Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sigagenval Structured version   Visualization version   GIF version

Theorem sigagenval 34148
Description: Value of the generated sigma-algebra. (Contributed by Thierry Arnoux, 27-Dec-2016.)
Assertion
Ref Expression
sigagenval (𝐴𝑉 → (sigaGen‘𝐴) = {𝑠 ∈ (sigAlgebra‘ 𝐴) ∣ 𝐴𝑠})
Distinct variable group:   𝐴,𝑠
Allowed substitution hint:   𝑉(𝑠)

Proof of Theorem sigagenval
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 df-sigagen 34147 . . 3 sigaGen = (𝑥 ∈ V ↦ {𝑠 ∈ (sigAlgebra‘ 𝑥) ∣ 𝑥𝑠})
21a1i 11 . 2 (𝐴𝑉 → sigaGen = (𝑥 ∈ V ↦ {𝑠 ∈ (sigAlgebra‘ 𝑥) ∣ 𝑥𝑠}))
3 unieq 4870 . . . . . 6 (𝑥 = 𝐴 𝑥 = 𝐴)
43fveq2d 6826 . . . . 5 (𝑥 = 𝐴 → (sigAlgebra‘ 𝑥) = (sigAlgebra‘ 𝐴))
5 sseq1 3960 . . . . 5 (𝑥 = 𝐴 → (𝑥𝑠𝐴𝑠))
64, 5rabeqbidv 3413 . . . 4 (𝑥 = 𝐴 → {𝑠 ∈ (sigAlgebra‘ 𝑥) ∣ 𝑥𝑠} = {𝑠 ∈ (sigAlgebra‘ 𝐴) ∣ 𝐴𝑠})
76inteqd 4902 . . 3 (𝑥 = 𝐴 {𝑠 ∈ (sigAlgebra‘ 𝑥) ∣ 𝑥𝑠} = {𝑠 ∈ (sigAlgebra‘ 𝐴) ∣ 𝐴𝑠})
87adantl 481 . 2 ((𝐴𝑉𝑥 = 𝐴) → {𝑠 ∈ (sigAlgebra‘ 𝑥) ∣ 𝑥𝑠} = {𝑠 ∈ (sigAlgebra‘ 𝐴) ∣ 𝐴𝑠})
9 elex 3457 . 2 (𝐴𝑉𝐴 ∈ V)
10 uniexg 7673 . . . . . . 7 (𝐴𝑉 𝐴 ∈ V)
11 pwsiga 34138 . . . . . . 7 ( 𝐴 ∈ V → 𝒫 𝐴 ∈ (sigAlgebra‘ 𝐴))
1210, 11syl 17 . . . . . 6 (𝐴𝑉 → 𝒫 𝐴 ∈ (sigAlgebra‘ 𝐴))
13 pwuni 4896 . . . . . 6 𝐴 ⊆ 𝒫 𝐴
1412, 13jctir 520 . . . . 5 (𝐴𝑉 → (𝒫 𝐴 ∈ (sigAlgebra‘ 𝐴) ∧ 𝐴 ⊆ 𝒫 𝐴))
15 sseq2 3961 . . . . . 6 (𝑠 = 𝒫 𝐴 → (𝐴𝑠𝐴 ⊆ 𝒫 𝐴))
1615elrab 3647 . . . . 5 (𝒫 𝐴 ∈ {𝑠 ∈ (sigAlgebra‘ 𝐴) ∣ 𝐴𝑠} ↔ (𝒫 𝐴 ∈ (sigAlgebra‘ 𝐴) ∧ 𝐴 ⊆ 𝒫 𝐴))
1714, 16sylibr 234 . . . 4 (𝐴𝑉 → 𝒫 𝐴 ∈ {𝑠 ∈ (sigAlgebra‘ 𝐴) ∣ 𝐴𝑠})
1817ne0d 4292 . . 3 (𝐴𝑉 → {𝑠 ∈ (sigAlgebra‘ 𝐴) ∣ 𝐴𝑠} ≠ ∅)
19 intex 5282 . . 3 ({𝑠 ∈ (sigAlgebra‘ 𝐴) ∣ 𝐴𝑠} ≠ ∅ ↔ {𝑠 ∈ (sigAlgebra‘ 𝐴) ∣ 𝐴𝑠} ∈ V)
2018, 19sylib 218 . 2 (𝐴𝑉 {𝑠 ∈ (sigAlgebra‘ 𝐴) ∣ 𝐴𝑠} ∈ V)
212, 8, 9, 20fvmptd 6936 1 (𝐴𝑉 → (sigaGen‘𝐴) = {𝑠 ∈ (sigAlgebra‘ 𝐴) ∣ 𝐴𝑠})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  wne 2928  {crab 3395  Vcvv 3436  wss 3902  c0 4283  𝒫 cpw 4550   cuni 4859   cint 4897  cmpt 5172  cfv 6481  sigAlgebracsiga 34116  sigaGencsigagen 34146
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-int 4898  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-iota 6437  df-fun 6483  df-fv 6489  df-siga 34117  df-sigagen 34147
This theorem is referenced by:  sigagensiga  34149  sssigagen  34153  sigagenss  34157
  Copyright terms: Public domain W3C validator