![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > issh | Structured version Visualization version GIF version |
Description: Subspace 𝐻 of a Hilbert space. A subspace is a subset of Hilbert space which contains the zero vector and is closed under vector addition and scalar multiplication. (Contributed by Mario Carneiro, 23-Dec-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
issh | ⊢ (𝐻 ∈ Sℋ ↔ ((𝐻 ⊆ ℋ ∧ 0ℎ ∈ 𝐻) ∧ (( +ℎ “ (𝐻 × 𝐻)) ⊆ 𝐻 ∧ ( ·ℎ “ (ℂ × 𝐻)) ⊆ 𝐻))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-hilex 28467 | . . . 4 ⊢ ℋ ∈ V | |
2 | 1 | elpw2 5139 | . . 3 ⊢ (𝐻 ∈ 𝒫 ℋ ↔ 𝐻 ⊆ ℋ) |
3 | 3anass 1088 | . . 3 ⊢ ((0ℎ ∈ 𝐻 ∧ ( +ℎ “ (𝐻 × 𝐻)) ⊆ 𝐻 ∧ ( ·ℎ “ (ℂ × 𝐻)) ⊆ 𝐻) ↔ (0ℎ ∈ 𝐻 ∧ (( +ℎ “ (𝐻 × 𝐻)) ⊆ 𝐻 ∧ ( ·ℎ “ (ℂ × 𝐻)) ⊆ 𝐻))) | |
4 | 2, 3 | anbi12i 626 | . 2 ⊢ ((𝐻 ∈ 𝒫 ℋ ∧ (0ℎ ∈ 𝐻 ∧ ( +ℎ “ (𝐻 × 𝐻)) ⊆ 𝐻 ∧ ( ·ℎ “ (ℂ × 𝐻)) ⊆ 𝐻)) ↔ (𝐻 ⊆ ℋ ∧ (0ℎ ∈ 𝐻 ∧ (( +ℎ “ (𝐻 × 𝐻)) ⊆ 𝐻 ∧ ( ·ℎ “ (ℂ × 𝐻)) ⊆ 𝐻)))) |
5 | eleq2 2871 | . . . 4 ⊢ (ℎ = 𝐻 → (0ℎ ∈ ℎ ↔ 0ℎ ∈ 𝐻)) | |
6 | id 22 | . . . . . . 7 ⊢ (ℎ = 𝐻 → ℎ = 𝐻) | |
7 | 6 | sqxpeqd 5475 | . . . . . 6 ⊢ (ℎ = 𝐻 → (ℎ × ℎ) = (𝐻 × 𝐻)) |
8 | 7 | imaeq2d 5806 | . . . . 5 ⊢ (ℎ = 𝐻 → ( +ℎ “ (ℎ × ℎ)) = ( +ℎ “ (𝐻 × 𝐻))) |
9 | 8, 6 | sseq12d 3921 | . . . 4 ⊢ (ℎ = 𝐻 → (( +ℎ “ (ℎ × ℎ)) ⊆ ℎ ↔ ( +ℎ “ (𝐻 × 𝐻)) ⊆ 𝐻)) |
10 | xpeq2 5464 | . . . . . 6 ⊢ (ℎ = 𝐻 → (ℂ × ℎ) = (ℂ × 𝐻)) | |
11 | 10 | imaeq2d 5806 | . . . . 5 ⊢ (ℎ = 𝐻 → ( ·ℎ “ (ℂ × ℎ)) = ( ·ℎ “ (ℂ × 𝐻))) |
12 | 11, 6 | sseq12d 3921 | . . . 4 ⊢ (ℎ = 𝐻 → (( ·ℎ “ (ℂ × ℎ)) ⊆ ℎ ↔ ( ·ℎ “ (ℂ × 𝐻)) ⊆ 𝐻)) |
13 | 5, 9, 12 | 3anbi123d 1428 | . . 3 ⊢ (ℎ = 𝐻 → ((0ℎ ∈ ℎ ∧ ( +ℎ “ (ℎ × ℎ)) ⊆ ℎ ∧ ( ·ℎ “ (ℂ × ℎ)) ⊆ ℎ) ↔ (0ℎ ∈ 𝐻 ∧ ( +ℎ “ (𝐻 × 𝐻)) ⊆ 𝐻 ∧ ( ·ℎ “ (ℂ × 𝐻)) ⊆ 𝐻))) |
14 | df-sh 28675 | . . 3 ⊢ Sℋ = {ℎ ∈ 𝒫 ℋ ∣ (0ℎ ∈ ℎ ∧ ( +ℎ “ (ℎ × ℎ)) ⊆ ℎ ∧ ( ·ℎ “ (ℂ × ℎ)) ⊆ ℎ)} | |
15 | 13, 14 | elrab2 3621 | . 2 ⊢ (𝐻 ∈ Sℋ ↔ (𝐻 ∈ 𝒫 ℋ ∧ (0ℎ ∈ 𝐻 ∧ ( +ℎ “ (𝐻 × 𝐻)) ⊆ 𝐻 ∧ ( ·ℎ “ (ℂ × 𝐻)) ⊆ 𝐻))) |
16 | anass 469 | . 2 ⊢ (((𝐻 ⊆ ℋ ∧ 0ℎ ∈ 𝐻) ∧ (( +ℎ “ (𝐻 × 𝐻)) ⊆ 𝐻 ∧ ( ·ℎ “ (ℂ × 𝐻)) ⊆ 𝐻)) ↔ (𝐻 ⊆ ℋ ∧ (0ℎ ∈ 𝐻 ∧ (( +ℎ “ (𝐻 × 𝐻)) ⊆ 𝐻 ∧ ( ·ℎ “ (ℂ × 𝐻)) ⊆ 𝐻)))) | |
17 | 4, 15, 16 | 3bitr4i 304 | 1 ⊢ (𝐻 ∈ Sℋ ↔ ((𝐻 ⊆ ℋ ∧ 0ℎ ∈ 𝐻) ∧ (( +ℎ “ (𝐻 × 𝐻)) ⊆ 𝐻 ∧ ( ·ℎ “ (ℂ × 𝐻)) ⊆ 𝐻))) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 207 ∧ wa 396 ∧ w3a 1080 = wceq 1522 ∈ wcel 2081 ⊆ wss 3859 𝒫 cpw 4453 × cxp 5441 “ cima 5446 ℂcc 10381 ℋchba 28387 +ℎ cva 28388 ·ℎ csm 28389 0ℎc0v 28392 Sℋ csh 28396 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1777 ax-4 1791 ax-5 1888 ax-6 1947 ax-7 1992 ax-8 2083 ax-9 2091 ax-10 2112 ax-11 2126 ax-12 2141 ax-ext 2769 ax-sep 5094 ax-hilex 28467 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-3an 1082 df-tru 1525 df-ex 1762 df-nf 1766 df-sb 2043 df-clab 2776 df-cleq 2788 df-clel 2863 df-nfc 2935 df-rab 3114 df-v 3439 df-dif 3862 df-un 3864 df-in 3866 df-ss 3874 df-nul 4212 df-if 4382 df-pw 4455 df-sn 4473 df-pr 4475 df-op 4479 df-br 4963 df-opab 5025 df-xp 5449 df-cnv 5451 df-dm 5453 df-rn 5454 df-res 5455 df-ima 5456 df-sh 28675 |
This theorem is referenced by: issh2 28677 shss 28678 sh0 28684 |
Copyright terms: Public domain | W3C validator |