HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  issh Structured version   Visualization version   GIF version

Theorem issh 29243
Description: Subspace 𝐻 of a Hilbert space. A subspace is a subset of Hilbert space which contains the zero vector and is closed under vector addition and scalar multiplication. (Contributed by Mario Carneiro, 23-Dec-2013.) (New usage is discouraged.)
Assertion
Ref Expression
issh (𝐻S ↔ ((𝐻 ⊆ ℋ ∧ 0𝐻) ∧ (( + “ (𝐻 × 𝐻)) ⊆ 𝐻 ∧ ( · “ (ℂ × 𝐻)) ⊆ 𝐻)))

Proof of Theorem issh
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 ax-hilex 29034 . . . 4 ℋ ∈ V
21elpw2 5223 . . 3 (𝐻 ∈ 𝒫 ℋ ↔ 𝐻 ⊆ ℋ)
3 3anass 1097 . . 3 ((0𝐻 ∧ ( + “ (𝐻 × 𝐻)) ⊆ 𝐻 ∧ ( · “ (ℂ × 𝐻)) ⊆ 𝐻) ↔ (0𝐻 ∧ (( + “ (𝐻 × 𝐻)) ⊆ 𝐻 ∧ ( · “ (ℂ × 𝐻)) ⊆ 𝐻)))
42, 3anbi12i 630 . 2 ((𝐻 ∈ 𝒫 ℋ ∧ (0𝐻 ∧ ( + “ (𝐻 × 𝐻)) ⊆ 𝐻 ∧ ( · “ (ℂ × 𝐻)) ⊆ 𝐻)) ↔ (𝐻 ⊆ ℋ ∧ (0𝐻 ∧ (( + “ (𝐻 × 𝐻)) ⊆ 𝐻 ∧ ( · “ (ℂ × 𝐻)) ⊆ 𝐻))))
5 eleq2 2819 . . . 4 ( = 𝐻 → (0 ↔ 0𝐻))
6 id 22 . . . . . . 7 ( = 𝐻 = 𝐻)
76sqxpeqd 5568 . . . . . 6 ( = 𝐻 → ( × ) = (𝐻 × 𝐻))
87imaeq2d 5914 . . . . 5 ( = 𝐻 → ( + “ ( × )) = ( + “ (𝐻 × 𝐻)))
98, 6sseq12d 3920 . . . 4 ( = 𝐻 → (( + “ ( × )) ⊆ ↔ ( + “ (𝐻 × 𝐻)) ⊆ 𝐻))
10 xpeq2 5557 . . . . . 6 ( = 𝐻 → (ℂ × ) = (ℂ × 𝐻))
1110imaeq2d 5914 . . . . 5 ( = 𝐻 → ( · “ (ℂ × )) = ( · “ (ℂ × 𝐻)))
1211, 6sseq12d 3920 . . . 4 ( = 𝐻 → (( · “ (ℂ × )) ⊆ ↔ ( · “ (ℂ × 𝐻)) ⊆ 𝐻))
135, 9, 123anbi123d 1438 . . 3 ( = 𝐻 → ((0 ∧ ( + “ ( × )) ⊆ ∧ ( · “ (ℂ × )) ⊆ ) ↔ (0𝐻 ∧ ( + “ (𝐻 × 𝐻)) ⊆ 𝐻 ∧ ( · “ (ℂ × 𝐻)) ⊆ 𝐻)))
14 df-sh 29242 . . 3 S = { ∈ 𝒫 ℋ ∣ (0 ∧ ( + “ ( × )) ⊆ ∧ ( · “ (ℂ × )) ⊆ )}
1513, 14elrab2 3594 . 2 (𝐻S ↔ (𝐻 ∈ 𝒫 ℋ ∧ (0𝐻 ∧ ( + “ (𝐻 × 𝐻)) ⊆ 𝐻 ∧ ( · “ (ℂ × 𝐻)) ⊆ 𝐻)))
16 anass 472 . 2 (((𝐻 ⊆ ℋ ∧ 0𝐻) ∧ (( + “ (𝐻 × 𝐻)) ⊆ 𝐻 ∧ ( · “ (ℂ × 𝐻)) ⊆ 𝐻)) ↔ (𝐻 ⊆ ℋ ∧ (0𝐻 ∧ (( + “ (𝐻 × 𝐻)) ⊆ 𝐻 ∧ ( · “ (ℂ × 𝐻)) ⊆ 𝐻))))
174, 15, 163bitr4i 306 1 (𝐻S ↔ ((𝐻 ⊆ ℋ ∧ 0𝐻) ∧ (( + “ (𝐻 × 𝐻)) ⊆ 𝐻 ∧ ( · “ (ℂ × 𝐻)) ⊆ 𝐻)))
Colors of variables: wff setvar class
Syntax hints:  wb 209  wa 399  w3a 1089   = wceq 1543  wcel 2112  wss 3853  𝒫 cpw 4499   × cxp 5534  cima 5539  cc 10692  chba 28954   + cva 28955   · csm 28956  0c0v 28959   S csh 28963
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2018  ax-8 2114  ax-9 2122  ax-ext 2708  ax-sep 5177  ax-hilex 29034
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-sb 2073  df-clab 2715  df-cleq 2728  df-clel 2809  df-rab 3060  df-v 3400  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-nul 4224  df-if 4426  df-pw 4501  df-sn 4528  df-pr 4530  df-op 4534  df-br 5040  df-opab 5102  df-xp 5542  df-cnv 5544  df-dm 5546  df-rn 5547  df-res 5548  df-ima 5549  df-sh 29242
This theorem is referenced by:  issh2  29244  shss  29245  sh0  29251
  Copyright terms: Public domain W3C validator