MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  scmatval Structured version   Visualization version   GIF version

Theorem scmatval 21653
Description: The set of 𝑁 x 𝑁 scalar matrices over (a ring) 𝑅. (Contributed by AV, 18-Dec-2019.)
Hypotheses
Ref Expression
scmatval.k 𝐾 = (Base‘𝑅)
scmatval.a 𝐴 = (𝑁 Mat 𝑅)
scmatval.b 𝐵 = (Base‘𝐴)
scmatval.1 1 = (1r𝐴)
scmatval.t · = ( ·𝑠𝐴)
scmatval.s 𝑆 = (𝑁 ScMat 𝑅)
Assertion
Ref Expression
scmatval ((𝑁 ∈ Fin ∧ 𝑅𝑉) → 𝑆 = {𝑚𝐵 ∣ ∃𝑐𝐾 𝑚 = (𝑐 · 1 )})
Distinct variable groups:   𝐵,𝑚   𝐾,𝑐   𝑁,𝑐,𝑚   𝑅,𝑐,𝑚
Allowed substitution hints:   𝐴(𝑚,𝑐)   𝐵(𝑐)   𝑆(𝑚,𝑐)   · (𝑚,𝑐)   1 (𝑚,𝑐)   𝐾(𝑚)   𝑉(𝑚,𝑐)

Proof of Theorem scmatval
Dummy variables 𝑛 𝑟 𝑎 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 scmatval.s . 2 𝑆 = (𝑁 ScMat 𝑅)
2 df-scmat 21640 . . . 4 ScMat = (𝑛 ∈ Fin, 𝑟 ∈ V ↦ (𝑛 Mat 𝑟) / 𝑎{𝑚 ∈ (Base‘𝑎) ∣ ∃𝑐 ∈ (Base‘𝑟)𝑚 = (𝑐( ·𝑠𝑎)(1r𝑎))})
32a1i 11 . . 3 ((𝑁 ∈ Fin ∧ 𝑅𝑉) → ScMat = (𝑛 ∈ Fin, 𝑟 ∈ V ↦ (𝑛 Mat 𝑟) / 𝑎{𝑚 ∈ (Base‘𝑎) ∣ ∃𝑐 ∈ (Base‘𝑟)𝑚 = (𝑐( ·𝑠𝑎)(1r𝑎))}))
4 ovexd 7310 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅𝑉) ∧ (𝑛 = 𝑁𝑟 = 𝑅)) → (𝑛 Mat 𝑟) ∈ V)
5 fveq2 6774 . . . . . . 7 (𝑎 = (𝑛 Mat 𝑟) → (Base‘𝑎) = (Base‘(𝑛 Mat 𝑟)))
6 fveq2 6774 . . . . . . . . . 10 (𝑎 = (𝑛 Mat 𝑟) → ( ·𝑠𝑎) = ( ·𝑠 ‘(𝑛 Mat 𝑟)))
7 eqidd 2739 . . . . . . . . . 10 (𝑎 = (𝑛 Mat 𝑟) → 𝑐 = 𝑐)
8 fveq2 6774 . . . . . . . . . 10 (𝑎 = (𝑛 Mat 𝑟) → (1r𝑎) = (1r‘(𝑛 Mat 𝑟)))
96, 7, 8oveq123d 7296 . . . . . . . . 9 (𝑎 = (𝑛 Mat 𝑟) → (𝑐( ·𝑠𝑎)(1r𝑎)) = (𝑐( ·𝑠 ‘(𝑛 Mat 𝑟))(1r‘(𝑛 Mat 𝑟))))
109eqeq2d 2749 . . . . . . . 8 (𝑎 = (𝑛 Mat 𝑟) → (𝑚 = (𝑐( ·𝑠𝑎)(1r𝑎)) ↔ 𝑚 = (𝑐( ·𝑠 ‘(𝑛 Mat 𝑟))(1r‘(𝑛 Mat 𝑟)))))
1110rexbidv 3226 . . . . . . 7 (𝑎 = (𝑛 Mat 𝑟) → (∃𝑐 ∈ (Base‘𝑟)𝑚 = (𝑐( ·𝑠𝑎)(1r𝑎)) ↔ ∃𝑐 ∈ (Base‘𝑟)𝑚 = (𝑐( ·𝑠 ‘(𝑛 Mat 𝑟))(1r‘(𝑛 Mat 𝑟)))))
125, 11rabeqbidv 3420 . . . . . 6 (𝑎 = (𝑛 Mat 𝑟) → {𝑚 ∈ (Base‘𝑎) ∣ ∃𝑐 ∈ (Base‘𝑟)𝑚 = (𝑐( ·𝑠𝑎)(1r𝑎))} = {𝑚 ∈ (Base‘(𝑛 Mat 𝑟)) ∣ ∃𝑐 ∈ (Base‘𝑟)𝑚 = (𝑐( ·𝑠 ‘(𝑛 Mat 𝑟))(1r‘(𝑛 Mat 𝑟)))})
1312adantl 482 . . . . 5 ((((𝑁 ∈ Fin ∧ 𝑅𝑉) ∧ (𝑛 = 𝑁𝑟 = 𝑅)) ∧ 𝑎 = (𝑛 Mat 𝑟)) → {𝑚 ∈ (Base‘𝑎) ∣ ∃𝑐 ∈ (Base‘𝑟)𝑚 = (𝑐( ·𝑠𝑎)(1r𝑎))} = {𝑚 ∈ (Base‘(𝑛 Mat 𝑟)) ∣ ∃𝑐 ∈ (Base‘𝑟)𝑚 = (𝑐( ·𝑠 ‘(𝑛 Mat 𝑟))(1r‘(𝑛 Mat 𝑟)))})
144, 13csbied 3870 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅𝑉) ∧ (𝑛 = 𝑁𝑟 = 𝑅)) → (𝑛 Mat 𝑟) / 𝑎{𝑚 ∈ (Base‘𝑎) ∣ ∃𝑐 ∈ (Base‘𝑟)𝑚 = (𝑐( ·𝑠𝑎)(1r𝑎))} = {𝑚 ∈ (Base‘(𝑛 Mat 𝑟)) ∣ ∃𝑐 ∈ (Base‘𝑟)𝑚 = (𝑐( ·𝑠 ‘(𝑛 Mat 𝑟))(1r‘(𝑛 Mat 𝑟)))})
15 oveq12 7284 . . . . . . . 8 ((𝑛 = 𝑁𝑟 = 𝑅) → (𝑛 Mat 𝑟) = (𝑁 Mat 𝑅))
1615fveq2d 6778 . . . . . . 7 ((𝑛 = 𝑁𝑟 = 𝑅) → (Base‘(𝑛 Mat 𝑟)) = (Base‘(𝑁 Mat 𝑅)))
17 scmatval.b . . . . . . . 8 𝐵 = (Base‘𝐴)
18 scmatval.a . . . . . . . . 9 𝐴 = (𝑁 Mat 𝑅)
1918fveq2i 6777 . . . . . . . 8 (Base‘𝐴) = (Base‘(𝑁 Mat 𝑅))
2017, 19eqtri 2766 . . . . . . 7 𝐵 = (Base‘(𝑁 Mat 𝑅))
2116, 20eqtr4di 2796 . . . . . 6 ((𝑛 = 𝑁𝑟 = 𝑅) → (Base‘(𝑛 Mat 𝑟)) = 𝐵)
22 fveq2 6774 . . . . . . . . 9 (𝑟 = 𝑅 → (Base‘𝑟) = (Base‘𝑅))
23 scmatval.k . . . . . . . . 9 𝐾 = (Base‘𝑅)
2422, 23eqtr4di 2796 . . . . . . . 8 (𝑟 = 𝑅 → (Base‘𝑟) = 𝐾)
2524adantl 482 . . . . . . 7 ((𝑛 = 𝑁𝑟 = 𝑅) → (Base‘𝑟) = 𝐾)
2615fveq2d 6778 . . . . . . . . . 10 ((𝑛 = 𝑁𝑟 = 𝑅) → ( ·𝑠 ‘(𝑛 Mat 𝑟)) = ( ·𝑠 ‘(𝑁 Mat 𝑅)))
27 scmatval.t . . . . . . . . . . 11 · = ( ·𝑠𝐴)
2818fveq2i 6777 . . . . . . . . . . 11 ( ·𝑠𝐴) = ( ·𝑠 ‘(𝑁 Mat 𝑅))
2927, 28eqtri 2766 . . . . . . . . . 10 · = ( ·𝑠 ‘(𝑁 Mat 𝑅))
3026, 29eqtr4di 2796 . . . . . . . . 9 ((𝑛 = 𝑁𝑟 = 𝑅) → ( ·𝑠 ‘(𝑛 Mat 𝑟)) = · )
31 eqidd 2739 . . . . . . . . 9 ((𝑛 = 𝑁𝑟 = 𝑅) → 𝑐 = 𝑐)
3215fveq2d 6778 . . . . . . . . . 10 ((𝑛 = 𝑁𝑟 = 𝑅) → (1r‘(𝑛 Mat 𝑟)) = (1r‘(𝑁 Mat 𝑅)))
33 scmatval.1 . . . . . . . . . . 11 1 = (1r𝐴)
3418fveq2i 6777 . . . . . . . . . . 11 (1r𝐴) = (1r‘(𝑁 Mat 𝑅))
3533, 34eqtri 2766 . . . . . . . . . 10 1 = (1r‘(𝑁 Mat 𝑅))
3632, 35eqtr4di 2796 . . . . . . . . 9 ((𝑛 = 𝑁𝑟 = 𝑅) → (1r‘(𝑛 Mat 𝑟)) = 1 )
3730, 31, 36oveq123d 7296 . . . . . . . 8 ((𝑛 = 𝑁𝑟 = 𝑅) → (𝑐( ·𝑠 ‘(𝑛 Mat 𝑟))(1r‘(𝑛 Mat 𝑟))) = (𝑐 · 1 ))
3837eqeq2d 2749 . . . . . . 7 ((𝑛 = 𝑁𝑟 = 𝑅) → (𝑚 = (𝑐( ·𝑠 ‘(𝑛 Mat 𝑟))(1r‘(𝑛 Mat 𝑟))) ↔ 𝑚 = (𝑐 · 1 )))
3925, 38rexeqbidv 3337 . . . . . 6 ((𝑛 = 𝑁𝑟 = 𝑅) → (∃𝑐 ∈ (Base‘𝑟)𝑚 = (𝑐( ·𝑠 ‘(𝑛 Mat 𝑟))(1r‘(𝑛 Mat 𝑟))) ↔ ∃𝑐𝐾 𝑚 = (𝑐 · 1 )))
4021, 39rabeqbidv 3420 . . . . 5 ((𝑛 = 𝑁𝑟 = 𝑅) → {𝑚 ∈ (Base‘(𝑛 Mat 𝑟)) ∣ ∃𝑐 ∈ (Base‘𝑟)𝑚 = (𝑐( ·𝑠 ‘(𝑛 Mat 𝑟))(1r‘(𝑛 Mat 𝑟)))} = {𝑚𝐵 ∣ ∃𝑐𝐾 𝑚 = (𝑐 · 1 )})
4140adantl 482 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅𝑉) ∧ (𝑛 = 𝑁𝑟 = 𝑅)) → {𝑚 ∈ (Base‘(𝑛 Mat 𝑟)) ∣ ∃𝑐 ∈ (Base‘𝑟)𝑚 = (𝑐( ·𝑠 ‘(𝑛 Mat 𝑟))(1r‘(𝑛 Mat 𝑟)))} = {𝑚𝐵 ∣ ∃𝑐𝐾 𝑚 = (𝑐 · 1 )})
4214, 41eqtrd 2778 . . 3 (((𝑁 ∈ Fin ∧ 𝑅𝑉) ∧ (𝑛 = 𝑁𝑟 = 𝑅)) → (𝑛 Mat 𝑟) / 𝑎{𝑚 ∈ (Base‘𝑎) ∣ ∃𝑐 ∈ (Base‘𝑟)𝑚 = (𝑐( ·𝑠𝑎)(1r𝑎))} = {𝑚𝐵 ∣ ∃𝑐𝐾 𝑚 = (𝑐 · 1 )})
43 simpl 483 . . 3 ((𝑁 ∈ Fin ∧ 𝑅𝑉) → 𝑁 ∈ Fin)
44 elex 3450 . . . 4 (𝑅𝑉𝑅 ∈ V)
4544adantl 482 . . 3 ((𝑁 ∈ Fin ∧ 𝑅𝑉) → 𝑅 ∈ V)
4617fvexi 6788 . . . . 5 𝐵 ∈ V
4746rabex 5256 . . . 4 {𝑚𝐵 ∣ ∃𝑐𝐾 𝑚 = (𝑐 · 1 )} ∈ V
4847a1i 11 . . 3 ((𝑁 ∈ Fin ∧ 𝑅𝑉) → {𝑚𝐵 ∣ ∃𝑐𝐾 𝑚 = (𝑐 · 1 )} ∈ V)
493, 42, 43, 45, 48ovmpod 7425 . 2 ((𝑁 ∈ Fin ∧ 𝑅𝑉) → (𝑁 ScMat 𝑅) = {𝑚𝐵 ∣ ∃𝑐𝐾 𝑚 = (𝑐 · 1 )})
501, 49eqtrid 2790 1 ((𝑁 ∈ Fin ∧ 𝑅𝑉) → 𝑆 = {𝑚𝐵 ∣ ∃𝑐𝐾 𝑚 = (𝑐 · 1 )})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wcel 2106  wrex 3065  {crab 3068  Vcvv 3432  csb 3832  cfv 6433  (class class class)co 7275  cmpo 7277  Fincfn 8733  Basecbs 16912   ·𝑠 cvsca 16966  1rcur 19737   Mat cmat 21554   ScMat cscmat 21638
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-iota 6391  df-fun 6435  df-fv 6441  df-ov 7278  df-oprab 7279  df-mpo 7280  df-scmat 21640
This theorem is referenced by:  scmatel  21654  scmatmats  21660  scmatlss  21674
  Copyright terms: Public domain W3C validator