HomeHome Metamath Proof Explorer
Theorem List (p. 308 of 470)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  MPE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Color key:    Metamath Proof Explorer  Metamath Proof Explorer
(1-29659)
  Hilbert Space Explorer  Hilbert Space Explorer
(29660-31182)
  Users' Mathboxes  Users' Mathboxes
(31183-46998)
 

Theorem List for Metamath Proof Explorer - 30701-30800   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremeigvalval 30701 The eigenvalue of an eigenvector of a Hilbert space operator. (Contributed by NM, 11-Mar-2006.) (New usage is discouraged.)
((𝑇: β„‹βŸΆ β„‹ ∧ 𝐴 ∈ (eigvecβ€˜π‘‡)) β†’ ((eigvalβ€˜π‘‡)β€˜π΄) = (((π‘‡β€˜π΄) Β·ih 𝐴) / ((normβ„Žβ€˜π΄)↑2)))
 
Theoremeigvalcl 30702 An eigenvalue is a complex number. (Contributed by NM, 11-Mar-2006.) (New usage is discouraged.)
((𝑇: β„‹βŸΆ β„‹ ∧ 𝐴 ∈ (eigvecβ€˜π‘‡)) β†’ ((eigvalβ€˜π‘‡)β€˜π΄) ∈ β„‚)
 
Theoremeigvec1 30703 Property of an eigenvector. (Contributed by NM, 12-Mar-2006.) (New usage is discouraged.)
((𝑇: β„‹βŸΆ β„‹ ∧ 𝐴 ∈ (eigvecβ€˜π‘‡)) β†’ ((π‘‡β€˜π΄) = (((eigvalβ€˜π‘‡)β€˜π΄) Β·β„Ž 𝐴) ∧ 𝐴 β‰  0β„Ž))
 
Theoremeighmre 30704 The eigenvalues of a Hermitian operator are real. Equation 1.30 of [Hughes] p. 49. (Contributed by NM, 19-Mar-2006.) (New usage is discouraged.)
((𝑇 ∈ HrmOp ∧ 𝐴 ∈ (eigvecβ€˜π‘‡)) β†’ ((eigvalβ€˜π‘‡)β€˜π΄) ∈ ℝ)
 
Theoremeighmorth 30705 Eigenvectors of a Hermitian operator with distinct eigenvalues are orthogonal. Equation 1.31 of [Hughes] p. 49. (Contributed by NM, 23-Mar-2006.) (New usage is discouraged.)
(((𝑇 ∈ HrmOp ∧ 𝐴 ∈ (eigvecβ€˜π‘‡)) ∧ (𝐡 ∈ (eigvecβ€˜π‘‡) ∧ ((eigvalβ€˜π‘‡)β€˜π΄) β‰  ((eigvalβ€˜π‘‡)β€˜π΅))) β†’ (𝐴 Β·ih 𝐡) = 0)
 
Theoremnmopnegi 30706 Value of the norm of the negative of a Hilbert space operator. Unlike nmophmi 30772, the operator does not have to be bounded. (Contributed by NM, 10-Mar-2006.) (New usage is discouraged.)
𝑇: β„‹βŸΆ β„‹    β‡’   (normopβ€˜(-1 Β·op 𝑇)) = (normopβ€˜π‘‡)
 
Theoremlnop0 30707 The value of a linear Hilbert space operator at zero is zero. Remark in [Beran] p. 99. (Contributed by NM, 13-Aug-2006.) (New usage is discouraged.)
(𝑇 ∈ LinOp β†’ (π‘‡β€˜0β„Ž) = 0β„Ž)
 
Theoremlnopmul 30708 Multiplicative property of a linear Hilbert space operator. (Contributed by NM, 13-Aug-2006.) (New usage is discouraged.)
((𝑇 ∈ LinOp ∧ 𝐴 ∈ β„‚ ∧ 𝐡 ∈ β„‹) β†’ (π‘‡β€˜(𝐴 Β·β„Ž 𝐡)) = (𝐴 Β·β„Ž (π‘‡β€˜π΅)))
 
Theoremlnopli 30709 Basic scalar product property of a linear Hilbert space operator. (Contributed by NM, 23-Jan-2006.) (New usage is discouraged.)
𝑇 ∈ LinOp    β‡’   ((𝐴 ∈ β„‚ ∧ 𝐡 ∈ β„‹ ∧ 𝐢 ∈ β„‹) β†’ (π‘‡β€˜((𝐴 Β·β„Ž 𝐡) +β„Ž 𝐢)) = ((𝐴 Β·β„Ž (π‘‡β€˜π΅)) +β„Ž (π‘‡β€˜πΆ)))
 
Theoremlnopfi 30710 A linear Hilbert space operator is a Hilbert space operator. (Contributed by NM, 23-Jan-2006.) (New usage is discouraged.)
𝑇 ∈ LinOp    β‡’   π‘‡: β„‹βŸΆ β„‹
 
Theoremlnop0i 30711 The value of a linear Hilbert space operator at zero is zero. Remark in [Beran] p. 99. (Contributed by NM, 11-May-2005.) (New usage is discouraged.)
𝑇 ∈ LinOp    β‡’   (π‘‡β€˜0β„Ž) = 0β„Ž
 
Theoremlnopaddi 30712 Additive property of a linear Hilbert space operator. (Contributed by NM, 11-May-2005.) (New usage is discouraged.)
𝑇 ∈ LinOp    β‡’   ((𝐴 ∈ β„‹ ∧ 𝐡 ∈ β„‹) β†’ (π‘‡β€˜(𝐴 +β„Ž 𝐡)) = ((π‘‡β€˜π΄) +β„Ž (π‘‡β€˜π΅)))
 
Theoremlnopmuli 30713 Multiplicative property of a linear Hilbert space operator. (Contributed by NM, 11-May-2005.) (New usage is discouraged.)
𝑇 ∈ LinOp    β‡’   ((𝐴 ∈ β„‚ ∧ 𝐡 ∈ β„‹) β†’ (π‘‡β€˜(𝐴 Β·β„Ž 𝐡)) = (𝐴 Β·β„Ž (π‘‡β€˜π΅)))
 
Theoremlnopaddmuli 30714 Sum/product property of a linear Hilbert space operator. (Contributed by NM, 1-Jul-2005.) (New usage is discouraged.)
𝑇 ∈ LinOp    β‡’   ((𝐴 ∈ β„‚ ∧ 𝐡 ∈ β„‹ ∧ 𝐢 ∈ β„‹) β†’ (π‘‡β€˜(𝐡 +β„Ž (𝐴 Β·β„Ž 𝐢))) = ((π‘‡β€˜π΅) +β„Ž (𝐴 Β·β„Ž (π‘‡β€˜πΆ))))
 
Theoremlnopsubi 30715 Subtraction property for a linear Hilbert space operator. (Contributed by NM, 1-Jul-2005.) (New usage is discouraged.)
𝑇 ∈ LinOp    β‡’   ((𝐴 ∈ β„‹ ∧ 𝐡 ∈ β„‹) β†’ (π‘‡β€˜(𝐴 βˆ’β„Ž 𝐡)) = ((π‘‡β€˜π΄) βˆ’β„Ž (π‘‡β€˜π΅)))
 
Theoremlnopsubmuli 30716 Subtraction/product property of a linear Hilbert space operator. (Contributed by NM, 2-Jul-2005.) (New usage is discouraged.)
𝑇 ∈ LinOp    β‡’   ((𝐴 ∈ β„‚ ∧ 𝐡 ∈ β„‹ ∧ 𝐢 ∈ β„‹) β†’ (π‘‡β€˜(𝐡 βˆ’β„Ž (𝐴 Β·β„Ž 𝐢))) = ((π‘‡β€˜π΅) βˆ’β„Ž (𝐴 Β·β„Ž (π‘‡β€˜πΆ))))
 
Theoremlnopmulsubi 30717 Product/subtraction property of a linear Hilbert space operator. (Contributed by NM, 2-Jul-2005.) (New usage is discouraged.)
𝑇 ∈ LinOp    β‡’   ((𝐴 ∈ β„‚ ∧ 𝐡 ∈ β„‹ ∧ 𝐢 ∈ β„‹) β†’ (π‘‡β€˜((𝐴 Β·β„Ž 𝐡) βˆ’β„Ž 𝐢)) = ((𝐴 Β·β„Ž (π‘‡β€˜π΅)) βˆ’β„Ž (π‘‡β€˜πΆ)))
 
Theoremhomco2 30718 Move a scalar product out of a composition of operators. The operator 𝑇 must be linear, unlike homco1 30542 that works for any operators. (Contributed by NM, 13-Aug-2006.) (New usage is discouraged.)
((𝐴 ∈ β„‚ ∧ 𝑇 ∈ LinOp ∧ π‘ˆ: β„‹βŸΆ β„‹) β†’ (𝑇 ∘ (𝐴 Β·op π‘ˆ)) = (𝐴 Β·op (𝑇 ∘ π‘ˆ)))
 
Theoremidunop 30719 The identity function (restricted to Hilbert space) is a unitary operator. (Contributed by NM, 21-Jan-2006.) (New usage is discouraged.)
( I β†Ύ β„‹) ∈ UniOp
 
Theorem0cnop 30720 The identically zero function is a continuous Hilbert space operator. (Contributed by NM, 7-Feb-2006.) (New usage is discouraged.)
0hop ∈ ContOp
 
Theorem0cnfn 30721 The identically zero function is a continuous Hilbert space functional. (Contributed by NM, 7-Feb-2006.) (New usage is discouraged.)
( β„‹ Γ— {0}) ∈ ContFn
 
Theoremidcnop 30722 The identity function (restricted to Hilbert space) is a continuous operator. (Contributed by NM, 7-Feb-2006.) (New usage is discouraged.)
( I β†Ύ β„‹) ∈ ContOp
 
Theoremidhmop 30723 The Hilbert space identity operator is a Hermitian operator. (Contributed by NM, 22-Apr-2006.) (New usage is discouraged.)
Iop ∈ HrmOp
 
Theorem0hmop 30724 The identically zero function is a Hermitian operator. (Contributed by NM, 8-Aug-2006.) (New usage is discouraged.)
0hop ∈ HrmOp
 
Theorem0lnop 30725 The identically zero function is a linear Hilbert space operator. (Contributed by NM, 7-Feb-2006.) (New usage is discouraged.)
0hop ∈ LinOp
 
Theorem0lnfn 30726 The identically zero function is a linear Hilbert space functional. (Contributed by NM, 14-Feb-2006.) (New usage is discouraged.)
( β„‹ Γ— {0}) ∈ LinFn
 
Theoremnmop0 30727 The norm of the zero operator is zero. (Contributed by NM, 8-Feb-2006.) (New usage is discouraged.)
(normopβ€˜ 0hop ) = 0
 
Theoremnmfn0 30728 The norm of the identically zero functional is zero. (Contributed by NM, 25-Apr-2006.) (New usage is discouraged.)
(normfnβ€˜( β„‹ Γ— {0})) = 0
 
TheoremhmopbdoptHIL 30729 A Hermitian operator is a bounded linear operator (Hellinger-Toeplitz Theorem). (Contributed by NM, 18-Jan-2008.) (New usage is discouraged.)
(𝑇 ∈ HrmOp β†’ 𝑇 ∈ BndLinOp)
 
Theoremhoddii 30730 Distributive law for Hilbert space operator difference. (Interestingly, the reverse distributive law hocsubdiri 30521 does not require linearity.) (Contributed by NM, 11-Mar-2006.) (New usage is discouraged.)
𝑅 ∈ LinOp    &   π‘†: β„‹βŸΆ β„‹    &   π‘‡: β„‹βŸΆ β„‹    β‡’   (𝑅 ∘ (𝑆 βˆ’op 𝑇)) = ((𝑅 ∘ 𝑆) βˆ’op (𝑅 ∘ 𝑇))
 
Theoremhoddi 30731 Distributive law for Hilbert space operator difference. (Interestingly, the reverse distributive law hocsubdiri 30521 does not require linearity.) (Contributed by NM, 23-Aug-2006.) (New usage is discouraged.)
((𝑅 ∈ LinOp ∧ 𝑆: β„‹βŸΆ β„‹ ∧ 𝑇: β„‹βŸΆ β„‹) β†’ (𝑅 ∘ (𝑆 βˆ’op 𝑇)) = ((𝑅 ∘ 𝑆) βˆ’op (𝑅 ∘ 𝑇)))
 
Theoremnmop0h 30732 The norm of any operator on the trivial Hilbert space is zero. (This is the reason we need β„‹ β‰  0β„‹ in nmopun 30755.) (Contributed by NM, 24-Feb-2006.) (New usage is discouraged.)
(( β„‹ = 0β„‹ ∧ 𝑇: β„‹βŸΆ β„‹) β†’ (normopβ€˜π‘‡) = 0)
 
Theoremidlnop 30733 The identity function (restricted to Hilbert space) is a linear operator. (Contributed by NM, 24-Jan-2006.) (New usage is discouraged.)
( I β†Ύ β„‹) ∈ LinOp
 
Theorem0bdop 30734 The identically zero operator is bounded. (Contributed by NM, 14-Feb-2006.) (New usage is discouraged.)
0hop ∈ BndLinOp
 
Theoremadj0 30735 Adjoint of the zero operator. (Contributed by NM, 20-Feb-2006.) (New usage is discouraged.)
(adjβ„Žβ€˜ 0hop ) = 0hop
 
Theoremnmlnop0iALT 30736 A linear operator with a zero norm is identically zero. (Contributed by NM, 8-Feb-2006.) (New usage is discouraged.) (Proof modification is discouraged.)
𝑇 ∈ LinOp    β‡’   ((normopβ€˜π‘‡) = 0 ↔ 𝑇 = 0hop )
 
Theoremnmlnop0iHIL 30737 A linear operator with a zero norm is identically zero. (Contributed by NM, 18-Jan-2008.) (New usage is discouraged.)
𝑇 ∈ LinOp    β‡’   ((normopβ€˜π‘‡) = 0 ↔ 𝑇 = 0hop )
 
Theoremnmlnopgt0i 30738 A linear Hilbert space operator that is not identically zero has a positive norm. (Contributed by NM, 9-Feb-2006.) (New usage is discouraged.)
𝑇 ∈ LinOp    β‡’   (𝑇 β‰  0hop ↔ 0 < (normopβ€˜π‘‡))
 
Theoremnmlnop0 30739 A linear operator with a zero norm is identically zero. (Contributed by NM, 12-Aug-2006.) (New usage is discouraged.)
(𝑇 ∈ LinOp β†’ ((normopβ€˜π‘‡) = 0 ↔ 𝑇 = 0hop ))
 
Theoremnmlnopne0 30740 A linear operator with a nonzero norm is nonzero. (Contributed by NM, 12-Aug-2006.) (New usage is discouraged.)
(𝑇 ∈ LinOp β†’ ((normopβ€˜π‘‡) β‰  0 ↔ 𝑇 β‰  0hop ))
 
Theoremlnopmi 30741 The scalar product of a linear operator is a linear operator. (Contributed by NM, 10-Mar-2006.) (New usage is discouraged.)
𝑇 ∈ LinOp    β‡’   (𝐴 ∈ β„‚ β†’ (𝐴 Β·op 𝑇) ∈ LinOp)
 
Theoremlnophsi 30742 The sum of two linear operators is linear. (Contributed by NM, 10-Mar-2006.) (New usage is discouraged.)
𝑆 ∈ LinOp    &   π‘‡ ∈ LinOp    β‡’   (𝑆 +op 𝑇) ∈ LinOp
 
Theoremlnophdi 30743 The difference of two linear operators is linear. (Contributed by NM, 27-Jul-2006.) (New usage is discouraged.)
𝑆 ∈ LinOp    &   π‘‡ ∈ LinOp    β‡’   (𝑆 βˆ’op 𝑇) ∈ LinOp
 
Theoremlnopcoi 30744 The composition of two linear operators is linear. (Contributed by NM, 8-Mar-2006.) (New usage is discouraged.)
𝑆 ∈ LinOp    &   π‘‡ ∈ LinOp    β‡’   (𝑆 ∘ 𝑇) ∈ LinOp
 
Theoremlnopco0i 30745 The composition of a linear operator with one whose norm is zero. (Contributed by NM, 10-Mar-2006.) (New usage is discouraged.)
𝑆 ∈ LinOp    &   π‘‡ ∈ LinOp    β‡’   ((normopβ€˜π‘‡) = 0 β†’ (normopβ€˜(𝑆 ∘ 𝑇)) = 0)
 
Theoremlnopeq0lem1 30746 Lemma for lnopeq0i 30748. Apply the generalized polarization identity polid2i 29898 to the quadratic form ((π‘‡β€˜π‘₯), π‘₯). (Contributed by NM, 26-Jul-2006.) (New usage is discouraged.)
𝑇 ∈ LinOp    &   π΄ ∈ β„‹    &   π΅ ∈ β„‹    β‡’   ((π‘‡β€˜π΄) Β·ih 𝐡) = (((((π‘‡β€˜(𝐴 +β„Ž 𝐡)) Β·ih (𝐴 +β„Ž 𝐡)) βˆ’ ((π‘‡β€˜(𝐴 βˆ’β„Ž 𝐡)) Β·ih (𝐴 βˆ’β„Ž 𝐡))) + (i Β· (((π‘‡β€˜(𝐴 +β„Ž (i Β·β„Ž 𝐡))) Β·ih (𝐴 +β„Ž (i Β·β„Ž 𝐡))) βˆ’ ((π‘‡β€˜(𝐴 βˆ’β„Ž (i Β·β„Ž 𝐡))) Β·ih (𝐴 βˆ’β„Ž (i Β·β„Ž 𝐡)))))) / 4)
 
Theoremlnopeq0lem2 30747 Lemma for lnopeq0i 30748. (Contributed by NM, 26-Jul-2006.) (New usage is discouraged.)
𝑇 ∈ LinOp    β‡’   ((𝐴 ∈ β„‹ ∧ 𝐡 ∈ β„‹) β†’ ((π‘‡β€˜π΄) Β·ih 𝐡) = (((((π‘‡β€˜(𝐴 +β„Ž 𝐡)) Β·ih (𝐴 +β„Ž 𝐡)) βˆ’ ((π‘‡β€˜(𝐴 βˆ’β„Ž 𝐡)) Β·ih (𝐴 βˆ’β„Ž 𝐡))) + (i Β· (((π‘‡β€˜(𝐴 +β„Ž (i Β·β„Ž 𝐡))) Β·ih (𝐴 +β„Ž (i Β·β„Ž 𝐡))) βˆ’ ((π‘‡β€˜(𝐴 βˆ’β„Ž (i Β·β„Ž 𝐡))) Β·ih (𝐴 βˆ’β„Ž (i Β·β„Ž 𝐡)))))) / 4))
 
Theoremlnopeq0i 30748* A condition implying that a linear Hilbert space operator is identically zero. Unlike ho01i 30569 for arbitrary operators, when the operator is linear we need to consider only the values of the quadratic form (π‘‡β€˜π‘₯) Β·ih π‘₯). (Contributed by NM, 26-Jul-2006.) (New usage is discouraged.)
𝑇 ∈ LinOp    β‡’   (βˆ€π‘₯ ∈ β„‹ ((π‘‡β€˜π‘₯) Β·ih π‘₯) = 0 ↔ 𝑇 = 0hop )
 
Theoremlnopeqi 30749* Two linear Hilbert space operators are equal iff their quadratic forms are equal. (Contributed by NM, 27-Jul-2006.) (New usage is discouraged.)
𝑇 ∈ LinOp    &   π‘ˆ ∈ LinOp    β‡’   (βˆ€π‘₯ ∈ β„‹ ((π‘‡β€˜π‘₯) Β·ih π‘₯) = ((π‘ˆβ€˜π‘₯) Β·ih π‘₯) ↔ 𝑇 = π‘ˆ)
 
Theoremlnopeq 30750* Two linear Hilbert space operators are equal iff their quadratic forms are equal. (Contributed by NM, 27-Jul-2006.) (New usage is discouraged.)
((𝑇 ∈ LinOp ∧ π‘ˆ ∈ LinOp) β†’ (βˆ€π‘₯ ∈ β„‹ ((π‘‡β€˜π‘₯) Β·ih π‘₯) = ((π‘ˆβ€˜π‘₯) Β·ih π‘₯) ↔ 𝑇 = π‘ˆ))
 
Theoremlnopunilem1 30751* Lemma for lnopunii 30753. (Contributed by NM, 14-May-2005.) (New usage is discouraged.)
𝑇 ∈ LinOp    &   βˆ€π‘₯ ∈ β„‹ (normβ„Žβ€˜(π‘‡β€˜π‘₯)) = (normβ„Žβ€˜π‘₯)    &   π΄ ∈ β„‹    &   π΅ ∈ β„‹    &   πΆ ∈ β„‚    β‡’   (β„œβ€˜(𝐢 Β· ((π‘‡β€˜π΄) Β·ih (π‘‡β€˜π΅)))) = (β„œβ€˜(𝐢 Β· (𝐴 Β·ih 𝐡)))
 
Theoremlnopunilem2 30752* Lemma for lnopunii 30753. (Contributed by NM, 12-May-2005.) (New usage is discouraged.)
𝑇 ∈ LinOp    &   βˆ€π‘₯ ∈ β„‹ (normβ„Žβ€˜(π‘‡β€˜π‘₯)) = (normβ„Žβ€˜π‘₯)    &   π΄ ∈ β„‹    &   π΅ ∈ β„‹    β‡’   ((π‘‡β€˜π΄) Β·ih (π‘‡β€˜π΅)) = (𝐴 Β·ih 𝐡)
 
Theoremlnopunii 30753* If a linear operator (whose range is β„‹) is idempotent in the norm, the operator is unitary. Similar to theorem in [AkhiezerGlazman] p. 73. (Contributed by NM, 23-Jan-2006.) (New usage is discouraged.)
𝑇 ∈ LinOp    &   π‘‡: ℋ–ontoβ†’ β„‹    &   βˆ€π‘₯ ∈ β„‹ (normβ„Žβ€˜(π‘‡β€˜π‘₯)) = (normβ„Žβ€˜π‘₯)    β‡’   π‘‡ ∈ UniOp
 
Theoremelunop2 30754* An operator is unitary iff it is linear, onto, and idempotent in the norm. Similar to theorem in [AkhiezerGlazman] p. 73, and its converse. (Contributed by NM, 24-Feb-2006.) (New usage is discouraged.)
(𝑇 ∈ UniOp ↔ (𝑇 ∈ LinOp ∧ 𝑇: ℋ–ontoβ†’ β„‹ ∧ βˆ€π‘₯ ∈ β„‹ (normβ„Žβ€˜(π‘‡β€˜π‘₯)) = (normβ„Žβ€˜π‘₯)))
 
Theoremnmopun 30755 Norm of a unitary Hilbert space operator. (Contributed by NM, 25-Feb-2006.) (New usage is discouraged.)
(( β„‹ β‰  0β„‹ ∧ 𝑇 ∈ UniOp) β†’ (normopβ€˜π‘‡) = 1)
 
Theoremunopbd 30756 A unitary operator is a bounded linear operator. (Contributed by NM, 10-Mar-2006.) (New usage is discouraged.)
(𝑇 ∈ UniOp β†’ 𝑇 ∈ BndLinOp)
 
Theoremlnophmlem1 30757* Lemma for lnophmi 30759. (Contributed by NM, 24-Jan-2006.) (New usage is discouraged.)
𝐴 ∈ β„‹    &   π΅ ∈ β„‹    &   π‘‡ ∈ LinOp    &   βˆ€π‘₯ ∈ β„‹ (π‘₯ Β·ih (π‘‡β€˜π‘₯)) ∈ ℝ    β‡’   (𝐴 Β·ih (π‘‡β€˜π΄)) ∈ ℝ
 
Theoremlnophmlem2 30758* Lemma for lnophmi 30759. (Contributed by NM, 24-Jan-2006.) (New usage is discouraged.)
𝐴 ∈ β„‹    &   π΅ ∈ β„‹    &   π‘‡ ∈ LinOp    &   βˆ€π‘₯ ∈ β„‹ (π‘₯ Β·ih (π‘‡β€˜π‘₯)) ∈ ℝ    β‡’   (𝐴 Β·ih (π‘‡β€˜π΅)) = ((π‘‡β€˜π΄) Β·ih 𝐡)
 
Theoremlnophmi 30759* A linear operator is Hermitian if π‘₯ Β·ih (π‘‡β€˜π‘₯) takes only real values. Remark in [ReedSimon] p. 195. (Contributed by NM, 24-Jan-2006.) (New usage is discouraged.)
𝑇 ∈ LinOp    &   βˆ€π‘₯ ∈ β„‹ (π‘₯ Β·ih (π‘‡β€˜π‘₯)) ∈ ℝ    β‡’   π‘‡ ∈ HrmOp
 
Theoremlnophm 30760* A linear operator is Hermitian if π‘₯ Β·ih (π‘‡β€˜π‘₯) takes only real values. Remark in [ReedSimon] p. 195. (Contributed by NM, 24-Jan-2006.) (New usage is discouraged.)
((𝑇 ∈ LinOp ∧ βˆ€π‘₯ ∈ β„‹ (π‘₯ Β·ih (π‘‡β€˜π‘₯)) ∈ ℝ) β†’ 𝑇 ∈ HrmOp)
 
Theoremhmops 30761 The sum of two Hermitian operators is Hermitian. (Contributed by NM, 23-Jul-2006.) (New usage is discouraged.)
((𝑇 ∈ HrmOp ∧ π‘ˆ ∈ HrmOp) β†’ (𝑇 +op π‘ˆ) ∈ HrmOp)
 
Theoremhmopm 30762 The scalar product of a Hermitian operator with a real is Hermitian. (Contributed by NM, 23-Jul-2006.) (New usage is discouraged.)
((𝐴 ∈ ℝ ∧ 𝑇 ∈ HrmOp) β†’ (𝐴 Β·op 𝑇) ∈ HrmOp)
 
Theoremhmopd 30763 The difference of two Hermitian operators is Hermitian. (Contributed by NM, 23-Jul-2006.) (New usage is discouraged.)
((𝑇 ∈ HrmOp ∧ π‘ˆ ∈ HrmOp) β†’ (𝑇 βˆ’op π‘ˆ) ∈ HrmOp)
 
Theoremhmopco 30764 The composition of two commuting Hermitian operators is Hermitian. (Contributed by NM, 22-Aug-2006.) (New usage is discouraged.)
((𝑇 ∈ HrmOp ∧ π‘ˆ ∈ HrmOp ∧ (𝑇 ∘ π‘ˆ) = (π‘ˆ ∘ 𝑇)) β†’ (𝑇 ∘ π‘ˆ) ∈ HrmOp)
 
Theoremnmbdoplbi 30765 A lower bound for the norm of a bounded linear operator. (Contributed by NM, 14-Feb-2006.) (New usage is discouraged.)
𝑇 ∈ BndLinOp    β‡’   (𝐴 ∈ β„‹ β†’ (normβ„Žβ€˜(π‘‡β€˜π΄)) ≀ ((normopβ€˜π‘‡) Β· (normβ„Žβ€˜π΄)))
 
Theoremnmbdoplb 30766 A lower bound for the norm of a bounded linear Hilbert space operator. (Contributed by NM, 18-Feb-2006.) (New usage is discouraged.)
((𝑇 ∈ BndLinOp ∧ 𝐴 ∈ β„‹) β†’ (normβ„Žβ€˜(π‘‡β€˜π΄)) ≀ ((normopβ€˜π‘‡) Β· (normβ„Žβ€˜π΄)))
 
Theoremnmcexi 30767* Lemma for nmcopexi 30768 and nmcfnexi 30792. The norm of a continuous linear Hilbert space operator or functional exists. Theorem 3.5(i) of [Beran] p. 99. (Contributed by Mario Carneiro, 17-Nov-2013.) (Proof shortened by Mario Carneiro, 23-Dec-2013.) (New usage is discouraged.)
βˆƒπ‘¦ ∈ ℝ+ βˆ€π‘§ ∈ β„‹ ((normβ„Žβ€˜π‘§) < 𝑦 β†’ (π‘β€˜(π‘‡β€˜π‘§)) < 1)    &   (π‘†β€˜π‘‡) = sup({π‘š ∣ βˆƒπ‘₯ ∈ β„‹ ((normβ„Žβ€˜π‘₯) ≀ 1 ∧ π‘š = (π‘β€˜(π‘‡β€˜π‘₯)))}, ℝ*, < )    &   (π‘₯ ∈ β„‹ β†’ (π‘β€˜(π‘‡β€˜π‘₯)) ∈ ℝ)    &   (π‘β€˜(π‘‡β€˜0β„Ž)) = 0    &   (((𝑦 / 2) ∈ ℝ+ ∧ π‘₯ ∈ β„‹) β†’ ((𝑦 / 2) Β· (π‘β€˜(π‘‡β€˜π‘₯))) = (π‘β€˜(π‘‡β€˜((𝑦 / 2) Β·β„Ž π‘₯))))    β‡’   (π‘†β€˜π‘‡) ∈ ℝ
 
Theoremnmcopexi 30768 The norm of a continuous linear Hilbert space operator exists. Theorem 3.5(i) of [Beran] p. 99. (Contributed by NM, 5-Feb-2006.) (Proof shortened by Mario Carneiro, 17-Nov-2013.) (New usage is discouraged.)
𝑇 ∈ LinOp    &   π‘‡ ∈ ContOp    β‡’   (normopβ€˜π‘‡) ∈ ℝ
 
Theoremnmcoplbi 30769 A lower bound for the norm of a continuous linear operator. Theorem 3.5(ii) of [Beran] p. 99. (Contributed by NM, 7-Feb-2006.) (Revised by Mario Carneiro, 17-Nov-2013.) (New usage is discouraged.)
𝑇 ∈ LinOp    &   π‘‡ ∈ ContOp    β‡’   (𝐴 ∈ β„‹ β†’ (normβ„Žβ€˜(π‘‡β€˜π΄)) ≀ ((normopβ€˜π‘‡) Β· (normβ„Žβ€˜π΄)))
 
Theoremnmcopex 30770 The norm of a continuous linear Hilbert space operator exists. Theorem 3.5(i) of [Beran] p. 99. (Contributed by NM, 7-Feb-2006.) (New usage is discouraged.)
((𝑇 ∈ LinOp ∧ 𝑇 ∈ ContOp) β†’ (normopβ€˜π‘‡) ∈ ℝ)
 
Theoremnmcoplb 30771 A lower bound for the norm of a continuous linear Hilbert space operator. Theorem 3.5(ii) of [Beran] p. 99. (Contributed by NM, 7-Feb-2006.) (New usage is discouraged.)
((𝑇 ∈ LinOp ∧ 𝑇 ∈ ContOp ∧ 𝐴 ∈ β„‹) β†’ (normβ„Žβ€˜(π‘‡β€˜π΄)) ≀ ((normopβ€˜π‘‡) Β· (normβ„Žβ€˜π΄)))
 
Theoremnmophmi 30772 The norm of the scalar product of a bounded linear operator. (Contributed by NM, 10-Mar-2006.) (New usage is discouraged.)
𝑇 ∈ BndLinOp    β‡’   (𝐴 ∈ β„‚ β†’ (normopβ€˜(𝐴 Β·op 𝑇)) = ((absβ€˜π΄) Β· (normopβ€˜π‘‡)))
 
Theorembdophmi 30773 The scalar product of a bounded linear operator is a bounded linear operator. (Contributed by NM, 10-Mar-2006.) (New usage is discouraged.)
𝑇 ∈ BndLinOp    β‡’   (𝐴 ∈ β„‚ β†’ (𝐴 Β·op 𝑇) ∈ BndLinOp)
 
Theoremlnconi 30774* Lemma for lnopconi 30775 and lnfnconi 30796. (Contributed by NM, 7-Feb-2006.) (New usage is discouraged.)
(𝑇 ∈ 𝐢 β†’ 𝑆 ∈ ℝ)    &   ((𝑇 ∈ 𝐢 ∧ 𝑦 ∈ β„‹) β†’ (π‘β€˜(π‘‡β€˜π‘¦)) ≀ (𝑆 Β· (normβ„Žβ€˜π‘¦)))    &   (𝑇 ∈ 𝐢 ↔ βˆ€π‘₯ ∈ β„‹ βˆ€π‘§ ∈ ℝ+ βˆƒπ‘¦ ∈ ℝ+ βˆ€π‘€ ∈ β„‹ ((normβ„Žβ€˜(𝑀 βˆ’β„Ž π‘₯)) < 𝑦 β†’ (π‘β€˜((π‘‡β€˜π‘€)𝑀(π‘‡β€˜π‘₯))) < 𝑧))    &   (𝑦 ∈ β„‹ β†’ (π‘β€˜(π‘‡β€˜π‘¦)) ∈ ℝ)    &   ((𝑀 ∈ β„‹ ∧ π‘₯ ∈ β„‹) β†’ (π‘‡β€˜(𝑀 βˆ’β„Ž π‘₯)) = ((π‘‡β€˜π‘€)𝑀(π‘‡β€˜π‘₯)))    β‡’   (𝑇 ∈ 𝐢 ↔ βˆƒπ‘₯ ∈ ℝ βˆ€π‘¦ ∈ β„‹ (π‘β€˜(π‘‡β€˜π‘¦)) ≀ (π‘₯ Β· (normβ„Žβ€˜π‘¦)))
 
Theoremlnopconi 30775* A condition equivalent to "𝑇 is continuous" when 𝑇 is linear. Theorem 3.5(iii) of [Beran] p. 99. (Contributed by NM, 7-Feb-2006.) (Proof shortened by Mario Carneiro, 17-Nov-2013.) (New usage is discouraged.)
𝑇 ∈ LinOp    β‡’   (𝑇 ∈ ContOp ↔ βˆƒπ‘₯ ∈ ℝ βˆ€π‘¦ ∈ β„‹ (normβ„Žβ€˜(π‘‡β€˜π‘¦)) ≀ (π‘₯ Β· (normβ„Žβ€˜π‘¦)))
 
Theoremlnopcon 30776* A condition equivalent to "𝑇 is continuous" when 𝑇 is linear. Theorem 3.5(iii) of [Beran] p. 99. (Contributed by NM, 14-Feb-2006.) (New usage is discouraged.)
(𝑇 ∈ LinOp β†’ (𝑇 ∈ ContOp ↔ βˆƒπ‘₯ ∈ ℝ βˆ€π‘¦ ∈ β„‹ (normβ„Žβ€˜(π‘‡β€˜π‘¦)) ≀ (π‘₯ Β· (normβ„Žβ€˜π‘¦))))
 
Theoremlnopcnbd 30777 A linear operator is continuous iff it is bounded. (Contributed by NM, 14-Feb-2006.) (New usage is discouraged.)
(𝑇 ∈ LinOp β†’ (𝑇 ∈ ContOp ↔ 𝑇 ∈ BndLinOp))
 
Theoremlncnopbd 30778 A continuous linear operator is a bounded linear operator. This theorem justifies our use of "bounded linear" as an interchangeable condition for "continuous linear" used in some textbook proofs. (Contributed by NM, 18-Feb-2006.) (New usage is discouraged.)
(𝑇 ∈ (LinOp ∩ ContOp) ↔ 𝑇 ∈ BndLinOp)
 
Theoremlncnbd 30779 A continuous linear operator is a bounded linear operator. (Contributed by NM, 18-Feb-2006.) (New usage is discouraged.)
(LinOp ∩ ContOp) = BndLinOp
 
Theoremlnopcnre 30780 A linear operator is continuous iff it is bounded. (Contributed by NM, 14-Feb-2006.) (New usage is discouraged.)
(𝑇 ∈ LinOp β†’ (𝑇 ∈ ContOp ↔ (normopβ€˜π‘‡) ∈ ℝ))
 
Theoremlnfnli 30781 Basic property of a linear Hilbert space functional. (Contributed by NM, 11-Feb-2006.) (New usage is discouraged.)
𝑇 ∈ LinFn    β‡’   ((𝐴 ∈ β„‚ ∧ 𝐡 ∈ β„‹ ∧ 𝐢 ∈ β„‹) β†’ (π‘‡β€˜((𝐴 Β·β„Ž 𝐡) +β„Ž 𝐢)) = ((𝐴 Β· (π‘‡β€˜π΅)) + (π‘‡β€˜πΆ)))
 
Theoremlnfnfi 30782 A linear Hilbert space functional is a functional. (Contributed by NM, 11-Feb-2006.) (New usage is discouraged.)
𝑇 ∈ LinFn    β‡’   π‘‡: β„‹βŸΆβ„‚
 
Theoremlnfn0i 30783 The value of a linear Hilbert space functional at zero is zero. Remark in [Beran] p. 99. (Contributed by NM, 11-Feb-2006.) (New usage is discouraged.)
𝑇 ∈ LinFn    β‡’   (π‘‡β€˜0β„Ž) = 0
 
Theoremlnfnaddi 30784 Additive property of a linear Hilbert space functional. (Contributed by NM, 11-Feb-2006.) (New usage is discouraged.)
𝑇 ∈ LinFn    β‡’   ((𝐴 ∈ β„‹ ∧ 𝐡 ∈ β„‹) β†’ (π‘‡β€˜(𝐴 +β„Ž 𝐡)) = ((π‘‡β€˜π΄) + (π‘‡β€˜π΅)))
 
Theoremlnfnmuli 30785 Multiplicative property of a linear Hilbert space functional. (Contributed by NM, 11-Feb-2006.) (New usage is discouraged.)
𝑇 ∈ LinFn    β‡’   ((𝐴 ∈ β„‚ ∧ 𝐡 ∈ β„‹) β†’ (π‘‡β€˜(𝐴 Β·β„Ž 𝐡)) = (𝐴 Β· (π‘‡β€˜π΅)))
 
Theoremlnfnaddmuli 30786 Sum/product property of a linear Hilbert space functional. (Contributed by NM, 13-Feb-2006.) (New usage is discouraged.)
𝑇 ∈ LinFn    β‡’   ((𝐴 ∈ β„‚ ∧ 𝐡 ∈ β„‹ ∧ 𝐢 ∈ β„‹) β†’ (π‘‡β€˜(𝐡 +β„Ž (𝐴 Β·β„Ž 𝐢))) = ((π‘‡β€˜π΅) + (𝐴 Β· (π‘‡β€˜πΆ))))
 
Theoremlnfnsubi 30787 Subtraction property for a linear Hilbert space functional. (Contributed by NM, 13-Feb-2006.) (New usage is discouraged.)
𝑇 ∈ LinFn    β‡’   ((𝐴 ∈ β„‹ ∧ 𝐡 ∈ β„‹) β†’ (π‘‡β€˜(𝐴 βˆ’β„Ž 𝐡)) = ((π‘‡β€˜π΄) βˆ’ (π‘‡β€˜π΅)))
 
Theoremlnfn0 30788 The value of a linear Hilbert space functional at zero is zero. Remark in [Beran] p. 99. (Contributed by NM, 25-Apr-2006.) (New usage is discouraged.)
(𝑇 ∈ LinFn β†’ (π‘‡β€˜0β„Ž) = 0)
 
Theoremlnfnmul 30789 Multiplicative property of a linear Hilbert space functional. (Contributed by NM, 30-May-2006.) (New usage is discouraged.)
((𝑇 ∈ LinFn ∧ 𝐴 ∈ β„‚ ∧ 𝐡 ∈ β„‹) β†’ (π‘‡β€˜(𝐴 Β·β„Ž 𝐡)) = (𝐴 Β· (π‘‡β€˜π΅)))
 
Theoremnmbdfnlbi 30790 A lower bound for the norm of a bounded linear functional. (Contributed by NM, 25-Apr-2006.) (New usage is discouraged.)
(𝑇 ∈ LinFn ∧ (normfnβ€˜π‘‡) ∈ ℝ)    β‡’   (𝐴 ∈ β„‹ β†’ (absβ€˜(π‘‡β€˜π΄)) ≀ ((normfnβ€˜π‘‡) Β· (normβ„Žβ€˜π΄)))
 
Theoremnmbdfnlb 30791 A lower bound for the norm of a bounded linear functional. (Contributed by NM, 25-Apr-2006.) (New usage is discouraged.)
((𝑇 ∈ LinFn ∧ (normfnβ€˜π‘‡) ∈ ℝ ∧ 𝐴 ∈ β„‹) β†’ (absβ€˜(π‘‡β€˜π΄)) ≀ ((normfnβ€˜π‘‡) Β· (normβ„Žβ€˜π΄)))
 
Theoremnmcfnexi 30792 The norm of a continuous linear Hilbert space functional exists. Theorem 3.5(i) of [Beran] p. 99. (Contributed by NM, 14-Feb-2006.) (Proof shortened by Mario Carneiro, 17-Nov-2013.) (New usage is discouraged.)
𝑇 ∈ LinFn    &   π‘‡ ∈ ContFn    β‡’   (normfnβ€˜π‘‡) ∈ ℝ
 
Theoremnmcfnlbi 30793 A lower bound for the norm of a continuous linear functional. Theorem 3.5(ii) of [Beran] p. 99. (Contributed by NM, 14-Feb-2006.) (New usage is discouraged.)
𝑇 ∈ LinFn    &   π‘‡ ∈ ContFn    β‡’   (𝐴 ∈ β„‹ β†’ (absβ€˜(π‘‡β€˜π΄)) ≀ ((normfnβ€˜π‘‡) Β· (normβ„Žβ€˜π΄)))
 
Theoremnmcfnex 30794 The norm of a continuous linear Hilbert space functional exists. Theorem 3.5(i) of [Beran] p. 99. (Contributed by NM, 14-Feb-2006.) (New usage is discouraged.)
((𝑇 ∈ LinFn ∧ 𝑇 ∈ ContFn) β†’ (normfnβ€˜π‘‡) ∈ ℝ)
 
Theoremnmcfnlb 30795 A lower bound of the norm of a continuous linear Hilbert space functional. Theorem 3.5(ii) of [Beran] p. 99. (Contributed by NM, 14-Feb-2006.) (New usage is discouraged.)
((𝑇 ∈ LinFn ∧ 𝑇 ∈ ContFn ∧ 𝐴 ∈ β„‹) β†’ (absβ€˜(π‘‡β€˜π΄)) ≀ ((normfnβ€˜π‘‡) Β· (normβ„Žβ€˜π΄)))
 
Theoremlnfnconi 30796* A condition equivalent to "𝑇 is continuous" when 𝑇 is linear. Theorem 3.5(iii) of [Beran] p. 99. (Contributed by NM, 14-Feb-2006.) (Proof shortened by Mario Carneiro, 17-Nov-2013.) (New usage is discouraged.)
𝑇 ∈ LinFn    β‡’   (𝑇 ∈ ContFn ↔ βˆƒπ‘₯ ∈ ℝ βˆ€π‘¦ ∈ β„‹ (absβ€˜(π‘‡β€˜π‘¦)) ≀ (π‘₯ Β· (normβ„Žβ€˜π‘¦)))
 
Theoremlnfncon 30797* A condition equivalent to "𝑇 is continuous" when 𝑇 is linear. Theorem 3.5(iii) of [Beran] p. 99. (Contributed by NM, 16-Feb-2006.) (New usage is discouraged.)
(𝑇 ∈ LinFn β†’ (𝑇 ∈ ContFn ↔ βˆƒπ‘₯ ∈ ℝ βˆ€π‘¦ ∈ β„‹ (absβ€˜(π‘‡β€˜π‘¦)) ≀ (π‘₯ Β· (normβ„Žβ€˜π‘¦))))
 
Theoremlnfncnbd 30798 A linear functional is continuous iff it is bounded. (Contributed by NM, 25-Apr-2006.) (New usage is discouraged.)
(𝑇 ∈ LinFn β†’ (𝑇 ∈ ContFn ↔ (normfnβ€˜π‘‡) ∈ ℝ))
 
Theoremimaelshi 30799 The image of a subspace under a linear operator is a subspace. (Contributed by Mario Carneiro, 19-May-2014.) (New usage is discouraged.)
𝑇 ∈ LinOp    &   π΄ ∈ Sβ„‹    β‡’   (𝑇 β€œ 𝐴) ∈ Sβ„‹
 
Theoremrnelshi 30800 The range of a linear operator is a subspace. (Contributed by Mario Carneiro, 17-Nov-2013.) (New usage is discouraged.)
𝑇 ∈ LinOp    β‡’   ran 𝑇 ∈ Sβ„‹
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16500 166 16501-16600 167 16601-16700 168 16701-16800 169 16801-16900 170 16901-17000 171 17001-17100 172 17101-17200 173 17201-17300 174 17301-17400 175 17401-17500 176 17501-17600 177 17601-17700 178 17701-17800 179 17801-17900 180 17901-18000 181 18001-18100 182 18101-18200 183 18201-18300 184 18301-18400 185 18401-18500 186 18501-18600 187 18601-18700 188 18701-18800 189 18801-18900 190 18901-19000 191 19001-19100 192 19101-19200 193 19201-19300 194 19301-19400 195 19401-19500 196 19501-19600 197 19601-19700 198 19701-19800 199 19801-19900 200 19901-20000 201 20001-20100 202 20101-20200 203 20201-20300 204 20301-20400 205 20401-20500 206 20501-20600 207 20601-20700 208 20701-20800 209 20801-20900 210 20901-21000 211 21001-21100 212 21101-21200 213 21201-21300 214 21301-21400 215 21401-21500 216 21501-21600 217 21601-21700 218 21701-21800 219 21801-21900 220 21901-22000 221 22001-22100 222 22101-22200 223 22201-22300 224 22301-22400 225 22401-22500 226 22501-22600 227 22601-22700 228 22701-22800 229 22801-22900 230 22901-23000 231 23001-23100 232 23101-23200 233 23201-23300 234 23301-23400 235 23401-23500 236 23501-23600 237 23601-23700 238 23701-23800 239 23801-23900 240 23901-24000 241 24001-24100 242 24101-24200 243 24201-24300 244 24301-24400 245 24401-24500 246 24501-24600 247 24601-24700 248 24701-24800 249 24801-24900 250 24901-25000 251 25001-25100 252 25101-25200 253 25201-25300 254 25301-25400 255 25401-25500 256 25501-25600 257 25601-25700 258 25701-25800 259 25801-25900 260 25901-26000 261 26001-26100 262 26101-26200 263 26201-26300 264 26301-26400 265 26401-26500 266 26501-26600 267 26601-26700 268 26701-26800 269 26801-26900 270 26901-27000 271 27001-27100 272 27101-27200 273 27201-27300 274 27301-27400 275 27401-27500 276 27501-27600 277 27601-27700 278 27701-27800 279 27801-27900 280 27901-28000 281 28001-28100 282 28101-28200 283 28201-28300 284 28301-28400 285 28401-28500 286 28501-28600 287 28601-28700 288 28701-28800 289 28801-28900 290 28901-29000 291 29001-29100 292 29101-29200 293 29201-29300 294 29301-29400 295 29401-29500 296 29501-29600 297 29601-29700 298 29701-29800 299 29801-29900 300 29901-30000 301 30001-30100 302 30101-30200 303 30201-30300 304 30301-30400 305 30401-30500 306 30501-30600 307 30601-30700 308 30701-30800 309 30801-30900 310 30901-31000 311 31001-31100 312 31101-31200 313 31201-31300 314 31301-31400 315 31401-31500 316 31501-31600 317 31601-31700 318 31701-31800 319 31801-31900 320 31901-32000 321 32001-32100 322 32101-32200 323 32201-32300 324 32301-32400 325 32401-32500 326 32501-32600 327 32601-32700 328 32701-32800 329 32801-32900 330 32901-33000 331 33001-33100 332 33101-33200 333 33201-33300 334 33301-33400 335 33401-33500 336 33501-33600 337 33601-33700 338 33701-33800 339 33801-33900 340 33901-34000 341 34001-34100 342 34101-34200 343 34201-34300 344 34301-34400 345 34401-34500 346 34501-34600 347 34601-34700 348 34701-34800 349 34801-34900 350 34901-35000 351 35001-35100 352 35101-35200 353 35201-35300 354 35301-35400 355 35401-35500 356 35501-35600 357 35601-35700 358 35701-35800 359 35801-35900 360 35901-36000 361 36001-36100 362 36101-36200 363 36201-36300 364 36301-36400 365 36401-36500 366 36501-36600 367 36601-36700 368 36701-36800 369 36801-36900 370 36901-37000 371 37001-37100 372 37101-37200 373 37201-37300 374 37301-37400 375 37401-37500 376 37501-37600 377 37601-37700 378 37701-37800 379 37801-37900 380 37901-38000 381 38001-38100 382 38101-38200 383 38201-38300 384 38301-38400 385 38401-38500 386 38501-38600 387 38601-38700 388 38701-38800 389 38801-38900 390 38901-39000 391 39001-39100 392 39101-39200 393 39201-39300 394 39301-39400 395 39401-39500 396 39501-39600 397 39601-39700 398 39701-39800 399 39801-39900 400 39901-40000 401 40001-40100 402 40101-40200 403 40201-40300 404 40301-40400 405 40401-40500 406 40501-40600 407 40601-40700 408 40701-40800 409 40801-40900 410 40901-41000 411 41001-41100 412 41101-41200 413 41201-41300 414 41301-41400 415 41401-41500 416 41501-41600 417 41601-41700 418 41701-41800 419 41801-41900 420 41901-42000 421 42001-42100 422 42101-42200 423 42201-42300 424 42301-42400 425 42401-42500 426 42501-42600 427 42601-42700 428 42701-42800 429 42801-42900 430 42901-43000 431 43001-43100 432 43101-43200 433 43201-43300 434 43301-43400 435 43401-43500 436 43501-43600 437 43601-43700 438 43701-43800 439 43801-43900 440 43901-44000 441 44001-44100 442 44101-44200 443 44201-44300 444 44301-44400 445 44401-44500 446 44501-44600 447 44601-44700 448 44701-44800 449 44801-44900 450 44901-45000 451 45001-45100 452 45101-45200 453 45201-45300 454 45301-45400 455 45401-45500 456 45501-45600 457 45601-45700 458 45701-45800 459 45801-45900 460 45901-46000 461 46001-46100 462 46101-46200 463 46201-46300 464 46301-46400 465 46401-46500 466 46501-46600 467 46601-46700 468 46701-46800 469 46801-46900 470 46901-46998
  Copyright terms: Public domain < Previous  Next >