![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > sigagenval | Structured version Visualization version GIF version |
Description: Value of the generated sigma-algebra. (Contributed by Thierry Arnoux, 27-Dec-2016.) |
Ref | Expression |
---|---|
sigagenval | ⊢ (𝐴 ∈ 𝑉 → (sigaGen‘𝐴) = ∩ {𝑠 ∈ (sigAlgebra‘∪ 𝐴) ∣ 𝐴 ⊆ 𝑠}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-sigagen 34120 | . . 3 ⊢ sigaGen = (𝑥 ∈ V ↦ ∩ {𝑠 ∈ (sigAlgebra‘∪ 𝑥) ∣ 𝑥 ⊆ 𝑠}) | |
2 | 1 | a1i 11 | . 2 ⊢ (𝐴 ∈ 𝑉 → sigaGen = (𝑥 ∈ V ↦ ∩ {𝑠 ∈ (sigAlgebra‘∪ 𝑥) ∣ 𝑥 ⊆ 𝑠})) |
3 | unieq 4923 | . . . . . 6 ⊢ (𝑥 = 𝐴 → ∪ 𝑥 = ∪ 𝐴) | |
4 | 3 | fveq2d 6911 | . . . . 5 ⊢ (𝑥 = 𝐴 → (sigAlgebra‘∪ 𝑥) = (sigAlgebra‘∪ 𝐴)) |
5 | sseq1 4021 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝑥 ⊆ 𝑠 ↔ 𝐴 ⊆ 𝑠)) | |
6 | 4, 5 | rabeqbidv 3452 | . . . 4 ⊢ (𝑥 = 𝐴 → {𝑠 ∈ (sigAlgebra‘∪ 𝑥) ∣ 𝑥 ⊆ 𝑠} = {𝑠 ∈ (sigAlgebra‘∪ 𝐴) ∣ 𝐴 ⊆ 𝑠}) |
7 | 6 | inteqd 4956 | . . 3 ⊢ (𝑥 = 𝐴 → ∩ {𝑠 ∈ (sigAlgebra‘∪ 𝑥) ∣ 𝑥 ⊆ 𝑠} = ∩ {𝑠 ∈ (sigAlgebra‘∪ 𝐴) ∣ 𝐴 ⊆ 𝑠}) |
8 | 7 | adantl 481 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑥 = 𝐴) → ∩ {𝑠 ∈ (sigAlgebra‘∪ 𝑥) ∣ 𝑥 ⊆ 𝑠} = ∩ {𝑠 ∈ (sigAlgebra‘∪ 𝐴) ∣ 𝐴 ⊆ 𝑠}) |
9 | elex 3499 | . 2 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ V) | |
10 | uniexg 7759 | . . . . . . 7 ⊢ (𝐴 ∈ 𝑉 → ∪ 𝐴 ∈ V) | |
11 | pwsiga 34111 | . . . . . . 7 ⊢ (∪ 𝐴 ∈ V → 𝒫 ∪ 𝐴 ∈ (sigAlgebra‘∪ 𝐴)) | |
12 | 10, 11 | syl 17 | . . . . . 6 ⊢ (𝐴 ∈ 𝑉 → 𝒫 ∪ 𝐴 ∈ (sigAlgebra‘∪ 𝐴)) |
13 | pwuni 4950 | . . . . . 6 ⊢ 𝐴 ⊆ 𝒫 ∪ 𝐴 | |
14 | 12, 13 | jctir 520 | . . . . 5 ⊢ (𝐴 ∈ 𝑉 → (𝒫 ∪ 𝐴 ∈ (sigAlgebra‘∪ 𝐴) ∧ 𝐴 ⊆ 𝒫 ∪ 𝐴)) |
15 | sseq2 4022 | . . . . . 6 ⊢ (𝑠 = 𝒫 ∪ 𝐴 → (𝐴 ⊆ 𝑠 ↔ 𝐴 ⊆ 𝒫 ∪ 𝐴)) | |
16 | 15 | elrab 3695 | . . . . 5 ⊢ (𝒫 ∪ 𝐴 ∈ {𝑠 ∈ (sigAlgebra‘∪ 𝐴) ∣ 𝐴 ⊆ 𝑠} ↔ (𝒫 ∪ 𝐴 ∈ (sigAlgebra‘∪ 𝐴) ∧ 𝐴 ⊆ 𝒫 ∪ 𝐴)) |
17 | 14, 16 | sylibr 234 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → 𝒫 ∪ 𝐴 ∈ {𝑠 ∈ (sigAlgebra‘∪ 𝐴) ∣ 𝐴 ⊆ 𝑠}) |
18 | 17 | ne0d 4348 | . . 3 ⊢ (𝐴 ∈ 𝑉 → {𝑠 ∈ (sigAlgebra‘∪ 𝐴) ∣ 𝐴 ⊆ 𝑠} ≠ ∅) |
19 | intex 5350 | . . 3 ⊢ ({𝑠 ∈ (sigAlgebra‘∪ 𝐴) ∣ 𝐴 ⊆ 𝑠} ≠ ∅ ↔ ∩ {𝑠 ∈ (sigAlgebra‘∪ 𝐴) ∣ 𝐴 ⊆ 𝑠} ∈ V) | |
20 | 18, 19 | sylib 218 | . 2 ⊢ (𝐴 ∈ 𝑉 → ∩ {𝑠 ∈ (sigAlgebra‘∪ 𝐴) ∣ 𝐴 ⊆ 𝑠} ∈ V) |
21 | 2, 8, 9, 20 | fvmptd 7023 | 1 ⊢ (𝐴 ∈ 𝑉 → (sigaGen‘𝐴) = ∩ {𝑠 ∈ (sigAlgebra‘∪ 𝐴) ∣ 𝐴 ⊆ 𝑠}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2106 ≠ wne 2938 {crab 3433 Vcvv 3478 ⊆ wss 3963 ∅c0 4339 𝒫 cpw 4605 ∪ cuni 4912 ∩ cint 4951 ↦ cmpt 5231 ‘cfv 6563 sigAlgebracsiga 34089 sigaGencsigagen 34119 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-int 4952 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-iota 6516 df-fun 6565 df-fv 6571 df-siga 34090 df-sigagen 34120 |
This theorem is referenced by: sigagensiga 34122 sssigagen 34126 sigagenss 34130 |
Copyright terms: Public domain | W3C validator |