| Metamath
Proof Explorer Theorem List (p. 308 of 498) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30847) |
(30848-32370) |
(32371-49794) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | nmoubi 30701* | An upper bound for an operator norm. (Contributed by NM, 11-Dec-2007.) (New usage is discouraged.) |
| ⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝑌 = (BaseSet‘𝑊) & ⊢ 𝐿 = (normCV‘𝑈) & ⊢ 𝑀 = (normCV‘𝑊) & ⊢ 𝑁 = (𝑈 normOpOLD 𝑊) & ⊢ 𝑈 ∈ NrmCVec & ⊢ 𝑊 ∈ NrmCVec ⇒ ⊢ ((𝑇:𝑋⟶𝑌 ∧ 𝐴 ∈ ℝ*) → ((𝑁‘𝑇) ≤ 𝐴 ↔ ∀𝑥 ∈ 𝑋 ((𝐿‘𝑥) ≤ 1 → (𝑀‘(𝑇‘𝑥)) ≤ 𝐴))) | ||
| Theorem | nmoub3i 30702* | An upper bound for an operator norm. (Contributed by NM, 12-Dec-2007.) (New usage is discouraged.) |
| ⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝑌 = (BaseSet‘𝑊) & ⊢ 𝐿 = (normCV‘𝑈) & ⊢ 𝑀 = (normCV‘𝑊) & ⊢ 𝑁 = (𝑈 normOpOLD 𝑊) & ⊢ 𝑈 ∈ NrmCVec & ⊢ 𝑊 ∈ NrmCVec ⇒ ⊢ ((𝑇:𝑋⟶𝑌 ∧ 𝐴 ∈ ℝ ∧ ∀𝑥 ∈ 𝑋 (𝑀‘(𝑇‘𝑥)) ≤ (𝐴 · (𝐿‘𝑥))) → (𝑁‘𝑇) ≤ (abs‘𝐴)) | ||
| Theorem | nmoub2i 30703* | An upper bound for an operator norm. (Contributed by NM, 11-Dec-2007.) (New usage is discouraged.) |
| ⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝑌 = (BaseSet‘𝑊) & ⊢ 𝐿 = (normCV‘𝑈) & ⊢ 𝑀 = (normCV‘𝑊) & ⊢ 𝑁 = (𝑈 normOpOLD 𝑊) & ⊢ 𝑈 ∈ NrmCVec & ⊢ 𝑊 ∈ NrmCVec ⇒ ⊢ ((𝑇:𝑋⟶𝑌 ∧ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ ∀𝑥 ∈ 𝑋 (𝑀‘(𝑇‘𝑥)) ≤ (𝐴 · (𝐿‘𝑥))) → (𝑁‘𝑇) ≤ 𝐴) | ||
| Theorem | nmobndi 30704* | Two ways to express that an operator is bounded. (Contributed by NM, 11-Jan-2008.) (New usage is discouraged.) |
| ⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝑌 = (BaseSet‘𝑊) & ⊢ 𝐿 = (normCV‘𝑈) & ⊢ 𝑀 = (normCV‘𝑊) & ⊢ 𝑁 = (𝑈 normOpOLD 𝑊) & ⊢ 𝑈 ∈ NrmCVec & ⊢ 𝑊 ∈ NrmCVec ⇒ ⊢ (𝑇:𝑋⟶𝑌 → ((𝑁‘𝑇) ∈ ℝ ↔ ∃𝑟 ∈ ℝ ∀𝑦 ∈ 𝑋 ((𝐿‘𝑦) ≤ 1 → (𝑀‘(𝑇‘𝑦)) ≤ 𝑟))) | ||
| Theorem | nmounbi 30705* | Two ways two express that an operator is unbounded. (Contributed by NM, 11-Jan-2008.) (New usage is discouraged.) |
| ⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝑌 = (BaseSet‘𝑊) & ⊢ 𝐿 = (normCV‘𝑈) & ⊢ 𝑀 = (normCV‘𝑊) & ⊢ 𝑁 = (𝑈 normOpOLD 𝑊) & ⊢ 𝑈 ∈ NrmCVec & ⊢ 𝑊 ∈ NrmCVec ⇒ ⊢ (𝑇:𝑋⟶𝑌 → ((𝑁‘𝑇) = +∞ ↔ ∀𝑟 ∈ ℝ ∃𝑦 ∈ 𝑋 ((𝐿‘𝑦) ≤ 1 ∧ 𝑟 < (𝑀‘(𝑇‘𝑦))))) | ||
| Theorem | nmounbseqi 30706* | An unbounded operator determines an unbounded sequence. (Contributed by NM, 11-Jan-2008.) (Revised by Mario Carneiro, 7-Apr-2013.) (New usage is discouraged.) |
| ⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝑌 = (BaseSet‘𝑊) & ⊢ 𝐿 = (normCV‘𝑈) & ⊢ 𝑀 = (normCV‘𝑊) & ⊢ 𝑁 = (𝑈 normOpOLD 𝑊) & ⊢ 𝑈 ∈ NrmCVec & ⊢ 𝑊 ∈ NrmCVec ⇒ ⊢ ((𝑇:𝑋⟶𝑌 ∧ (𝑁‘𝑇) = +∞) → ∃𝑓(𝑓:ℕ⟶𝑋 ∧ ∀𝑘 ∈ ℕ ((𝐿‘(𝑓‘𝑘)) ≤ 1 ∧ 𝑘 < (𝑀‘(𝑇‘(𝑓‘𝑘)))))) | ||
| Theorem | nmounbseqiALT 30707* | Alternate shorter proof of nmounbseqi 30706 based on Axioms ax-reg 9545 and ax-ac2 10416 instead of ax-cc 10388. (Contributed by NM, 11-Jan-2008.) (New usage is discouraged.) (Proof modification is discouraged.) |
| ⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝑌 = (BaseSet‘𝑊) & ⊢ 𝐿 = (normCV‘𝑈) & ⊢ 𝑀 = (normCV‘𝑊) & ⊢ 𝑁 = (𝑈 normOpOLD 𝑊) & ⊢ 𝑈 ∈ NrmCVec & ⊢ 𝑊 ∈ NrmCVec ⇒ ⊢ ((𝑇:𝑋⟶𝑌 ∧ (𝑁‘𝑇) = +∞) → ∃𝑓(𝑓:ℕ⟶𝑋 ∧ ∀𝑘 ∈ ℕ ((𝐿‘(𝑓‘𝑘)) ≤ 1 ∧ 𝑘 < (𝑀‘(𝑇‘(𝑓‘𝑘)))))) | ||
| Theorem | nmobndseqi 30708* | A bounded sequence determines a bounded operator. (Contributed by NM, 18-Jan-2008.) (Revised by Mario Carneiro, 7-Apr-2013.) (New usage is discouraged.) |
| ⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝑌 = (BaseSet‘𝑊) & ⊢ 𝐿 = (normCV‘𝑈) & ⊢ 𝑀 = (normCV‘𝑊) & ⊢ 𝑁 = (𝑈 normOpOLD 𝑊) & ⊢ 𝑈 ∈ NrmCVec & ⊢ 𝑊 ∈ NrmCVec ⇒ ⊢ ((𝑇:𝑋⟶𝑌 ∧ ∀𝑓((𝑓:ℕ⟶𝑋 ∧ ∀𝑘 ∈ ℕ (𝐿‘(𝑓‘𝑘)) ≤ 1) → ∃𝑘 ∈ ℕ (𝑀‘(𝑇‘(𝑓‘𝑘))) ≤ 𝑘)) → (𝑁‘𝑇) ∈ ℝ) | ||
| Theorem | nmobndseqiALT 30709* | Alternate shorter proof of nmobndseqi 30708 based on Axioms ax-reg 9545 and ax-ac2 10416 instead of ax-cc 10388. (Contributed by NM, 18-Jan-2008.) (New usage is discouraged.) (Proof modification is discouraged.) |
| ⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝑌 = (BaseSet‘𝑊) & ⊢ 𝐿 = (normCV‘𝑈) & ⊢ 𝑀 = (normCV‘𝑊) & ⊢ 𝑁 = (𝑈 normOpOLD 𝑊) & ⊢ 𝑈 ∈ NrmCVec & ⊢ 𝑊 ∈ NrmCVec ⇒ ⊢ ((𝑇:𝑋⟶𝑌 ∧ ∀𝑓((𝑓:ℕ⟶𝑋 ∧ ∀𝑘 ∈ ℕ (𝐿‘(𝑓‘𝑘)) ≤ 1) → ∃𝑘 ∈ ℕ (𝑀‘(𝑇‘(𝑓‘𝑘))) ≤ 𝑘)) → (𝑁‘𝑇) ∈ ℝ) | ||
| Theorem | bloval 30710* | The class of bounded linear operators between two normed complex vector spaces. (Contributed by NM, 6-Nov-2007.) (Revised by Mario Carneiro, 16-Nov-2013.) (New usage is discouraged.) |
| ⊢ 𝑁 = (𝑈 normOpOLD 𝑊) & ⊢ 𝐿 = (𝑈 LnOp 𝑊) & ⊢ 𝐵 = (𝑈 BLnOp 𝑊) ⇒ ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) → 𝐵 = {𝑡 ∈ 𝐿 ∣ (𝑁‘𝑡) < +∞}) | ||
| Theorem | isblo 30711 | The predicate "is a bounded linear operator." (Contributed by NM, 6-Nov-2007.) (New usage is discouraged.) |
| ⊢ 𝑁 = (𝑈 normOpOLD 𝑊) & ⊢ 𝐿 = (𝑈 LnOp 𝑊) & ⊢ 𝐵 = (𝑈 BLnOp 𝑊) ⇒ ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) → (𝑇 ∈ 𝐵 ↔ (𝑇 ∈ 𝐿 ∧ (𝑁‘𝑇) < +∞))) | ||
| Theorem | isblo2 30712 | The predicate "is a bounded linear operator." (Contributed by NM, 8-Dec-2007.) (New usage is discouraged.) |
| ⊢ 𝑁 = (𝑈 normOpOLD 𝑊) & ⊢ 𝐿 = (𝑈 LnOp 𝑊) & ⊢ 𝐵 = (𝑈 BLnOp 𝑊) ⇒ ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) → (𝑇 ∈ 𝐵 ↔ (𝑇 ∈ 𝐿 ∧ (𝑁‘𝑇) ∈ ℝ))) | ||
| Theorem | bloln 30713 | A bounded operator is a linear operator. (Contributed by NM, 8-Dec-2007.) (New usage is discouraged.) |
| ⊢ 𝐿 = (𝑈 LnOp 𝑊) & ⊢ 𝐵 = (𝑈 BLnOp 𝑊) ⇒ ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐵) → 𝑇 ∈ 𝐿) | ||
| Theorem | blof 30714 | A bounded operator is an operator. (Contributed by NM, 8-Dec-2007.) (New usage is discouraged.) |
| ⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝑌 = (BaseSet‘𝑊) & ⊢ 𝐵 = (𝑈 BLnOp 𝑊) ⇒ ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐵) → 𝑇:𝑋⟶𝑌) | ||
| Theorem | nmblore 30715 | The norm of a bounded operator is a real number. (Contributed by NM, 8-Dec-2007.) (New usage is discouraged.) |
| ⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝑌 = (BaseSet‘𝑊) & ⊢ 𝑁 = (𝑈 normOpOLD 𝑊) & ⊢ 𝐵 = (𝑈 BLnOp 𝑊) ⇒ ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐵) → (𝑁‘𝑇) ∈ ℝ) | ||
| Theorem | 0ofval 30716 | The zero operator between two normed complex vector spaces. (Contributed by NM, 28-Nov-2007.) (Revised by Mario Carneiro, 16-Nov-2013.) (New usage is discouraged.) |
| ⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝑍 = (0vec‘𝑊) & ⊢ 𝑂 = (𝑈 0op 𝑊) ⇒ ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) → 𝑂 = (𝑋 × {𝑍})) | ||
| Theorem | 0oval 30717 | Value of the zero operator. (Contributed by NM, 28-Nov-2007.) (New usage is discouraged.) |
| ⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝑍 = (0vec‘𝑊) & ⊢ 𝑂 = (𝑈 0op 𝑊) ⇒ ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → (𝑂‘𝐴) = 𝑍) | ||
| Theorem | 0oo 30718 | The zero operator is an operator. (Contributed by NM, 28-Nov-2007.) (New usage is discouraged.) |
| ⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝑌 = (BaseSet‘𝑊) & ⊢ 𝑍 = (𝑈 0op 𝑊) ⇒ ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) → 𝑍:𝑋⟶𝑌) | ||
| Theorem | 0lno 30719 | The zero operator is linear. (Contributed by NM, 28-Nov-2007.) (Revised by Mario Carneiro, 19-Nov-2013.) (New usage is discouraged.) |
| ⊢ 𝑍 = (𝑈 0op 𝑊) & ⊢ 𝐿 = (𝑈 LnOp 𝑊) ⇒ ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) → 𝑍 ∈ 𝐿) | ||
| Theorem | nmoo0 30720 | The operator norm of the zero operator. (Contributed by NM, 27-Nov-2007.) (New usage is discouraged.) |
| ⊢ 𝑁 = (𝑈 normOpOLD 𝑊) & ⊢ 𝑍 = (𝑈 0op 𝑊) ⇒ ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) → (𝑁‘𝑍) = 0) | ||
| Theorem | 0blo 30721 | The zero operator is a bounded linear operator. (Contributed by NM, 8-Dec-2007.) (New usage is discouraged.) |
| ⊢ 𝑍 = (𝑈 0op 𝑊) & ⊢ 𝐵 = (𝑈 BLnOp 𝑊) ⇒ ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) → 𝑍 ∈ 𝐵) | ||
| Theorem | nmlno0lem 30722 | Lemma for nmlno0i 30723. (Contributed by NM, 28-Nov-2007.) (New usage is discouraged.) |
| ⊢ 𝑁 = (𝑈 normOpOLD 𝑊) & ⊢ 𝑍 = (𝑈 0op 𝑊) & ⊢ 𝐿 = (𝑈 LnOp 𝑊) & ⊢ 𝑈 ∈ NrmCVec & ⊢ 𝑊 ∈ NrmCVec & ⊢ 𝑇 ∈ 𝐿 & ⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝑌 = (BaseSet‘𝑊) & ⊢ 𝑅 = ( ·𝑠OLD ‘𝑈) & ⊢ 𝑆 = ( ·𝑠OLD ‘𝑊) & ⊢ 𝑃 = (0vec‘𝑈) & ⊢ 𝑄 = (0vec‘𝑊) & ⊢ 𝐾 = (normCV‘𝑈) & ⊢ 𝑀 = (normCV‘𝑊) ⇒ ⊢ ((𝑁‘𝑇) = 0 ↔ 𝑇 = 𝑍) | ||
| Theorem | nmlno0i 30723 | The norm of a linear operator is zero iff the operator is zero. (Contributed by NM, 6-Dec-2007.) (New usage is discouraged.) |
| ⊢ 𝑁 = (𝑈 normOpOLD 𝑊) & ⊢ 𝑍 = (𝑈 0op 𝑊) & ⊢ 𝐿 = (𝑈 LnOp 𝑊) & ⊢ 𝑈 ∈ NrmCVec & ⊢ 𝑊 ∈ NrmCVec ⇒ ⊢ (𝑇 ∈ 𝐿 → ((𝑁‘𝑇) = 0 ↔ 𝑇 = 𝑍)) | ||
| Theorem | nmlno0 30724 | The norm of a linear operator is zero iff the operator is zero. (Contributed by NM, 24-Nov-2007.) (New usage is discouraged.) |
| ⊢ 𝑁 = (𝑈 normOpOLD 𝑊) & ⊢ 𝑍 = (𝑈 0op 𝑊) & ⊢ 𝐿 = (𝑈 LnOp 𝑊) ⇒ ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐿) → ((𝑁‘𝑇) = 0 ↔ 𝑇 = 𝑍)) | ||
| Theorem | nmlnoubi 30725* | An upper bound for the operator norm of a linear operator, using only the properties of nonzero arguments. (Contributed by NM, 1-Jan-2008.) (New usage is discouraged.) |
| ⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝑍 = (0vec‘𝑈) & ⊢ 𝐾 = (normCV‘𝑈) & ⊢ 𝑀 = (normCV‘𝑊) & ⊢ 𝑁 = (𝑈 normOpOLD 𝑊) & ⊢ 𝐿 = (𝑈 LnOp 𝑊) & ⊢ 𝑈 ∈ NrmCVec & ⊢ 𝑊 ∈ NrmCVec ⇒ ⊢ ((𝑇 ∈ 𝐿 ∧ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ ∀𝑥 ∈ 𝑋 (𝑥 ≠ 𝑍 → (𝑀‘(𝑇‘𝑥)) ≤ (𝐴 · (𝐾‘𝑥)))) → (𝑁‘𝑇) ≤ 𝐴) | ||
| Theorem | nmlnogt0 30726 | The norm of a nonzero linear operator is positive. (Contributed by NM, 10-Dec-2007.) (New usage is discouraged.) |
| ⊢ 𝑁 = (𝑈 normOpOLD 𝑊) & ⊢ 𝑍 = (𝑈 0op 𝑊) & ⊢ 𝐿 = (𝑈 LnOp 𝑊) ⇒ ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐿) → (𝑇 ≠ 𝑍 ↔ 0 < (𝑁‘𝑇))) | ||
| Theorem | lnon0 30727* | The domain of a nonzero linear operator contains a nonzero vector. (Contributed by NM, 15-Dec-2007.) (New usage is discouraged.) |
| ⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝑍 = (0vec‘𝑈) & ⊢ 𝑂 = (𝑈 0op 𝑊) & ⊢ 𝐿 = (𝑈 LnOp 𝑊) ⇒ ⊢ (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐿) ∧ 𝑇 ≠ 𝑂) → ∃𝑥 ∈ 𝑋 𝑥 ≠ 𝑍) | ||
| Theorem | nmblolbii 30728 | A lower bound for the norm of a bounded linear operator. (Contributed by NM, 7-Dec-2007.) (New usage is discouraged.) |
| ⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝐿 = (normCV‘𝑈) & ⊢ 𝑀 = (normCV‘𝑊) & ⊢ 𝑁 = (𝑈 normOpOLD 𝑊) & ⊢ 𝐵 = (𝑈 BLnOp 𝑊) & ⊢ 𝑈 ∈ NrmCVec & ⊢ 𝑊 ∈ NrmCVec & ⊢ 𝑇 ∈ 𝐵 ⇒ ⊢ (𝐴 ∈ 𝑋 → (𝑀‘(𝑇‘𝐴)) ≤ ((𝑁‘𝑇) · (𝐿‘𝐴))) | ||
| Theorem | nmblolbi 30729 | A lower bound for the norm of a bounded linear operator. (Contributed by NM, 10-Dec-2007.) (New usage is discouraged.) |
| ⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝐿 = (normCV‘𝑈) & ⊢ 𝑀 = (normCV‘𝑊) & ⊢ 𝑁 = (𝑈 normOpOLD 𝑊) & ⊢ 𝐵 = (𝑈 BLnOp 𝑊) & ⊢ 𝑈 ∈ NrmCVec & ⊢ 𝑊 ∈ NrmCVec ⇒ ⊢ ((𝑇 ∈ 𝐵 ∧ 𝐴 ∈ 𝑋) → (𝑀‘(𝑇‘𝐴)) ≤ ((𝑁‘𝑇) · (𝐿‘𝐴))) | ||
| Theorem | isblo3i 30730* | The predicate "is a bounded linear operator." Definition 2.7-1 of [Kreyszig] p. 91. (Contributed by NM, 11-Dec-2007.) (New usage is discouraged.) |
| ⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝑀 = (normCV‘𝑈) & ⊢ 𝑁 = (normCV‘𝑊) & ⊢ 𝐿 = (𝑈 LnOp 𝑊) & ⊢ 𝐵 = (𝑈 BLnOp 𝑊) & ⊢ 𝑈 ∈ NrmCVec & ⊢ 𝑊 ∈ NrmCVec ⇒ ⊢ (𝑇 ∈ 𝐵 ↔ (𝑇 ∈ 𝐿 ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝑋 (𝑁‘(𝑇‘𝑦)) ≤ (𝑥 · (𝑀‘𝑦)))) | ||
| Theorem | blo3i 30731* | Properties that determine a bounded linear operator. (Contributed by NM, 13-Jan-2008.) (New usage is discouraged.) |
| ⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝑀 = (normCV‘𝑈) & ⊢ 𝑁 = (normCV‘𝑊) & ⊢ 𝐿 = (𝑈 LnOp 𝑊) & ⊢ 𝐵 = (𝑈 BLnOp 𝑊) & ⊢ 𝑈 ∈ NrmCVec & ⊢ 𝑊 ∈ NrmCVec ⇒ ⊢ ((𝑇 ∈ 𝐿 ∧ 𝐴 ∈ ℝ ∧ ∀𝑦 ∈ 𝑋 (𝑁‘(𝑇‘𝑦)) ≤ (𝐴 · (𝑀‘𝑦))) → 𝑇 ∈ 𝐵) | ||
| Theorem | blometi 30732 | Upper bound for the distance between the values of a bounded linear operator. (Contributed by NM, 11-Dec-2007.) (New usage is discouraged.) |
| ⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝑌 = (BaseSet‘𝑊) & ⊢ 𝐶 = (IndMet‘𝑈) & ⊢ 𝐷 = (IndMet‘𝑊) & ⊢ 𝑁 = (𝑈 normOpOLD 𝑊) & ⊢ 𝐵 = (𝑈 BLnOp 𝑊) & ⊢ 𝑈 ∈ NrmCVec & ⊢ 𝑊 ∈ NrmCVec ⇒ ⊢ ((𝑇 ∈ 𝐵 ∧ 𝑃 ∈ 𝑋 ∧ 𝑄 ∈ 𝑋) → ((𝑇‘𝑃)𝐷(𝑇‘𝑄)) ≤ ((𝑁‘𝑇) · (𝑃𝐶𝑄))) | ||
| Theorem | blocnilem 30733 | Lemma for blocni 30734 and lnocni 30735. If a linear operator is continuous at any point, it is bounded. (Contributed by NM, 17-Dec-2007.) (Revised by Mario Carneiro, 10-Jan-2014.) (New usage is discouraged.) |
| ⊢ 𝐶 = (IndMet‘𝑈) & ⊢ 𝐷 = (IndMet‘𝑊) & ⊢ 𝐽 = (MetOpen‘𝐶) & ⊢ 𝐾 = (MetOpen‘𝐷) & ⊢ 𝐿 = (𝑈 LnOp 𝑊) & ⊢ 𝐵 = (𝑈 BLnOp 𝑊) & ⊢ 𝑈 ∈ NrmCVec & ⊢ 𝑊 ∈ NrmCVec & ⊢ 𝑇 ∈ 𝐿 & ⊢ 𝑋 = (BaseSet‘𝑈) ⇒ ⊢ ((𝑃 ∈ 𝑋 ∧ 𝑇 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → 𝑇 ∈ 𝐵) | ||
| Theorem | blocni 30734 | A linear operator is continuous iff it is bounded. Theorem 2.7-9(a) of [Kreyszig] p. 97. (Contributed by NM, 18-Dec-2007.) (Revised by Mario Carneiro, 10-Jan-2014.) (New usage is discouraged.) |
| ⊢ 𝐶 = (IndMet‘𝑈) & ⊢ 𝐷 = (IndMet‘𝑊) & ⊢ 𝐽 = (MetOpen‘𝐶) & ⊢ 𝐾 = (MetOpen‘𝐷) & ⊢ 𝐿 = (𝑈 LnOp 𝑊) & ⊢ 𝐵 = (𝑈 BLnOp 𝑊) & ⊢ 𝑈 ∈ NrmCVec & ⊢ 𝑊 ∈ NrmCVec & ⊢ 𝑇 ∈ 𝐿 ⇒ ⊢ (𝑇 ∈ (𝐽 Cn 𝐾) ↔ 𝑇 ∈ 𝐵) | ||
| Theorem | lnocni 30735 | If a linear operator is continuous at any point, it is continuous everywhere. Theorem 2.7-9(b) of [Kreyszig] p. 97. (Contributed by NM, 18-Dec-2007.) (New usage is discouraged.) |
| ⊢ 𝐶 = (IndMet‘𝑈) & ⊢ 𝐷 = (IndMet‘𝑊) & ⊢ 𝐽 = (MetOpen‘𝐶) & ⊢ 𝐾 = (MetOpen‘𝐷) & ⊢ 𝐿 = (𝑈 LnOp 𝑊) & ⊢ 𝐵 = (𝑈 BLnOp 𝑊) & ⊢ 𝑈 ∈ NrmCVec & ⊢ 𝑊 ∈ NrmCVec & ⊢ 𝑇 ∈ 𝐿 & ⊢ 𝑋 = (BaseSet‘𝑈) ⇒ ⊢ ((𝑃 ∈ 𝑋 ∧ 𝑇 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → 𝑇 ∈ (𝐽 Cn 𝐾)) | ||
| Theorem | blocn 30736 | A linear operator is continuous iff it is bounded. Theorem 2.7-9(a) of [Kreyszig] p. 97. (Contributed by NM, 25-Dec-2007.) (New usage is discouraged.) |
| ⊢ 𝐶 = (IndMet‘𝑈) & ⊢ 𝐷 = (IndMet‘𝑊) & ⊢ 𝐽 = (MetOpen‘𝐶) & ⊢ 𝐾 = (MetOpen‘𝐷) & ⊢ 𝐵 = (𝑈 BLnOp 𝑊) & ⊢ 𝑈 ∈ NrmCVec & ⊢ 𝑊 ∈ NrmCVec & ⊢ 𝐿 = (𝑈 LnOp 𝑊) ⇒ ⊢ (𝑇 ∈ 𝐿 → (𝑇 ∈ (𝐽 Cn 𝐾) ↔ 𝑇 ∈ 𝐵)) | ||
| Theorem | blocn2 30737 | A bounded linear operator is continuous. (Contributed by NM, 25-Dec-2007.) (New usage is discouraged.) |
| ⊢ 𝐶 = (IndMet‘𝑈) & ⊢ 𝐷 = (IndMet‘𝑊) & ⊢ 𝐽 = (MetOpen‘𝐶) & ⊢ 𝐾 = (MetOpen‘𝐷) & ⊢ 𝐵 = (𝑈 BLnOp 𝑊) & ⊢ 𝑈 ∈ NrmCVec & ⊢ 𝑊 ∈ NrmCVec ⇒ ⊢ (𝑇 ∈ 𝐵 → 𝑇 ∈ (𝐽 Cn 𝐾)) | ||
| Theorem | ajfval 30738* | The adjoint function. (Contributed by NM, 25-Jan-2008.) (Revised by Mario Carneiro, 16-Nov-2013.) (New usage is discouraged.) |
| ⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝑌 = (BaseSet‘𝑊) & ⊢ 𝑃 = (·𝑖OLD‘𝑈) & ⊢ 𝑄 = (·𝑖OLD‘𝑊) & ⊢ 𝐴 = (𝑈adj𝑊) ⇒ ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec) → 𝐴 = {〈𝑡, 𝑠〉 ∣ (𝑡:𝑋⟶𝑌 ∧ 𝑠:𝑌⟶𝑋 ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑌 ((𝑡‘𝑥)𝑄𝑦) = (𝑥𝑃(𝑠‘𝑦)))}) | ||
| Theorem | hmoval 30739* | The set of Hermitian (self-adjoint) operators on a normed complex vector space. (Contributed by NM, 26-Jan-2008.) (Revised by Mario Carneiro, 16-Nov-2013.) (New usage is discouraged.) |
| ⊢ 𝐻 = (HmOp‘𝑈) & ⊢ 𝐴 = (𝑈adj𝑈) ⇒ ⊢ (𝑈 ∈ NrmCVec → 𝐻 = {𝑡 ∈ dom 𝐴 ∣ (𝐴‘𝑡) = 𝑡}) | ||
| Theorem | ishmo 30740 | The predicate "is a hermitian operator." (Contributed by NM, 26-Jan-2008.) (New usage is discouraged.) |
| ⊢ 𝐻 = (HmOp‘𝑈) & ⊢ 𝐴 = (𝑈adj𝑈) ⇒ ⊢ (𝑈 ∈ NrmCVec → (𝑇 ∈ 𝐻 ↔ (𝑇 ∈ dom 𝐴 ∧ (𝐴‘𝑇) = 𝑇))) | ||
| Syntax | ccphlo 30741 | Extend class notation with the class of all complex inner product spaces (also called pre-Hilbert spaces). |
| class CPreHilOLD | ||
| Definition | df-ph 30742* | Define the class of all complex inner product spaces. An inner product space is a normed vector space whose norm satisfies the parallelogram law (a property that induces an inner product). Based on Exercise 4(b) of [ReedSimon] p. 63. The vector operation is 𝑔, the scalar product is 𝑠, and the norm is 𝑛. An inner product space is also called a pre-Hilbert space. (Contributed by NM, 2-Apr-2007.) (New usage is discouraged.) |
| ⊢ CPreHilOLD = (NrmCVec ∩ {〈〈𝑔, 𝑠〉, 𝑛〉 ∣ ∀𝑥 ∈ ran 𝑔∀𝑦 ∈ ran 𝑔(((𝑛‘(𝑥𝑔𝑦))↑2) + ((𝑛‘(𝑥𝑔(-1𝑠𝑦)))↑2)) = (2 · (((𝑛‘𝑥)↑2) + ((𝑛‘𝑦)↑2)))}) | ||
| Theorem | phnv 30743 | Every complex inner product space is a normed complex vector space. (Contributed by NM, 2-Apr-2007.) (New usage is discouraged.) |
| ⊢ (𝑈 ∈ CPreHilOLD → 𝑈 ∈ NrmCVec) | ||
| Theorem | phrel 30744 | The class of all complex inner product spaces is a relation. (Contributed by NM, 2-Apr-2007.) (New usage is discouraged.) |
| ⊢ Rel CPreHilOLD | ||
| Theorem | phnvi 30745 | Every complex inner product space is a normed complex vector space. (Contributed by NM, 20-Nov-2007.) (New usage is discouraged.) |
| ⊢ 𝑈 ∈ CPreHilOLD ⇒ ⊢ 𝑈 ∈ NrmCVec | ||
| Theorem | isphg 30746* | The predicate "is a complex inner product space." An inner product space is a normed vector space whose norm satisfies the parallelogram law. The vector (group) addition operation is 𝐺, the scalar product is 𝑆, and the norm is 𝑁. An inner product space is also called a pre-Hilbert space. (Contributed by NM, 2-Apr-2007.) (New usage is discouraged.) |
| ⊢ 𝑋 = ran 𝐺 ⇒ ⊢ ((𝐺 ∈ 𝐴 ∧ 𝑆 ∈ 𝐵 ∧ 𝑁 ∈ 𝐶) → (〈〈𝐺, 𝑆〉, 𝑁〉 ∈ CPreHilOLD ↔ (〈〈𝐺, 𝑆〉, 𝑁〉 ∈ NrmCVec ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (((𝑁‘(𝑥𝐺𝑦))↑2) + ((𝑁‘(𝑥𝐺(-1𝑆𝑦)))↑2)) = (2 · (((𝑁‘𝑥)↑2) + ((𝑁‘𝑦)↑2)))))) | ||
| Theorem | phop 30747 | A complex inner product space in terms of ordered pair components. (Contributed by NM, 2-Apr-2007.) (New usage is discouraged.) |
| ⊢ 𝐺 = ( +𝑣 ‘𝑈) & ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) & ⊢ 𝑁 = (normCV‘𝑈) ⇒ ⊢ (𝑈 ∈ CPreHilOLD → 𝑈 = 〈〈𝐺, 𝑆〉, 𝑁〉) | ||
| Theorem | cncph 30748 | The set of complex numbers is an inner product (pre-Hilbert) space. (Contributed by Steve Rodriguez, 28-Apr-2007.) (Revised by Mario Carneiro, 7-Nov-2013.) (New usage is discouraged.) |
| ⊢ 𝑈 = 〈〈 + , · 〉, abs〉 ⇒ ⊢ 𝑈 ∈ CPreHilOLD | ||
| Theorem | elimph 30749 | Hypothesis elimination lemma for complex inner product spaces to assist weak deduction theorem. (Contributed by NM, 27-Apr-2007.) (New usage is discouraged.) |
| ⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝑍 = (0vec‘𝑈) & ⊢ 𝑈 ∈ CPreHilOLD ⇒ ⊢ if(𝐴 ∈ 𝑋, 𝐴, 𝑍) ∈ 𝑋 | ||
| Theorem | elimphu 30750 | Hypothesis elimination lemma for complex inner product spaces to assist weak deduction theorem. (Contributed by NM, 6-May-2007.) (New usage is discouraged.) |
| ⊢ if(𝑈 ∈ CPreHilOLD, 𝑈, 〈〈 + , · 〉, abs〉) ∈ CPreHilOLD | ||
| Theorem | isph 30751* | The predicate "is an inner product space." (Contributed by NM, 1-Feb-2008.) (New usage is discouraged.) |
| ⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝐺 = ( +𝑣 ‘𝑈) & ⊢ 𝑀 = ( −𝑣 ‘𝑈) & ⊢ 𝑁 = (normCV‘𝑈) ⇒ ⊢ (𝑈 ∈ CPreHilOLD ↔ (𝑈 ∈ NrmCVec ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (((𝑁‘(𝑥𝐺𝑦))↑2) + ((𝑁‘(𝑥𝑀𝑦))↑2)) = (2 · (((𝑁‘𝑥)↑2) + ((𝑁‘𝑦)↑2))))) | ||
| Theorem | phpar2 30752 | The parallelogram law for an inner product space. (Contributed by NM, 2-Apr-2007.) (New usage is discouraged.) |
| ⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝐺 = ( +𝑣 ‘𝑈) & ⊢ 𝑀 = ( −𝑣 ‘𝑈) & ⊢ 𝑁 = (normCV‘𝑈) ⇒ ⊢ ((𝑈 ∈ CPreHilOLD ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (((𝑁‘(𝐴𝐺𝐵))↑2) + ((𝑁‘(𝐴𝑀𝐵))↑2)) = (2 · (((𝑁‘𝐴)↑2) + ((𝑁‘𝐵)↑2)))) | ||
| Theorem | phpar 30753 | The parallelogram law for an inner product space. (Contributed by NM, 2-Apr-2007.) (New usage is discouraged.) |
| ⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝐺 = ( +𝑣 ‘𝑈) & ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) & ⊢ 𝑁 = (normCV‘𝑈) ⇒ ⊢ ((𝑈 ∈ CPreHilOLD ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (((𝑁‘(𝐴𝐺𝐵))↑2) + ((𝑁‘(𝐴𝐺(-1𝑆𝐵)))↑2)) = (2 · (((𝑁‘𝐴)↑2) + ((𝑁‘𝐵)↑2)))) | ||
| Theorem | ip0i 30754 | A slight variant of Equation 6.46 of [Ponnusamy] p. 362, where 𝐽 is either 1 or -1 to represent +-1. (Contributed by NM, 23-Apr-2007.) (New usage is discouraged.) |
| ⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝐺 = ( +𝑣 ‘𝑈) & ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) & ⊢ 𝑃 = (·𝑖OLD‘𝑈) & ⊢ 𝑈 ∈ CPreHilOLD & ⊢ 𝐴 ∈ 𝑋 & ⊢ 𝐵 ∈ 𝑋 & ⊢ 𝐶 ∈ 𝑋 & ⊢ 𝑁 = (normCV‘𝑈) & ⊢ 𝐽 ∈ ℂ ⇒ ⊢ ((((𝑁‘((𝐴𝐺𝐵)𝐺(𝐽𝑆𝐶)))↑2) − ((𝑁‘((𝐴𝐺𝐵)𝐺(-𝐽𝑆𝐶)))↑2)) + (((𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺(𝐽𝑆𝐶)))↑2) − ((𝑁‘((𝐴𝐺(-1𝑆𝐵))𝐺(-𝐽𝑆𝐶)))↑2))) = (2 · (((𝑁‘(𝐴𝐺(𝐽𝑆𝐶)))↑2) − ((𝑁‘(𝐴𝐺(-𝐽𝑆𝐶)))↑2))) | ||
| Theorem | ip1ilem 30755 | Lemma for ip1i 30756. (Contributed by NM, 21-Apr-2007.) (New usage is discouraged.) |
| ⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝐺 = ( +𝑣 ‘𝑈) & ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) & ⊢ 𝑃 = (·𝑖OLD‘𝑈) & ⊢ 𝑈 ∈ CPreHilOLD & ⊢ 𝐴 ∈ 𝑋 & ⊢ 𝐵 ∈ 𝑋 & ⊢ 𝐶 ∈ 𝑋 & ⊢ 𝑁 = (normCV‘𝑈) & ⊢ 𝐽 ∈ ℂ ⇒ ⊢ (((𝐴𝐺𝐵)𝑃𝐶) + ((𝐴𝐺(-1𝑆𝐵))𝑃𝐶)) = (2 · (𝐴𝑃𝐶)) | ||
| Theorem | ip1i 30756 | Equation 6.47 of [Ponnusamy] p. 362. (Contributed by NM, 27-Apr-2007.) (New usage is discouraged.) |
| ⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝐺 = ( +𝑣 ‘𝑈) & ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) & ⊢ 𝑃 = (·𝑖OLD‘𝑈) & ⊢ 𝑈 ∈ CPreHilOLD & ⊢ 𝐴 ∈ 𝑋 & ⊢ 𝐵 ∈ 𝑋 & ⊢ 𝐶 ∈ 𝑋 ⇒ ⊢ (((𝐴𝐺𝐵)𝑃𝐶) + ((𝐴𝐺(-1𝑆𝐵))𝑃𝐶)) = (2 · (𝐴𝑃𝐶)) | ||
| Theorem | ip2i 30757 | Equation 6.48 of [Ponnusamy] p. 362. (Contributed by NM, 26-Apr-2007.) (New usage is discouraged.) |
| ⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝐺 = ( +𝑣 ‘𝑈) & ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) & ⊢ 𝑃 = (·𝑖OLD‘𝑈) & ⊢ 𝑈 ∈ CPreHilOLD & ⊢ 𝐴 ∈ 𝑋 & ⊢ 𝐵 ∈ 𝑋 ⇒ ⊢ ((2𝑆𝐴)𝑃𝐵) = (2 · (𝐴𝑃𝐵)) | ||
| Theorem | ipdirilem 30758 | Lemma for ipdiri 30759. (Contributed by NM, 26-Apr-2007.) (New usage is discouraged.) |
| ⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝐺 = ( +𝑣 ‘𝑈) & ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) & ⊢ 𝑃 = (·𝑖OLD‘𝑈) & ⊢ 𝑈 ∈ CPreHilOLD & ⊢ 𝐴 ∈ 𝑋 & ⊢ 𝐵 ∈ 𝑋 & ⊢ 𝐶 ∈ 𝑋 ⇒ ⊢ ((𝐴𝐺𝐵)𝑃𝐶) = ((𝐴𝑃𝐶) + (𝐵𝑃𝐶)) | ||
| Theorem | ipdiri 30759 | Distributive law for inner product. Equation I3 of [Ponnusamy] p. 362. (Contributed by NM, 27-Apr-2007.) (New usage is discouraged.) |
| ⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝐺 = ( +𝑣 ‘𝑈) & ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) & ⊢ 𝑃 = (·𝑖OLD‘𝑈) & ⊢ 𝑈 ∈ CPreHilOLD ⇒ ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋) → ((𝐴𝐺𝐵)𝑃𝐶) = ((𝐴𝑃𝐶) + (𝐵𝑃𝐶))) | ||
| Theorem | ipasslem1 30760 | Lemma for ipassi 30770. Show the inner product associative law for nonnegative integers. (Contributed by NM, 27-Apr-2007.) (New usage is discouraged.) |
| ⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝐺 = ( +𝑣 ‘𝑈) & ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) & ⊢ 𝑃 = (·𝑖OLD‘𝑈) & ⊢ 𝑈 ∈ CPreHilOLD & ⊢ 𝐵 ∈ 𝑋 ⇒ ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐴 ∈ 𝑋) → ((𝑁𝑆𝐴)𝑃𝐵) = (𝑁 · (𝐴𝑃𝐵))) | ||
| Theorem | ipasslem2 30761 | Lemma for ipassi 30770. Show the inner product associative law for nonpositive integers. (Contributed by NM, 27-Apr-2007.) (New usage is discouraged.) |
| ⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝐺 = ( +𝑣 ‘𝑈) & ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) & ⊢ 𝑃 = (·𝑖OLD‘𝑈) & ⊢ 𝑈 ∈ CPreHilOLD & ⊢ 𝐵 ∈ 𝑋 ⇒ ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐴 ∈ 𝑋) → ((-𝑁𝑆𝐴)𝑃𝐵) = (-𝑁 · (𝐴𝑃𝐵))) | ||
| Theorem | ipasslem3 30762 | Lemma for ipassi 30770. Show the inner product associative law for all integers. (Contributed by NM, 27-Apr-2007.) (New usage is discouraged.) |
| ⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝐺 = ( +𝑣 ‘𝑈) & ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) & ⊢ 𝑃 = (·𝑖OLD‘𝑈) & ⊢ 𝑈 ∈ CPreHilOLD & ⊢ 𝐵 ∈ 𝑋 ⇒ ⊢ ((𝑁 ∈ ℤ ∧ 𝐴 ∈ 𝑋) → ((𝑁𝑆𝐴)𝑃𝐵) = (𝑁 · (𝐴𝑃𝐵))) | ||
| Theorem | ipasslem4 30763 | Lemma for ipassi 30770. Show the inner product associative law for positive integer reciprocals. (Contributed by NM, 27-Apr-2007.) (New usage is discouraged.) |
| ⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝐺 = ( +𝑣 ‘𝑈) & ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) & ⊢ 𝑃 = (·𝑖OLD‘𝑈) & ⊢ 𝑈 ∈ CPreHilOLD & ⊢ 𝐵 ∈ 𝑋 ⇒ ⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ 𝑋) → (((1 / 𝑁)𝑆𝐴)𝑃𝐵) = ((1 / 𝑁) · (𝐴𝑃𝐵))) | ||
| Theorem | ipasslem5 30764 | Lemma for ipassi 30770. Show the inner product associative law for rational numbers. (Contributed by NM, 27-Apr-2007.) (New usage is discouraged.) |
| ⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝐺 = ( +𝑣 ‘𝑈) & ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) & ⊢ 𝑃 = (·𝑖OLD‘𝑈) & ⊢ 𝑈 ∈ CPreHilOLD & ⊢ 𝐵 ∈ 𝑋 ⇒ ⊢ ((𝐶 ∈ ℚ ∧ 𝐴 ∈ 𝑋) → ((𝐶𝑆𝐴)𝑃𝐵) = (𝐶 · (𝐴𝑃𝐵))) | ||
| Theorem | ipasslem7 30765* | Lemma for ipassi 30770. Show that ((𝑤𝑆𝐴)𝑃𝐵) − (𝑤 · (𝐴𝑃𝐵)) is continuous on ℝ. (Contributed by NM, 23-Aug-2007.) (Revised by Mario Carneiro, 6-May-2014.) (New usage is discouraged.) |
| ⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝐺 = ( +𝑣 ‘𝑈) & ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) & ⊢ 𝑃 = (·𝑖OLD‘𝑈) & ⊢ 𝑈 ∈ CPreHilOLD & ⊢ 𝐴 ∈ 𝑋 & ⊢ 𝐵 ∈ 𝑋 & ⊢ 𝐹 = (𝑤 ∈ ℝ ↦ (((𝑤𝑆𝐴)𝑃𝐵) − (𝑤 · (𝐴𝑃𝐵)))) & ⊢ 𝐽 = (topGen‘ran (,)) & ⊢ 𝐾 = (TopOpen‘ℂfld) ⇒ ⊢ 𝐹 ∈ (𝐽 Cn 𝐾) | ||
| Theorem | ipasslem8 30766* | Lemma for ipassi 30770. By ipasslem5 30764, 𝐹 is 0 for all ℚ; since it is continuous and ℚ is dense in ℝ by qdensere2 24685, we conclude 𝐹 is 0 for all ℝ. (Contributed by NM, 24-Aug-2007.) (Revised by Mario Carneiro, 6-May-2014.) (New usage is discouraged.) |
| ⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝐺 = ( +𝑣 ‘𝑈) & ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) & ⊢ 𝑃 = (·𝑖OLD‘𝑈) & ⊢ 𝑈 ∈ CPreHilOLD & ⊢ 𝐴 ∈ 𝑋 & ⊢ 𝐵 ∈ 𝑋 & ⊢ 𝐹 = (𝑤 ∈ ℝ ↦ (((𝑤𝑆𝐴)𝑃𝐵) − (𝑤 · (𝐴𝑃𝐵)))) ⇒ ⊢ 𝐹:ℝ⟶{0} | ||
| Theorem | ipasslem9 30767 | Lemma for ipassi 30770. Conclude from ipasslem8 30766 the inner product associative law for real numbers. (Contributed by NM, 24-Aug-2007.) (New usage is discouraged.) |
| ⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝐺 = ( +𝑣 ‘𝑈) & ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) & ⊢ 𝑃 = (·𝑖OLD‘𝑈) & ⊢ 𝑈 ∈ CPreHilOLD & ⊢ 𝐴 ∈ 𝑋 & ⊢ 𝐵 ∈ 𝑋 ⇒ ⊢ (𝐶 ∈ ℝ → ((𝐶𝑆𝐴)𝑃𝐵) = (𝐶 · (𝐴𝑃𝐵))) | ||
| Theorem | ipasslem10 30768 | Lemma for ipassi 30770. Show the inner product associative law for the imaginary number i. (Contributed by NM, 24-Aug-2007.) (New usage is discouraged.) |
| ⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝐺 = ( +𝑣 ‘𝑈) & ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) & ⊢ 𝑃 = (·𝑖OLD‘𝑈) & ⊢ 𝑈 ∈ CPreHilOLD & ⊢ 𝐴 ∈ 𝑋 & ⊢ 𝐵 ∈ 𝑋 & ⊢ 𝑁 = (normCV‘𝑈) ⇒ ⊢ ((i𝑆𝐴)𝑃𝐵) = (i · (𝐴𝑃𝐵)) | ||
| Theorem | ipasslem11 30769 | Lemma for ipassi 30770. Show the inner product associative law for all complex numbers. (Contributed by NM, 25-Aug-2007.) (New usage is discouraged.) |
| ⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝐺 = ( +𝑣 ‘𝑈) & ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) & ⊢ 𝑃 = (·𝑖OLD‘𝑈) & ⊢ 𝑈 ∈ CPreHilOLD & ⊢ 𝐴 ∈ 𝑋 & ⊢ 𝐵 ∈ 𝑋 ⇒ ⊢ (𝐶 ∈ ℂ → ((𝐶𝑆𝐴)𝑃𝐵) = (𝐶 · (𝐴𝑃𝐵))) | ||
| Theorem | ipassi 30770 | Associative law for inner product. Equation I2 of [Ponnusamy] p. 363. (Contributed by NM, 25-Aug-2007.) (New usage is discouraged.) |
| ⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝐺 = ( +𝑣 ‘𝑈) & ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) & ⊢ 𝑃 = (·𝑖OLD‘𝑈) & ⊢ 𝑈 ∈ CPreHilOLD ⇒ ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋) → ((𝐴𝑆𝐵)𝑃𝐶) = (𝐴 · (𝐵𝑃𝐶))) | ||
| Theorem | dipdir 30771 | Distributive law for inner product. Equation I3 of [Ponnusamy] p. 362. (Contributed by NM, 25-Aug-2007.) (New usage is discouraged.) |
| ⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝐺 = ( +𝑣 ‘𝑈) & ⊢ 𝑃 = (·𝑖OLD‘𝑈) ⇒ ⊢ ((𝑈 ∈ CPreHilOLD ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → ((𝐴𝐺𝐵)𝑃𝐶) = ((𝐴𝑃𝐶) + (𝐵𝑃𝐶))) | ||
| Theorem | dipdi 30772 | Distributive law for inner product. (Contributed by NM, 20-Nov-2007.) (New usage is discouraged.) |
| ⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝐺 = ( +𝑣 ‘𝑈) & ⊢ 𝑃 = (·𝑖OLD‘𝑈) ⇒ ⊢ ((𝑈 ∈ CPreHilOLD ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → (𝐴𝑃(𝐵𝐺𝐶)) = ((𝐴𝑃𝐵) + (𝐴𝑃𝐶))) | ||
| Theorem | ip2dii 30773 | Inner product of two sums. (Contributed by NM, 17-Apr-2008.) (New usage is discouraged.) |
| ⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝐺 = ( +𝑣 ‘𝑈) & ⊢ 𝑃 = (·𝑖OLD‘𝑈) & ⊢ 𝑈 ∈ CPreHilOLD & ⊢ 𝐴 ∈ 𝑋 & ⊢ 𝐵 ∈ 𝑋 & ⊢ 𝐶 ∈ 𝑋 & ⊢ 𝐷 ∈ 𝑋 ⇒ ⊢ ((𝐴𝐺𝐵)𝑃(𝐶𝐺𝐷)) = (((𝐴𝑃𝐶) + (𝐵𝑃𝐷)) + ((𝐴𝑃𝐷) + (𝐵𝑃𝐶))) | ||
| Theorem | dipass 30774 | Associative law for inner product. Equation I2 of [Ponnusamy] p. 363. (Contributed by NM, 25-Aug-2007.) (New usage is discouraged.) |
| ⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) & ⊢ 𝑃 = (·𝑖OLD‘𝑈) ⇒ ⊢ ((𝑈 ∈ CPreHilOLD ∧ (𝐴 ∈ ℂ ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → ((𝐴𝑆𝐵)𝑃𝐶) = (𝐴 · (𝐵𝑃𝐶))) | ||
| Theorem | dipassr 30775 | "Associative" law for second argument of inner product (compare dipass 30774). (Contributed by NM, 22-Nov-2007.) (New usage is discouraged.) |
| ⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) & ⊢ 𝑃 = (·𝑖OLD‘𝑈) ⇒ ⊢ ((𝑈 ∈ CPreHilOLD ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ 𝑋)) → (𝐴𝑃(𝐵𝑆𝐶)) = ((∗‘𝐵) · (𝐴𝑃𝐶))) | ||
| Theorem | dipassr2 30776 | "Associative" law for inner product. Conjugate version of dipassr 30775. (Contributed by NM, 23-Nov-2007.) (New usage is discouraged.) |
| ⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) & ⊢ 𝑃 = (·𝑖OLD‘𝑈) ⇒ ⊢ ((𝑈 ∈ CPreHilOLD ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ 𝑋)) → (𝐴𝑃((∗‘𝐵)𝑆𝐶)) = (𝐵 · (𝐴𝑃𝐶))) | ||
| Theorem | dipsubdir 30777 | Distributive law for inner product subtraction. (Contributed by NM, 20-Nov-2007.) (New usage is discouraged.) |
| ⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝑀 = ( −𝑣 ‘𝑈) & ⊢ 𝑃 = (·𝑖OLD‘𝑈) ⇒ ⊢ ((𝑈 ∈ CPreHilOLD ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → ((𝐴𝑀𝐵)𝑃𝐶) = ((𝐴𝑃𝐶) − (𝐵𝑃𝐶))) | ||
| Theorem | dipsubdi 30778 | Distributive law for inner product subtraction. (Contributed by NM, 20-Nov-2007.) (New usage is discouraged.) |
| ⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝑀 = ( −𝑣 ‘𝑈) & ⊢ 𝑃 = (·𝑖OLD‘𝑈) ⇒ ⊢ ((𝑈 ∈ CPreHilOLD ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → (𝐴𝑃(𝐵𝑀𝐶)) = ((𝐴𝑃𝐵) − (𝐴𝑃𝐶))) | ||
| Theorem | pythi 30779 | The Pythagorean theorem for an arbitrary complex inner product (pre-Hilbert) space 𝑈. The square of the norm of the sum of two orthogonal vectors (i.e. whose inner product is 0) is the sum of the squares of their norms. Problem 2 in [Kreyszig] p. 135. (Contributed by NM, 17-Apr-2008.) (New usage is discouraged.) |
| ⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝐺 = ( +𝑣 ‘𝑈) & ⊢ 𝑁 = (normCV‘𝑈) & ⊢ 𝑃 = (·𝑖OLD‘𝑈) & ⊢ 𝑈 ∈ CPreHilOLD & ⊢ 𝐴 ∈ 𝑋 & ⊢ 𝐵 ∈ 𝑋 ⇒ ⊢ ((𝐴𝑃𝐵) = 0 → ((𝑁‘(𝐴𝐺𝐵))↑2) = (((𝑁‘𝐴)↑2) + ((𝑁‘𝐵)↑2))) | ||
| Theorem | siilem1 30780 | Lemma for sii 30783. (Contributed by NM, 23-Nov-2007.) (New usage is discouraged.) |
| ⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝑁 = (normCV‘𝑈) & ⊢ 𝑃 = (·𝑖OLD‘𝑈) & ⊢ 𝑈 ∈ CPreHilOLD & ⊢ 𝐴 ∈ 𝑋 & ⊢ 𝐵 ∈ 𝑋 & ⊢ 𝑀 = ( −𝑣 ‘𝑈) & ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) & ⊢ 𝐶 ∈ ℂ & ⊢ (𝐶 · (𝐴𝑃𝐵)) ∈ ℝ & ⊢ 0 ≤ (𝐶 · (𝐴𝑃𝐵)) ⇒ ⊢ ((𝐵𝑃𝐴) = (𝐶 · ((𝑁‘𝐵)↑2)) → (√‘((𝐴𝑃𝐵) · (𝐶 · ((𝑁‘𝐵)↑2)))) ≤ ((𝑁‘𝐴) · (𝑁‘𝐵))) | ||
| Theorem | siilem2 30781 | Lemma for sii 30783. (Contributed by NM, 24-Nov-2007.) (New usage is discouraged.) |
| ⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝑁 = (normCV‘𝑈) & ⊢ 𝑃 = (·𝑖OLD‘𝑈) & ⊢ 𝑈 ∈ CPreHilOLD & ⊢ 𝐴 ∈ 𝑋 & ⊢ 𝐵 ∈ 𝑋 & ⊢ 𝑀 = ( −𝑣 ‘𝑈) & ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) ⇒ ⊢ ((𝐶 ∈ ℂ ∧ (𝐶 · (𝐴𝑃𝐵)) ∈ ℝ ∧ 0 ≤ (𝐶 · (𝐴𝑃𝐵))) → ((𝐵𝑃𝐴) = (𝐶 · ((𝑁‘𝐵)↑2)) → (√‘((𝐴𝑃𝐵) · (𝐶 · ((𝑁‘𝐵)↑2)))) ≤ ((𝑁‘𝐴) · (𝑁‘𝐵)))) | ||
| Theorem | siii 30782 | Inference from sii 30783. (Contributed by NM, 20-Nov-2007.) (New usage is discouraged.) |
| ⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝑁 = (normCV‘𝑈) & ⊢ 𝑃 = (·𝑖OLD‘𝑈) & ⊢ 𝑈 ∈ CPreHilOLD & ⊢ 𝐴 ∈ 𝑋 & ⊢ 𝐵 ∈ 𝑋 ⇒ ⊢ (abs‘(𝐴𝑃𝐵)) ≤ ((𝑁‘𝐴) · (𝑁‘𝐵)) | ||
| Theorem | sii 30783 | Obsolete version of ipcau 25138 as of 22-Sep-2024. Schwarz inequality. Part of Lemma 3-2.1(a) of [Kreyszig] p. 137. This is also called the Cauchy-Schwarz inequality by some authors and Bunjakovaskij-Cauchy-Schwarz inequality by others. See also Theorems bcseqi 31049, bcsiALT 31108, bcsiHIL 31109, csbren 25299. (Contributed by NM, 12-Jan-2008.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝑁 = (normCV‘𝑈) & ⊢ 𝑃 = (·𝑖OLD‘𝑈) & ⊢ 𝑈 ∈ CPreHilOLD ⇒ ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (abs‘(𝐴𝑃𝐵)) ≤ ((𝑁‘𝐴) · (𝑁‘𝐵))) | ||
| Theorem | ipblnfi 30784* | A function 𝐹 generated by varying the first argument of an inner product (with its second argument a fixed vector 𝐴) is a bounded linear functional, i.e. a bounded linear operator from the vector space to ℂ. (Contributed by NM, 12-Jan-2008.) (Revised by Mario Carneiro, 19-Nov-2013.) (New usage is discouraged.) |
| ⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝑃 = (·𝑖OLD‘𝑈) & ⊢ 𝑈 ∈ CPreHilOLD & ⊢ 𝐶 = 〈〈 + , · 〉, abs〉 & ⊢ 𝐵 = (𝑈 BLnOp 𝐶) & ⊢ 𝐹 = (𝑥 ∈ 𝑋 ↦ (𝑥𝑃𝐴)) ⇒ ⊢ (𝐴 ∈ 𝑋 → 𝐹 ∈ 𝐵) | ||
| Theorem | ip2eqi 30785* | Two vectors are equal iff their inner products with all other vectors are equal. (Contributed by NM, 24-Jan-2008.) (New usage is discouraged.) |
| ⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝑃 = (·𝑖OLD‘𝑈) & ⊢ 𝑈 ∈ CPreHilOLD ⇒ ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (∀𝑥 ∈ 𝑋 (𝑥𝑃𝐴) = (𝑥𝑃𝐵) ↔ 𝐴 = 𝐵)) | ||
| Theorem | phoeqi 30786* | A condition implying that two operators are equal. (Contributed by NM, 25-Jan-2008.) (New usage is discouraged.) |
| ⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝑃 = (·𝑖OLD‘𝑈) & ⊢ 𝑈 ∈ CPreHilOLD ⇒ ⊢ ((𝑆:𝑌⟶𝑋 ∧ 𝑇:𝑌⟶𝑋) → (∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑌 (𝑥𝑃(𝑆‘𝑦)) = (𝑥𝑃(𝑇‘𝑦)) ↔ 𝑆 = 𝑇)) | ||
| Theorem | ajmoi 30787* | Every operator has at most one adjoint. (Contributed by NM, 25-Jan-2008.) (New usage is discouraged.) |
| ⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝑃 = (·𝑖OLD‘𝑈) & ⊢ 𝑈 ∈ CPreHilOLD ⇒ ⊢ ∃*𝑠(𝑠:𝑌⟶𝑋 ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑌 ((𝑇‘𝑥)𝑄𝑦) = (𝑥𝑃(𝑠‘𝑦))) | ||
| Theorem | ajfuni 30788 | The adjoint function is a function. (Contributed by NM, 25-Jan-2008.) (New usage is discouraged.) |
| ⊢ 𝐴 = (𝑈adj𝑊) & ⊢ 𝑈 ∈ CPreHilOLD & ⊢ 𝑊 ∈ NrmCVec ⇒ ⊢ Fun 𝐴 | ||
| Theorem | ajfun 30789 | The adjoint function is a function. This is not immediately apparent from df-aj 30679 but results from the uniqueness shown by ajmoi 30787. (Contributed by NM, 26-Jan-2008.) (New usage is discouraged.) |
| ⊢ 𝐴 = (𝑈adj𝑊) ⇒ ⊢ ((𝑈 ∈ CPreHilOLD ∧ 𝑊 ∈ NrmCVec) → Fun 𝐴) | ||
| Theorem | ajval 30790* | Value of the adjoint function. (Contributed by NM, 25-Jan-2008.) (New usage is discouraged.) |
| ⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝑌 = (BaseSet‘𝑊) & ⊢ 𝑃 = (·𝑖OLD‘𝑈) & ⊢ 𝑄 = (·𝑖OLD‘𝑊) & ⊢ 𝐴 = (𝑈adj𝑊) ⇒ ⊢ ((𝑈 ∈ CPreHilOLD ∧ 𝑊 ∈ NrmCVec ∧ 𝑇:𝑋⟶𝑌) → (𝐴‘𝑇) = (℩𝑠(𝑠:𝑌⟶𝑋 ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑌 ((𝑇‘𝑥)𝑄𝑦) = (𝑥𝑃(𝑠‘𝑦))))) | ||
| Syntax | ccbn 30791 | Extend class notation with the class of all complex Banach spaces. |
| class CBan | ||
| Definition | df-cbn 30792 | Define the class of all complex Banach spaces. (Contributed by NM, 5-Dec-2006.) Use df-bn 25236 instead. (New usage is discouraged.) |
| ⊢ CBan = {𝑢 ∈ NrmCVec ∣ (IndMet‘𝑢) ∈ (CMet‘(BaseSet‘𝑢))} | ||
| Theorem | iscbn 30793 | A complex Banach space is a normed complex vector space with a complete induced metric. (Contributed by NM, 5-Dec-2006.) Use isbn 25238 instead. (New usage is discouraged.) |
| ⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝐷 = (IndMet‘𝑈) ⇒ ⊢ (𝑈 ∈ CBan ↔ (𝑈 ∈ NrmCVec ∧ 𝐷 ∈ (CMet‘𝑋))) | ||
| Theorem | cbncms 30794 | The induced metric on complex Banach space is complete. (Contributed by NM, 8-Sep-2007.) Use bncmet 25247 (or preferably bncms 25244) instead. (New usage is discouraged.) |
| ⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝐷 = (IndMet‘𝑈) ⇒ ⊢ (𝑈 ∈ CBan → 𝐷 ∈ (CMet‘𝑋)) | ||
| Theorem | bnnv 30795 | Every complex Banach space is a normed complex vector space. (Contributed by NM, 17-Mar-2007.) Use bnnvc 25240 instead. (New usage is discouraged.) |
| ⊢ (𝑈 ∈ CBan → 𝑈 ∈ NrmCVec) | ||
| Theorem | bnrel 30796 | The class of all complex Banach spaces is a relation. (Contributed by NM, 17-Mar-2007.) (New usage is discouraged.) |
| ⊢ Rel CBan | ||
| Theorem | bnsscmcl 30797 | A subspace of a Banach space is a Banach space iff it is closed in the norm-induced metric of the parent space. (Contributed by NM, 1-Feb-2008.) (New usage is discouraged.) |
| ⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝐷 = (IndMet‘𝑈) & ⊢ 𝐽 = (MetOpen‘𝐷) & ⊢ 𝐻 = (SubSp‘𝑈) & ⊢ 𝑌 = (BaseSet‘𝑊) ⇒ ⊢ ((𝑈 ∈ CBan ∧ 𝑊 ∈ 𝐻) → (𝑊 ∈ CBan ↔ 𝑌 ∈ (Clsd‘𝐽))) | ||
| Theorem | cnbn 30798 | The set of complex numbers is a complex Banach space. (Contributed by Steve Rodriguez, 4-Jan-2007.) (New usage is discouraged.) |
| ⊢ 𝑈 = 〈〈 + , · 〉, abs〉 ⇒ ⊢ 𝑈 ∈ CBan | ||
| Theorem | ubthlem1 30799* | Lemma for ubth 30802. The function 𝐴 exhibits a countable collection of sets that are closed, being the inverse image under 𝑡 of the closed ball of radius 𝑘, and by assumption they cover 𝑋. Thus, by the Baire Category theorem bcth2 25230, for some 𝑛 the set 𝐴‘𝑛 has an interior, meaning that there is a closed ball {𝑧 ∈ 𝑋 ∣ (𝑦𝐷𝑧) ≤ 𝑟} in the set. (Contributed by Mario Carneiro, 11-Jan-2014.) (New usage is discouraged.) |
| ⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝑁 = (normCV‘𝑊) & ⊢ 𝐷 = (IndMet‘𝑈) & ⊢ 𝐽 = (MetOpen‘𝐷) & ⊢ 𝑈 ∈ CBan & ⊢ 𝑊 ∈ NrmCVec & ⊢ (𝜑 → 𝑇 ⊆ (𝑈 BLnOp 𝑊)) & ⊢ (𝜑 → ∀𝑥 ∈ 𝑋 ∃𝑐 ∈ ℝ ∀𝑡 ∈ 𝑇 (𝑁‘(𝑡‘𝑥)) ≤ 𝑐) & ⊢ 𝐴 = (𝑘 ∈ ℕ ↦ {𝑧 ∈ 𝑋 ∣ ∀𝑡 ∈ 𝑇 (𝑁‘(𝑡‘𝑧)) ≤ 𝑘}) ⇒ ⊢ (𝜑 → ∃𝑛 ∈ ℕ ∃𝑦 ∈ 𝑋 ∃𝑟 ∈ ℝ+ {𝑧 ∈ 𝑋 ∣ (𝑦𝐷𝑧) ≤ 𝑟} ⊆ (𝐴‘𝑛)) | ||
| Theorem | ubthlem2 30800* | Lemma for ubth 30802. Given that there is a closed ball 𝐵(𝑃, 𝑅) in 𝐴‘𝐾, for any 𝑥 ∈ 𝐵(0, 1), we have 𝑃 + 𝑅 · 𝑥 ∈ 𝐵(𝑃, 𝑅) and 𝑃 ∈ 𝐵(𝑃, 𝑅), so both of these have norm(𝑡(𝑧)) ≤ 𝐾 and so norm(𝑡(𝑥 )) ≤ (norm(𝑡(𝑃)) + norm(𝑡(𝑃 + 𝑅 · 𝑥))) / 𝑅 ≤ ( 𝐾 + 𝐾) / 𝑅, which is our desired uniform bound. (Contributed by Mario Carneiro, 11-Jan-2014.) (New usage is discouraged.) |
| ⊢ 𝑋 = (BaseSet‘𝑈) & ⊢ 𝑁 = (normCV‘𝑊) & ⊢ 𝐷 = (IndMet‘𝑈) & ⊢ 𝐽 = (MetOpen‘𝐷) & ⊢ 𝑈 ∈ CBan & ⊢ 𝑊 ∈ NrmCVec & ⊢ (𝜑 → 𝑇 ⊆ (𝑈 BLnOp 𝑊)) & ⊢ (𝜑 → ∀𝑥 ∈ 𝑋 ∃𝑐 ∈ ℝ ∀𝑡 ∈ 𝑇 (𝑁‘(𝑡‘𝑥)) ≤ 𝑐) & ⊢ 𝐴 = (𝑘 ∈ ℕ ↦ {𝑧 ∈ 𝑋 ∣ ∀𝑡 ∈ 𝑇 (𝑁‘(𝑡‘𝑧)) ≤ 𝑘}) & ⊢ (𝜑 → 𝐾 ∈ ℕ) & ⊢ (𝜑 → 𝑃 ∈ 𝑋) & ⊢ (𝜑 → 𝑅 ∈ ℝ+) & ⊢ (𝜑 → {𝑧 ∈ 𝑋 ∣ (𝑃𝐷𝑧) ≤ 𝑅} ⊆ (𝐴‘𝐾)) ⇒ ⊢ (𝜑 → ∃𝑑 ∈ ℝ ∀𝑡 ∈ 𝑇 ((𝑈 normOpOLD 𝑊)‘𝑡) ≤ 𝑑) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |