Step | Hyp | Ref
| Expression |
1 | | ax-hilex 29340 |
. . . 4
⊢ ℋ
∈ V |
2 | 1 | elpw2 5272 |
. . 3
⊢ (𝐻 ∈ 𝒫 ℋ ↔
𝐻 ⊆
ℋ) |
3 | | 3anass 1093 |
. . 3
⊢
((0ℎ ∈ 𝐻 ∧ ( +ℎ “ (𝐻 × 𝐻)) ⊆ 𝐻 ∧ ( ·ℎ
“ (ℂ × 𝐻)) ⊆ 𝐻) ↔ (0ℎ ∈ 𝐻 ∧ (( +ℎ
“ (𝐻 × 𝐻)) ⊆ 𝐻 ∧ ( ·ℎ
“ (ℂ × 𝐻)) ⊆ 𝐻))) |
4 | 2, 3 | anbi12i 626 |
. 2
⊢ ((𝐻 ∈ 𝒫 ℋ ∧
(0ℎ ∈ 𝐻 ∧ ( +ℎ “ (𝐻 × 𝐻)) ⊆ 𝐻 ∧ ( ·ℎ
“ (ℂ × 𝐻)) ⊆ 𝐻)) ↔ (𝐻 ⊆ ℋ ∧ (0ℎ
∈ 𝐻 ∧ ((
+ℎ “ (𝐻 × 𝐻)) ⊆ 𝐻 ∧ ( ·ℎ
“ (ℂ × 𝐻)) ⊆ 𝐻)))) |
5 | | eleq2 2828 |
. . . 4
⊢ (ℎ = 𝐻 → (0ℎ ∈ ℎ ↔ 0ℎ
∈ 𝐻)) |
6 | | id 22 |
. . . . . . 7
⊢ (ℎ = 𝐻 → ℎ = 𝐻) |
7 | 6 | sqxpeqd 5620 |
. . . . . 6
⊢ (ℎ = 𝐻 → (ℎ × ℎ) = (𝐻 × 𝐻)) |
8 | 7 | imaeq2d 5966 |
. . . . 5
⊢ (ℎ = 𝐻 → ( +ℎ “
(ℎ × ℎ)) = ( +ℎ
“ (𝐻 × 𝐻))) |
9 | 8, 6 | sseq12d 3958 |
. . . 4
⊢ (ℎ = 𝐻 → (( +ℎ “
(ℎ × ℎ)) ⊆ ℎ ↔ ( +ℎ “ (𝐻 × 𝐻)) ⊆ 𝐻)) |
10 | | xpeq2 5609 |
. . . . . 6
⊢ (ℎ = 𝐻 → (ℂ × ℎ) = (ℂ × 𝐻)) |
11 | 10 | imaeq2d 5966 |
. . . . 5
⊢ (ℎ = 𝐻 → ( ·ℎ
“ (ℂ × ℎ))
= ( ·ℎ “ (ℂ × 𝐻))) |
12 | 11, 6 | sseq12d 3958 |
. . . 4
⊢ (ℎ = 𝐻 → ((
·ℎ “ (ℂ × ℎ)) ⊆ ℎ ↔ ( ·ℎ
“ (ℂ × 𝐻)) ⊆ 𝐻)) |
13 | 5, 9, 12 | 3anbi123d 1434 |
. . 3
⊢ (ℎ = 𝐻 → ((0ℎ ∈ ℎ ∧ ( +ℎ
“ (ℎ × ℎ)) ⊆ ℎ ∧ ( ·ℎ
“ (ℂ × ℎ))
⊆ ℎ) ↔
(0ℎ ∈ 𝐻 ∧ ( +ℎ “ (𝐻 × 𝐻)) ⊆ 𝐻 ∧ ( ·ℎ
“ (ℂ × 𝐻)) ⊆ 𝐻))) |
14 | | df-sh 29548 |
. . 3
⊢
Sℋ = {ℎ ∈ 𝒫 ℋ ∣
(0ℎ ∈ ℎ ∧ ( +ℎ “ (ℎ × ℎ)) ⊆ ℎ ∧ ( ·ℎ
“ (ℂ × ℎ))
⊆ ℎ)} |
15 | 13, 14 | elrab2 3628 |
. 2
⊢ (𝐻 ∈
Sℋ ↔ (𝐻 ∈ 𝒫 ℋ ∧
(0ℎ ∈ 𝐻 ∧ ( +ℎ “ (𝐻 × 𝐻)) ⊆ 𝐻 ∧ ( ·ℎ
“ (ℂ × 𝐻)) ⊆ 𝐻))) |
16 | | anass 468 |
. 2
⊢ (((𝐻 ⊆ ℋ ∧
0ℎ ∈ 𝐻) ∧ (( +ℎ “
(𝐻 × 𝐻)) ⊆ 𝐻 ∧ ( ·ℎ
“ (ℂ × 𝐻)) ⊆ 𝐻)) ↔ (𝐻 ⊆ ℋ ∧ (0ℎ
∈ 𝐻 ∧ ((
+ℎ “ (𝐻 × 𝐻)) ⊆ 𝐻 ∧ ( ·ℎ
“ (ℂ × 𝐻)) ⊆ 𝐻)))) |
17 | 4, 15, 16 | 3bitr4i 302 |
1
⊢ (𝐻 ∈
Sℋ ↔ ((𝐻 ⊆ ℋ ∧ 0ℎ
∈ 𝐻) ∧ ((
+ℎ “ (𝐻 × 𝐻)) ⊆ 𝐻 ∧ ( ·ℎ
“ (ℂ × 𝐻)) ⊆ 𝐻))) |