| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > sigagenval | Structured version Visualization version GIF version | ||
| Description: Value of the generated sigma-algebra. (Contributed by Thierry Arnoux, 27-Dec-2016.) |
| Ref | Expression |
|---|---|
| sigagenval | ⊢ (𝐴 ∈ 𝑉 → (sigaGen‘𝐴) = ∩ {𝑠 ∈ (sigAlgebra‘∪ 𝐴) ∣ 𝐴 ⊆ 𝑠}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-sigagen 34175 | . . 3 ⊢ sigaGen = (𝑥 ∈ V ↦ ∩ {𝑠 ∈ (sigAlgebra‘∪ 𝑥) ∣ 𝑥 ⊆ 𝑠}) | |
| 2 | 1 | a1i 11 | . 2 ⊢ (𝐴 ∈ 𝑉 → sigaGen = (𝑥 ∈ V ↦ ∩ {𝑠 ∈ (sigAlgebra‘∪ 𝑥) ∣ 𝑥 ⊆ 𝑠})) |
| 3 | unieq 4899 | . . . . . 6 ⊢ (𝑥 = 𝐴 → ∪ 𝑥 = ∪ 𝐴) | |
| 4 | 3 | fveq2d 6885 | . . . . 5 ⊢ (𝑥 = 𝐴 → (sigAlgebra‘∪ 𝑥) = (sigAlgebra‘∪ 𝐴)) |
| 5 | sseq1 3989 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝑥 ⊆ 𝑠 ↔ 𝐴 ⊆ 𝑠)) | |
| 6 | 4, 5 | rabeqbidv 3439 | . . . 4 ⊢ (𝑥 = 𝐴 → {𝑠 ∈ (sigAlgebra‘∪ 𝑥) ∣ 𝑥 ⊆ 𝑠} = {𝑠 ∈ (sigAlgebra‘∪ 𝐴) ∣ 𝐴 ⊆ 𝑠}) |
| 7 | 6 | inteqd 4932 | . . 3 ⊢ (𝑥 = 𝐴 → ∩ {𝑠 ∈ (sigAlgebra‘∪ 𝑥) ∣ 𝑥 ⊆ 𝑠} = ∩ {𝑠 ∈ (sigAlgebra‘∪ 𝐴) ∣ 𝐴 ⊆ 𝑠}) |
| 8 | 7 | adantl 481 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑥 = 𝐴) → ∩ {𝑠 ∈ (sigAlgebra‘∪ 𝑥) ∣ 𝑥 ⊆ 𝑠} = ∩ {𝑠 ∈ (sigAlgebra‘∪ 𝐴) ∣ 𝐴 ⊆ 𝑠}) |
| 9 | elex 3485 | . 2 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ V) | |
| 10 | uniexg 7739 | . . . . . . 7 ⊢ (𝐴 ∈ 𝑉 → ∪ 𝐴 ∈ V) | |
| 11 | pwsiga 34166 | . . . . . . 7 ⊢ (∪ 𝐴 ∈ V → 𝒫 ∪ 𝐴 ∈ (sigAlgebra‘∪ 𝐴)) | |
| 12 | 10, 11 | syl 17 | . . . . . 6 ⊢ (𝐴 ∈ 𝑉 → 𝒫 ∪ 𝐴 ∈ (sigAlgebra‘∪ 𝐴)) |
| 13 | pwuni 4926 | . . . . . 6 ⊢ 𝐴 ⊆ 𝒫 ∪ 𝐴 | |
| 14 | 12, 13 | jctir 520 | . . . . 5 ⊢ (𝐴 ∈ 𝑉 → (𝒫 ∪ 𝐴 ∈ (sigAlgebra‘∪ 𝐴) ∧ 𝐴 ⊆ 𝒫 ∪ 𝐴)) |
| 15 | sseq2 3990 | . . . . . 6 ⊢ (𝑠 = 𝒫 ∪ 𝐴 → (𝐴 ⊆ 𝑠 ↔ 𝐴 ⊆ 𝒫 ∪ 𝐴)) | |
| 16 | 15 | elrab 3676 | . . . . 5 ⊢ (𝒫 ∪ 𝐴 ∈ {𝑠 ∈ (sigAlgebra‘∪ 𝐴) ∣ 𝐴 ⊆ 𝑠} ↔ (𝒫 ∪ 𝐴 ∈ (sigAlgebra‘∪ 𝐴) ∧ 𝐴 ⊆ 𝒫 ∪ 𝐴)) |
| 17 | 14, 16 | sylibr 234 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → 𝒫 ∪ 𝐴 ∈ {𝑠 ∈ (sigAlgebra‘∪ 𝐴) ∣ 𝐴 ⊆ 𝑠}) |
| 18 | 17 | ne0d 4322 | . . 3 ⊢ (𝐴 ∈ 𝑉 → {𝑠 ∈ (sigAlgebra‘∪ 𝐴) ∣ 𝐴 ⊆ 𝑠} ≠ ∅) |
| 19 | intex 5319 | . . 3 ⊢ ({𝑠 ∈ (sigAlgebra‘∪ 𝐴) ∣ 𝐴 ⊆ 𝑠} ≠ ∅ ↔ ∩ {𝑠 ∈ (sigAlgebra‘∪ 𝐴) ∣ 𝐴 ⊆ 𝑠} ∈ V) | |
| 20 | 18, 19 | sylib 218 | . 2 ⊢ (𝐴 ∈ 𝑉 → ∩ {𝑠 ∈ (sigAlgebra‘∪ 𝐴) ∣ 𝐴 ⊆ 𝑠} ∈ V) |
| 21 | 2, 8, 9, 20 | fvmptd 6998 | 1 ⊢ (𝐴 ∈ 𝑉 → (sigaGen‘𝐴) = ∩ {𝑠 ∈ (sigAlgebra‘∪ 𝐴) ∣ 𝐴 ⊆ 𝑠}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2933 {crab 3420 Vcvv 3464 ⊆ wss 3931 ∅c0 4313 𝒫 cpw 4580 ∪ cuni 4888 ∩ cint 4927 ↦ cmpt 5206 ‘cfv 6536 sigAlgebracsiga 34144 sigaGencsigagen 34174 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-int 4928 df-br 5125 df-opab 5187 df-mpt 5207 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-iota 6489 df-fun 6538 df-fv 6544 df-siga 34145 df-sigagen 34175 |
| This theorem is referenced by: sigagensiga 34177 sssigagen 34181 sigagenss 34185 |
| Copyright terms: Public domain | W3C validator |