 Hilbert Space Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  HSE Home  >  Th. List  >  issh Structured version   Visualization version   GIF version

Theorem issh 28676
 Description: Subspace 𝐻 of a Hilbert space. A subspace is a subset of Hilbert space which contains the zero vector and is closed under vector addition and scalar multiplication. (Contributed by Mario Carneiro, 23-Dec-2013.) (New usage is discouraged.)
Assertion
Ref Expression
issh (𝐻S ↔ ((𝐻 ⊆ ℋ ∧ 0𝐻) ∧ (( + “ (𝐻 × 𝐻)) ⊆ 𝐻 ∧ ( · “ (ℂ × 𝐻)) ⊆ 𝐻)))

Proof of Theorem issh
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 ax-hilex 28467 . . . 4 ℋ ∈ V
21elpw2 5139 . . 3 (𝐻 ∈ 𝒫 ℋ ↔ 𝐻 ⊆ ℋ)
3 3anass 1088 . . 3 ((0𝐻 ∧ ( + “ (𝐻 × 𝐻)) ⊆ 𝐻 ∧ ( · “ (ℂ × 𝐻)) ⊆ 𝐻) ↔ (0𝐻 ∧ (( + “ (𝐻 × 𝐻)) ⊆ 𝐻 ∧ ( · “ (ℂ × 𝐻)) ⊆ 𝐻)))
42, 3anbi12i 626 . 2 ((𝐻 ∈ 𝒫 ℋ ∧ (0𝐻 ∧ ( + “ (𝐻 × 𝐻)) ⊆ 𝐻 ∧ ( · “ (ℂ × 𝐻)) ⊆ 𝐻)) ↔ (𝐻 ⊆ ℋ ∧ (0𝐻 ∧ (( + “ (𝐻 × 𝐻)) ⊆ 𝐻 ∧ ( · “ (ℂ × 𝐻)) ⊆ 𝐻))))
5 eleq2 2871 . . . 4 ( = 𝐻 → (0 ↔ 0𝐻))
6 id 22 . . . . . . 7 ( = 𝐻 = 𝐻)
76sqxpeqd 5475 . . . . . 6 ( = 𝐻 → ( × ) = (𝐻 × 𝐻))
87imaeq2d 5806 . . . . 5 ( = 𝐻 → ( + “ ( × )) = ( + “ (𝐻 × 𝐻)))
98, 6sseq12d 3921 . . . 4 ( = 𝐻 → (( + “ ( × )) ⊆ ↔ ( + “ (𝐻 × 𝐻)) ⊆ 𝐻))
10 xpeq2 5464 . . . . . 6 ( = 𝐻 → (ℂ × ) = (ℂ × 𝐻))
1110imaeq2d 5806 . . . . 5 ( = 𝐻 → ( · “ (ℂ × )) = ( · “ (ℂ × 𝐻)))
1211, 6sseq12d 3921 . . . 4 ( = 𝐻 → (( · “ (ℂ × )) ⊆ ↔ ( · “ (ℂ × 𝐻)) ⊆ 𝐻))
135, 9, 123anbi123d 1428 . . 3 ( = 𝐻 → ((0 ∧ ( + “ ( × )) ⊆ ∧ ( · “ (ℂ × )) ⊆ ) ↔ (0𝐻 ∧ ( + “ (𝐻 × 𝐻)) ⊆ 𝐻 ∧ ( · “ (ℂ × 𝐻)) ⊆ 𝐻)))
14 df-sh 28675 . . 3 S = { ∈ 𝒫 ℋ ∣ (0 ∧ ( + “ ( × )) ⊆ ∧ ( · “ (ℂ × )) ⊆ )}
1513, 14elrab2 3621 . 2 (𝐻S ↔ (𝐻 ∈ 𝒫 ℋ ∧ (0𝐻 ∧ ( + “ (𝐻 × 𝐻)) ⊆ 𝐻 ∧ ( · “ (ℂ × 𝐻)) ⊆ 𝐻)))
16 anass 469 . 2 (((𝐻 ⊆ ℋ ∧ 0𝐻) ∧ (( + “ (𝐻 × 𝐻)) ⊆ 𝐻 ∧ ( · “ (ℂ × 𝐻)) ⊆ 𝐻)) ↔ (𝐻 ⊆ ℋ ∧ (0𝐻 ∧ (( + “ (𝐻 × 𝐻)) ⊆ 𝐻 ∧ ( · “ (ℂ × 𝐻)) ⊆ 𝐻))))
174, 15, 163bitr4i 304 1 (𝐻S ↔ ((𝐻 ⊆ ℋ ∧ 0𝐻) ∧ (( + “ (𝐻 × 𝐻)) ⊆ 𝐻 ∧ ( · “ (ℂ × 𝐻)) ⊆ 𝐻)))
 Colors of variables: wff setvar class Syntax hints:   ↔ wb 207   ∧ wa 396   ∧ w3a 1080   = wceq 1522   ∈ wcel 2081   ⊆ wss 3859  𝒫 cpw 4453   × cxp 5441   “ cima 5446  ℂcc 10381   ℋchba 28387   +ℎ cva 28388   ·ℎ csm 28389  0ℎc0v 28392   Sℋ csh 28396 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1777  ax-4 1791  ax-5 1888  ax-6 1947  ax-7 1992  ax-8 2083  ax-9 2091  ax-10 2112  ax-11 2126  ax-12 2141  ax-ext 2769  ax-sep 5094  ax-hilex 28467 This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3an 1082  df-tru 1525  df-ex 1762  df-nf 1766  df-sb 2043  df-clab 2776  df-cleq 2788  df-clel 2863  df-nfc 2935  df-rab 3114  df-v 3439  df-dif 3862  df-un 3864  df-in 3866  df-ss 3874  df-nul 4212  df-if 4382  df-pw 4455  df-sn 4473  df-pr 4475  df-op 4479  df-br 4963  df-opab 5025  df-xp 5449  df-cnv 5451  df-dm 5453  df-rn 5454  df-res 5455  df-ima 5456  df-sh 28675 This theorem is referenced by:  issh2  28677  shss  28678  sh0  28684
 Copyright terms: Public domain W3C validator