Detailed syntax breakdown of Definition df-sh
| Step | Hyp | Ref
| Expression |
| 1 | | csh 30947 |
. 2
class
Sℋ |
| 2 | | c0v 30943 |
. . . . 5
class
0ℎ |
| 3 | | vh |
. . . . . 6
setvar ℎ |
| 4 | 3 | cv 1539 |
. . . . 5
class ℎ |
| 5 | 2, 4 | wcel 2108 |
. . . 4
wff
0ℎ ∈ ℎ |
| 6 | | cva 30939 |
. . . . . 6
class
+ℎ |
| 7 | 4, 4 | cxp 5683 |
. . . . . 6
class (ℎ × ℎ) |
| 8 | 6, 7 | cima 5688 |
. . . . 5
class (
+ℎ “ (ℎ × ℎ)) |
| 9 | 8, 4 | wss 3951 |
. . . 4
wff (
+ℎ “ (ℎ × ℎ)) ⊆ ℎ |
| 10 | | csm 30940 |
. . . . . 6
class
·ℎ |
| 11 | | cc 11153 |
. . . . . . 7
class
ℂ |
| 12 | 11, 4 | cxp 5683 |
. . . . . 6
class (ℂ
× ℎ) |
| 13 | 10, 12 | cima 5688 |
. . . . 5
class (
·ℎ “ (ℂ × ℎ)) |
| 14 | 13, 4 | wss 3951 |
. . . 4
wff (
·ℎ “ (ℂ × ℎ)) ⊆ ℎ |
| 15 | 5, 9, 14 | w3a 1087 |
. . 3
wff
(0ℎ ∈ ℎ ∧ ( +ℎ “ (ℎ × ℎ)) ⊆ ℎ ∧ ( ·ℎ
“ (ℂ × ℎ))
⊆ ℎ) |
| 16 | | chba 30938 |
. . . 4
class
ℋ |
| 17 | 16 | cpw 4600 |
. . 3
class 𝒫
ℋ |
| 18 | 15, 3, 17 | crab 3436 |
. 2
class {ℎ ∈ 𝒫 ℋ ∣
(0ℎ ∈ ℎ ∧ ( +ℎ “ (ℎ × ℎ)) ⊆ ℎ ∧ ( ·ℎ
“ (ℂ × ℎ))
⊆ ℎ)} |
| 19 | 1, 18 | wceq 1540 |
1
wff
Sℋ = {ℎ ∈ 𝒫 ℋ ∣
(0ℎ ∈ ℎ ∧ ( +ℎ “ (ℎ × ℎ)) ⊆ ℎ ∧ ( ·ℎ
“ (ℂ × ℎ))
⊆ ℎ)} |