Detailed syntax breakdown of Definition df-sigagen
| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | csigagen 34140 | . 2
class
sigaGen | 
| 2 |  | vx | . . 3
setvar 𝑥 | 
| 3 |  | cvv 3479 | . . 3
class
V | 
| 4 | 2 | cv 1538 | . . . . . 6
class 𝑥 | 
| 5 |  | vs | . . . . . . 7
setvar 𝑠 | 
| 6 | 5 | cv 1538 | . . . . . 6
class 𝑠 | 
| 7 | 4, 6 | wss 3950 | . . . . 5
wff 𝑥 ⊆ 𝑠 | 
| 8 | 4 | cuni 4906 | . . . . . 6
class ∪ 𝑥 | 
| 9 |  | csiga 34110 | . . . . . 6
class
sigAlgebra | 
| 10 | 8, 9 | cfv 6560 | . . . . 5
class
(sigAlgebra‘∪ 𝑥) | 
| 11 | 7, 5, 10 | crab 3435 | . . . 4
class {𝑠 ∈ (sigAlgebra‘∪ 𝑥)
∣ 𝑥 ⊆ 𝑠} | 
| 12 | 11 | cint 4945 | . . 3
class ∩ {𝑠
∈ (sigAlgebra‘∪ 𝑥) ∣ 𝑥 ⊆ 𝑠} | 
| 13 | 2, 3, 12 | cmpt 5224 | . 2
class (𝑥 ∈ V ↦ ∩ {𝑠
∈ (sigAlgebra‘∪ 𝑥) ∣ 𝑥 ⊆ 𝑠}) | 
| 14 | 1, 13 | wceq 1539 | 1
wff sigaGen =
(𝑥 ∈ V ↦ ∩ {𝑠
∈ (sigAlgebra‘∪ 𝑥) ∣ 𝑥 ⊆ 𝑠}) |