HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  issh Structured version   Visualization version   GIF version

Theorem issh 29549
Description: Subspace 𝐻 of a Hilbert space. A subspace is a subset of Hilbert space which contains the zero vector and is closed under vector addition and scalar multiplication. (Contributed by Mario Carneiro, 23-Dec-2013.) (New usage is discouraged.)
Assertion
Ref Expression
issh (𝐻S ↔ ((𝐻 ⊆ ℋ ∧ 0𝐻) ∧ (( + “ (𝐻 × 𝐻)) ⊆ 𝐻 ∧ ( · “ (ℂ × 𝐻)) ⊆ 𝐻)))

Proof of Theorem issh
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 ax-hilex 29340 . . . 4 ℋ ∈ V
21elpw2 5272 . . 3 (𝐻 ∈ 𝒫 ℋ ↔ 𝐻 ⊆ ℋ)
3 3anass 1093 . . 3 ((0𝐻 ∧ ( + “ (𝐻 × 𝐻)) ⊆ 𝐻 ∧ ( · “ (ℂ × 𝐻)) ⊆ 𝐻) ↔ (0𝐻 ∧ (( + “ (𝐻 × 𝐻)) ⊆ 𝐻 ∧ ( · “ (ℂ × 𝐻)) ⊆ 𝐻)))
42, 3anbi12i 626 . 2 ((𝐻 ∈ 𝒫 ℋ ∧ (0𝐻 ∧ ( + “ (𝐻 × 𝐻)) ⊆ 𝐻 ∧ ( · “ (ℂ × 𝐻)) ⊆ 𝐻)) ↔ (𝐻 ⊆ ℋ ∧ (0𝐻 ∧ (( + “ (𝐻 × 𝐻)) ⊆ 𝐻 ∧ ( · “ (ℂ × 𝐻)) ⊆ 𝐻))))
5 eleq2 2828 . . . 4 ( = 𝐻 → (0 ↔ 0𝐻))
6 id 22 . . . . . . 7 ( = 𝐻 = 𝐻)
76sqxpeqd 5620 . . . . . 6 ( = 𝐻 → ( × ) = (𝐻 × 𝐻))
87imaeq2d 5966 . . . . 5 ( = 𝐻 → ( + “ ( × )) = ( + “ (𝐻 × 𝐻)))
98, 6sseq12d 3958 . . . 4 ( = 𝐻 → (( + “ ( × )) ⊆ ↔ ( + “ (𝐻 × 𝐻)) ⊆ 𝐻))
10 xpeq2 5609 . . . . . 6 ( = 𝐻 → (ℂ × ) = (ℂ × 𝐻))
1110imaeq2d 5966 . . . . 5 ( = 𝐻 → ( · “ (ℂ × )) = ( · “ (ℂ × 𝐻)))
1211, 6sseq12d 3958 . . . 4 ( = 𝐻 → (( · “ (ℂ × )) ⊆ ↔ ( · “ (ℂ × 𝐻)) ⊆ 𝐻))
135, 9, 123anbi123d 1434 . . 3 ( = 𝐻 → ((0 ∧ ( + “ ( × )) ⊆ ∧ ( · “ (ℂ × )) ⊆ ) ↔ (0𝐻 ∧ ( + “ (𝐻 × 𝐻)) ⊆ 𝐻 ∧ ( · “ (ℂ × 𝐻)) ⊆ 𝐻)))
14 df-sh 29548 . . 3 S = { ∈ 𝒫 ℋ ∣ (0 ∧ ( + “ ( × )) ⊆ ∧ ( · “ (ℂ × )) ⊆ )}
1513, 14elrab2 3628 . 2 (𝐻S ↔ (𝐻 ∈ 𝒫 ℋ ∧ (0𝐻 ∧ ( + “ (𝐻 × 𝐻)) ⊆ 𝐻 ∧ ( · “ (ℂ × 𝐻)) ⊆ 𝐻)))
16 anass 468 . 2 (((𝐻 ⊆ ℋ ∧ 0𝐻) ∧ (( + “ (𝐻 × 𝐻)) ⊆ 𝐻 ∧ ( · “ (ℂ × 𝐻)) ⊆ 𝐻)) ↔ (𝐻 ⊆ ℋ ∧ (0𝐻 ∧ (( + “ (𝐻 × 𝐻)) ⊆ 𝐻 ∧ ( · “ (ℂ × 𝐻)) ⊆ 𝐻))))
174, 15, 163bitr4i 302 1 (𝐻S ↔ ((𝐻 ⊆ ℋ ∧ 0𝐻) ∧ (( + “ (𝐻 × 𝐻)) ⊆ 𝐻 ∧ ( · “ (ℂ × 𝐻)) ⊆ 𝐻)))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 395  w3a 1085   = wceq 1541  wcel 2109  wss 3891  𝒫 cpw 4538   × cxp 5586  cima 5591  cc 10853  chba 29260   + cva 29261   · csm 29262  0c0v 29265   S csh 29269
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-ext 2710  ax-sep 5226  ax-hilex 29340
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-sb 2071  df-clab 2717  df-cleq 2731  df-clel 2817  df-rab 3074  df-v 3432  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-nul 4262  df-if 4465  df-pw 4540  df-sn 4567  df-pr 4569  df-op 4573  df-br 5079  df-opab 5141  df-xp 5594  df-cnv 5596  df-dm 5598  df-rn 5599  df-res 5600  df-ima 5601  df-sh 29548
This theorem is referenced by:  issh2  29550  shss  29551  sh0  29557
  Copyright terms: Public domain W3C validator