑐)   · (𝑚,𝑐)   1 (𝑚,𝑐)   𝐾(𝑚)   𝑉(𝑚,𝑐)

Proof of Theorem scmatval
Dummy variables 𝑛 𝑟 𝑎 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 scmatval.s . 2 𝑆 = (𝑁 ScMat 𝑅)
2 df-scmat 22385 . . . 4 ScMat = (𝑛 ∈ Fin, 𝑟 ∈ V ↦ (𝑛 Mat 𝑟) / 𝑎{𝑚 ∈ (Base‘𝑎) ∣ ∃𝑐 ∈ (Base‘𝑟)𝑚 = (𝑐( ·𝑠𝑎)(1r𝑎))})
32a1i 11 . . 3 ((𝑁 ∈ Fin ∧ 𝑅𝑉) → ScMat = (𝑛 ∈ Fin, 𝑟 ∈ V ↦ (𝑛 Mat 𝑟) / 𝑎{𝑚 ∈ (Base‘𝑎) ∣ ∃𝑐 ∈ (Base‘𝑟)𝑚 = (𝑐( ·𝑠𝑎)(1r𝑎))}))
4 ovexd 7425 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅𝑉) ∧ (𝑛 = 𝑁𝑟 = 𝑅)) → (𝑛 Mat 𝑟) ∈ V)
5 fveq2 6861 . . . . . . 7 (𝑎 = (𝑛 Mat 𝑟) → (Base‘𝑎) = (Base‘(𝑛 Mat 𝑟)))
6 fveq2 6861 . . . . . . . . . 10 (𝑎 = (𝑛 Mat 𝑟) → ( ·𝑠𝑎) = ( ·𝑠 ‘(𝑛 Mat 𝑟)))
7 eqidd 2731 . . . . . . . . . 10 (𝑎 = (𝑛 Mat 𝑟) → 𝑐 = 𝑐)
8 fveq2 6861 . . . . . . . . . 10 (𝑎 = (𝑛 Mat 𝑟) → (1r𝑎) = (1r‘(𝑛 Mat 𝑟)))
96, 7, 8oveq123d 7411 . . . . . . . . 9 (𝑎 = (𝑛 Mat 𝑟) → (𝑐( ·𝑠𝑎)(1r𝑎)) = (𝑐( ·𝑠 ‘(𝑛 Mat 𝑟))(1r‘(𝑛 Mat 𝑟))))
109eqeq2d 2741 . . . . . . . 8 (𝑎 = (𝑛 Mat 𝑟) → (𝑚 = (𝑐( ·𝑠𝑎)(1r𝑎)) ↔ 𝑚 = (𝑐( ·𝑠 ‘(𝑛 Mat 𝑟))(1r‘(𝑛 Mat 𝑟)))))
1110rexbidv 3158 . . . . . . 7 (𝑎 = (𝑛 Mat 𝑟) → (∃𝑐 ∈ (Base‘𝑟)𝑚 = (𝑐( ·𝑠𝑎)(1r𝑎)) ↔ ∃𝑐 ∈ (Base‘𝑟)𝑚 = (𝑐( ·𝑠 ‘(𝑛 Mat 𝑟))(1r‘(𝑛 Mat 𝑟)))))
125, 11rabeqbidv 3427 . . . . . 6 (𝑎 = (𝑛 Mat 𝑟) → {𝑚 ∈ (Base‘𝑎) ∣ ∃𝑐 ∈ (Base‘𝑟)𝑚 = (𝑐( ·𝑠𝑎)(1r𝑎))} = {𝑚 ∈ (Base‘(𝑛 Mat 𝑟)) ∣ ∃𝑐 ∈ (Base‘𝑟)𝑚 = (𝑐( ·𝑠 ‘(𝑛 Mat 𝑟))(1r‘(𝑛 Mat 𝑟)))})
1312adantl 481 . . . . 5 ((((𝑁 ∈ Fin ∧ 𝑅𝑉) ∧ (𝑛 = 𝑁𝑟 = 𝑅)) ∧ 𝑎 = (𝑛 Mat 𝑟)) → {𝑚 ∈ (Base‘𝑎) ∣ ∃𝑐 ∈ (Base‘𝑟)𝑚 = (𝑐( ·𝑠𝑎)(1r𝑎))} = {𝑚 ∈ (Base‘(𝑛 Mat 𝑟)) ∣ ∃𝑐 ∈ (Base‘𝑟)𝑚 = (𝑐( ·𝑠 ‘(𝑛 Mat 𝑟))(1r‘(𝑛 Mat 𝑟)))})
144, 13csbied 3901 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅𝑉) ∧ (𝑛 = 𝑁𝑟 = 𝑅)) → (𝑛 Mat 𝑟) / 𝑎{𝑚 ∈ (Base‘𝑎) ∣ ∃𝑐 ∈ (Base‘𝑟)𝑚 = (𝑐( ·𝑠𝑎)(1r𝑎))} = {𝑚 ∈ (Base‘(𝑛 Mat 𝑟)) ∣ ∃𝑐 ∈ (Base‘𝑟)𝑚 = (𝑐( ·𝑠 ‘(𝑛 Mat 𝑟))(1r‘(𝑛 Mat 𝑟)))})
15 oveq12 7399 . . . . . . . 8 ((𝑛 = 𝑁𝑟 = 𝑅) → (𝑛 Mat 𝑟) = (𝑁 Mat 𝑅))
1615fveq2d 6865 . . . . . . 7 ((𝑛 = 𝑁𝑟 = 𝑅) → (Base‘(𝑛 Mat 𝑟)) = (Base‘(𝑁 Mat 𝑅)))
17 scmatval.b . . . . . . . 8 𝐵 = (Base‘𝐴)
18 scmatval.a . . . . . . . . 9 𝐴 = (𝑁 Mat 𝑅)
1918fveq2i 6864 . . . . . . . 8 (Base‘𝐴) = (Base‘(𝑁 Mat 𝑅))
2017, 19eqtri 2753 . . . . . . 7 𝐵 = (Base‘(𝑁 Mat 𝑅))
2116, 20eqtr4di 2783 . . . . . 6 ((𝑛 = 𝑁𝑟 = 𝑅) → (Base‘(𝑛 Mat 𝑟)) = 𝐵)
22 fveq2 6861 . . . . . . . . 9 (𝑟 = 𝑅 → (Base‘𝑟) = (Base‘𝑅))
23 scmatval.k . . . . . . . . 9 𝐾 = (Base‘𝑅)
2422, 23eqtr4di 2783 . . . . . . . 8 (𝑟 = 𝑅 → (Base‘𝑟) = 𝐾)
2524adantl 481 . . . . . . 7 ((𝑛 = 𝑁𝑟 = 𝑅) → (Base‘𝑟) = 𝐾)
2615fveq2d 6865 . . . . . . . . . 10 ((𝑛 = 𝑁𝑟 = 𝑅) → ( ·𝑠 ‘(𝑛 Mat 𝑟)) = ( ·𝑠 ‘(𝑁 Mat 𝑅)))
27 scmatval.t . . . . . . . . . . 11 · = ( ·𝑠𝐴)
2818fveq2i 6864 . . . . . . . . . . 11 ( ·𝑠𝐴) = ( ·𝑠 ‘(𝑁 Mat 𝑅))
2927, 28eqtri 2753 . . . . . . . . . 10 · = ( ·𝑠 ‘(𝑁 Mat 𝑅))
3026, 29eqtr4di 2783 . . . . . . . . 9 ((𝑛 = 𝑁𝑟 = 𝑅) → ( ·𝑠 ‘(𝑛 Mat 𝑟)) = · )
31 eqidd 2731 . . . . . . . . 9 ((𝑛 = 𝑁𝑟 = 𝑅) → 𝑐 = 𝑐)
3215fveq2d 6865 . . . . . . . . . 10 ((𝑛 = 𝑁𝑟 = 𝑅) → (1r‘(𝑛 Mat 𝑟)) = (1r‘(𝑁 Mat 𝑅)))
33 scmatval.1 . . . . . . . . . . 11 1 = (1r𝐴)
3418fveq2i 6864 . . . . . . . . . . 11 (1r𝐴) = (1r‘(𝑁 Mat 𝑅))
3533, 34eqtri 2753 . . . . . . . . . 10 1 = (1r‘(𝑁 Mat 𝑅))
3632, 35eqtr4di 2783 . . . . . . . . 9 ((𝑛 = 𝑁𝑟 = 𝑅) → (1r‘(𝑛 Mat 𝑟)) = 1 )
3730, 31, 36oveq123d 7411 . . . . . . . 8 ((𝑛 = 𝑁𝑟 = 𝑅) → (𝑐( ·𝑠 ‘(𝑛 Mat 𝑟))(1r‘(𝑛 Mat 𝑟))) = (𝑐 · 1 ))
3837eqeq2d 2741 . . . . . . 7 ((𝑛 = 𝑁𝑟 = 𝑅) → (𝑚 = (𝑐( ·𝑠 ‘(𝑛 Mat 𝑟))(1r‘(𝑛 Mat 𝑟))) ↔ 𝑚 = (𝑐 · 1 )))
3925, 38rexeqbidv 3322 . . . . . 6 ((𝑛 = 𝑁𝑟 = 𝑅) → (∃𝑐 ∈ (Base‘𝑟)𝑚 = (𝑐( ·𝑠 ‘(𝑛 Mat 𝑟))(1r‘(𝑛 Mat 𝑟))) ↔ ∃𝑐𝐾 𝑚 = (𝑐 · 1 )))
4021, 39rabeqbidv 3427 . . . . 5 ((𝑛 = 𝑁𝑟 = 𝑅) → {𝑚 ∈ (Base‘(𝑛 Mat 𝑟)) ∣ ∃𝑐 ∈ (Base‘𝑟)𝑚 = (𝑐( ·𝑠 ‘(𝑛 Mat 𝑟))(1r‘(𝑛 Mat 𝑟)))} = {𝑚𝐵 ∣ ∃𝑐𝐾 𝑚 = (𝑐 · 1 )})
4140adantl 481 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅𝑉) ∧ (𝑛 = 𝑁𝑟 = 𝑅)) → {𝑚 ∈ (Base‘(𝑛 Mat 𝑟)) ∣ ∃𝑐 ∈ (Base‘𝑟)𝑚 = (𝑐( ·𝑠 ‘(𝑛 Mat 𝑟))(1r‘(𝑛 Mat 𝑟)))} = {𝑚𝐵 ∣ ∃𝑐𝐾 𝑚 = (𝑐 · 1 )})
4214, 41eqtrd 2765 . . 3 (((𝑁 ∈ Fin ∧ 𝑅𝑉) ∧ (𝑛 = 𝑁𝑟 = 𝑅)) → (𝑛 Mat 𝑟) / 𝑎{𝑚 ∈ (Base‘𝑎) ∣ ∃𝑐 ∈ (Base‘𝑟)𝑚 = (𝑐( ·𝑠𝑎)(1r𝑎))} = {𝑚𝐵 ∣ ∃𝑐𝐾 𝑚 = (𝑐 · 1 )})
43 simpl 482 . . 3 ((𝑁 ∈ Fin ∧ 𝑅𝑉) → 𝑁 ∈ Fin)
44 elex 3471 . . . 4 (𝑅𝑉𝑅 ∈ V)
4544adantl 481 . . 3 ((𝑁 ∈ Fin ∧ 𝑅𝑉) → 𝑅 ∈ V)
4617fvexi 6875 . . . . 5 𝐵 ∈ V
4746rabex 5297 . . . 4 {𝑚𝐵 ∣ ∃𝑐𝐾 𝑚 = (𝑐 · 1 )} ∈ V
4847a1i 11 . . 3 ((𝑁 ∈ Fin ∧ 𝑅𝑉) → {𝑚𝐵 ∣ ∃𝑐𝐾 𝑚 = (𝑐 · 1 )} ∈ V)
493, 42, 43, 45, 48ovmpod 7544 . 2 ((𝑁 ∈ Fin ∧ 𝑅𝑉) → (𝑁 ScMat 𝑅) = {𝑚𝐵 ∣ ∃𝑐𝐾 𝑚 = (𝑐 · 1 )})
501, 49eqtrid 2777 1 ((𝑁 ∈ Fin ∧ 𝑅𝑉) → 𝑆 = {𝑚𝐵 ∣ ∃𝑐𝐾 𝑚 = (𝑐 · 1 )})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wrex 3054  {crab 3408  Vcvv 3450  csb 3865  cfv 6514  (class class class)co 7390  cmpo 7392  Fincfn 8921  Basecbs 17186   ·𝑠 cvsca 17231  1rcur 20097   Mat cmat 22301   ScMat cscmat 22383
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-iota 6467  df-fun 6516  df-fv 6522  df-ov 7393  df-oprab 7394  df-mpo 7395  df-scmat 22385
This theorem is referenced by:  scmatel  22399  scmatmats  22405  scmatlss  22419
  Copyright terms: Public domain W3C validator