Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sigagenval Structured version   Visualization version   GIF version

Theorem sigagenval 32008
Description: Value of the generated sigma-algebra. (Contributed by Thierry Arnoux, 27-Dec-2016.)
Assertion
Ref Expression
sigagenval (𝐴𝑉 → (sigaGen‘𝐴) = {𝑠 ∈ (sigAlgebra‘ 𝐴) ∣ 𝐴𝑠})
Distinct variable group:   𝐴,𝑠
Allowed substitution hint:   𝑉(𝑠)

Proof of Theorem sigagenval
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 df-sigagen 32007 . . 3 sigaGen = (𝑥 ∈ V ↦ {𝑠 ∈ (sigAlgebra‘ 𝑥) ∣ 𝑥𝑠})
21a1i 11 . 2 (𝐴𝑉 → sigaGen = (𝑥 ∈ V ↦ {𝑠 ∈ (sigAlgebra‘ 𝑥) ∣ 𝑥𝑠}))
3 unieq 4847 . . . . . 6 (𝑥 = 𝐴 𝑥 = 𝐴)
43fveq2d 6760 . . . . 5 (𝑥 = 𝐴 → (sigAlgebra‘ 𝑥) = (sigAlgebra‘ 𝐴))
5 sseq1 3942 . . . . 5 (𝑥 = 𝐴 → (𝑥𝑠𝐴𝑠))
64, 5rabeqbidv 3410 . . . 4 (𝑥 = 𝐴 → {𝑠 ∈ (sigAlgebra‘ 𝑥) ∣ 𝑥𝑠} = {𝑠 ∈ (sigAlgebra‘ 𝐴) ∣ 𝐴𝑠})
76inteqd 4881 . . 3 (𝑥 = 𝐴 {𝑠 ∈ (sigAlgebra‘ 𝑥) ∣ 𝑥𝑠} = {𝑠 ∈ (sigAlgebra‘ 𝐴) ∣ 𝐴𝑠})
87adantl 481 . 2 ((𝐴𝑉𝑥 = 𝐴) → {𝑠 ∈ (sigAlgebra‘ 𝑥) ∣ 𝑥𝑠} = {𝑠 ∈ (sigAlgebra‘ 𝐴) ∣ 𝐴𝑠})
9 elex 3440 . 2 (𝐴𝑉𝐴 ∈ V)
10 uniexg 7571 . . . . . . 7 (𝐴𝑉 𝐴 ∈ V)
11 pwsiga 31998 . . . . . . 7 ( 𝐴 ∈ V → 𝒫 𝐴 ∈ (sigAlgebra‘ 𝐴))
1210, 11syl 17 . . . . . 6 (𝐴𝑉 → 𝒫 𝐴 ∈ (sigAlgebra‘ 𝐴))
13 pwuni 4875 . . . . . 6 𝐴 ⊆ 𝒫 𝐴
1412, 13jctir 520 . . . . 5 (𝐴𝑉 → (𝒫 𝐴 ∈ (sigAlgebra‘ 𝐴) ∧ 𝐴 ⊆ 𝒫 𝐴))
15 sseq2 3943 . . . . . 6 (𝑠 = 𝒫 𝐴 → (𝐴𝑠𝐴 ⊆ 𝒫 𝐴))
1615elrab 3617 . . . . 5 (𝒫 𝐴 ∈ {𝑠 ∈ (sigAlgebra‘ 𝐴) ∣ 𝐴𝑠} ↔ (𝒫 𝐴 ∈ (sigAlgebra‘ 𝐴) ∧ 𝐴 ⊆ 𝒫 𝐴))
1714, 16sylibr 233 . . . 4 (𝐴𝑉 → 𝒫 𝐴 ∈ {𝑠 ∈ (sigAlgebra‘ 𝐴) ∣ 𝐴𝑠})
1817ne0d 4266 . . 3 (𝐴𝑉 → {𝑠 ∈ (sigAlgebra‘ 𝐴) ∣ 𝐴𝑠} ≠ ∅)
19 intex 5256 . . 3 ({𝑠 ∈ (sigAlgebra‘ 𝐴) ∣ 𝐴𝑠} ≠ ∅ ↔ {𝑠 ∈ (sigAlgebra‘ 𝐴) ∣ 𝐴𝑠} ∈ V)
2018, 19sylib 217 . 2 (𝐴𝑉 {𝑠 ∈ (sigAlgebra‘ 𝐴) ∣ 𝐴𝑠} ∈ V)
212, 8, 9, 20fvmptd 6864 1 (𝐴𝑉 → (sigaGen‘𝐴) = {𝑠 ∈ (sigAlgebra‘ 𝐴) ∣ 𝐴𝑠})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  wne 2942  {crab 3067  Vcvv 3422  wss 3883  c0 4253  𝒫 cpw 4530   cuni 4836   cint 4876  cmpt 5153  cfv 6418  sigAlgebracsiga 31976  sigaGencsigagen 32006
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-int 4877  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-iota 6376  df-fun 6420  df-fv 6426  df-siga 31977  df-sigagen 32007
This theorem is referenced by:  sigagensiga  32009  sssigagen  32013  sigagenss  32017
  Copyright terms: Public domain W3C validator