![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > sigagenval | Structured version Visualization version GIF version |
Description: Value of the generated sigma-algebra. (Contributed by Thierry Arnoux, 27-Dec-2016.) |
Ref | Expression |
---|---|
sigagenval | ⊢ (𝐴 ∈ 𝑉 → (sigaGen‘𝐴) = ∩ {𝑠 ∈ (sigAlgebra‘∪ 𝐴) ∣ 𝐴 ⊆ 𝑠}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-sigagen 34103 | . . 3 ⊢ sigaGen = (𝑥 ∈ V ↦ ∩ {𝑠 ∈ (sigAlgebra‘∪ 𝑥) ∣ 𝑥 ⊆ 𝑠}) | |
2 | 1 | a1i 11 | . 2 ⊢ (𝐴 ∈ 𝑉 → sigaGen = (𝑥 ∈ V ↦ ∩ {𝑠 ∈ (sigAlgebra‘∪ 𝑥) ∣ 𝑥 ⊆ 𝑠})) |
3 | unieq 4942 | . . . . . 6 ⊢ (𝑥 = 𝐴 → ∪ 𝑥 = ∪ 𝐴) | |
4 | 3 | fveq2d 6924 | . . . . 5 ⊢ (𝑥 = 𝐴 → (sigAlgebra‘∪ 𝑥) = (sigAlgebra‘∪ 𝐴)) |
5 | sseq1 4034 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝑥 ⊆ 𝑠 ↔ 𝐴 ⊆ 𝑠)) | |
6 | 4, 5 | rabeqbidv 3462 | . . . 4 ⊢ (𝑥 = 𝐴 → {𝑠 ∈ (sigAlgebra‘∪ 𝑥) ∣ 𝑥 ⊆ 𝑠} = {𝑠 ∈ (sigAlgebra‘∪ 𝐴) ∣ 𝐴 ⊆ 𝑠}) |
7 | 6 | inteqd 4975 | . . 3 ⊢ (𝑥 = 𝐴 → ∩ {𝑠 ∈ (sigAlgebra‘∪ 𝑥) ∣ 𝑥 ⊆ 𝑠} = ∩ {𝑠 ∈ (sigAlgebra‘∪ 𝐴) ∣ 𝐴 ⊆ 𝑠}) |
8 | 7 | adantl 481 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑥 = 𝐴) → ∩ {𝑠 ∈ (sigAlgebra‘∪ 𝑥) ∣ 𝑥 ⊆ 𝑠} = ∩ {𝑠 ∈ (sigAlgebra‘∪ 𝐴) ∣ 𝐴 ⊆ 𝑠}) |
9 | elex 3509 | . 2 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ V) | |
10 | uniexg 7775 | . . . . . . 7 ⊢ (𝐴 ∈ 𝑉 → ∪ 𝐴 ∈ V) | |
11 | pwsiga 34094 | . . . . . . 7 ⊢ (∪ 𝐴 ∈ V → 𝒫 ∪ 𝐴 ∈ (sigAlgebra‘∪ 𝐴)) | |
12 | 10, 11 | syl 17 | . . . . . 6 ⊢ (𝐴 ∈ 𝑉 → 𝒫 ∪ 𝐴 ∈ (sigAlgebra‘∪ 𝐴)) |
13 | pwuni 4969 | . . . . . 6 ⊢ 𝐴 ⊆ 𝒫 ∪ 𝐴 | |
14 | 12, 13 | jctir 520 | . . . . 5 ⊢ (𝐴 ∈ 𝑉 → (𝒫 ∪ 𝐴 ∈ (sigAlgebra‘∪ 𝐴) ∧ 𝐴 ⊆ 𝒫 ∪ 𝐴)) |
15 | sseq2 4035 | . . . . . 6 ⊢ (𝑠 = 𝒫 ∪ 𝐴 → (𝐴 ⊆ 𝑠 ↔ 𝐴 ⊆ 𝒫 ∪ 𝐴)) | |
16 | 15 | elrab 3708 | . . . . 5 ⊢ (𝒫 ∪ 𝐴 ∈ {𝑠 ∈ (sigAlgebra‘∪ 𝐴) ∣ 𝐴 ⊆ 𝑠} ↔ (𝒫 ∪ 𝐴 ∈ (sigAlgebra‘∪ 𝐴) ∧ 𝐴 ⊆ 𝒫 ∪ 𝐴)) |
17 | 14, 16 | sylibr 234 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → 𝒫 ∪ 𝐴 ∈ {𝑠 ∈ (sigAlgebra‘∪ 𝐴) ∣ 𝐴 ⊆ 𝑠}) |
18 | 17 | ne0d 4365 | . . 3 ⊢ (𝐴 ∈ 𝑉 → {𝑠 ∈ (sigAlgebra‘∪ 𝐴) ∣ 𝐴 ⊆ 𝑠} ≠ ∅) |
19 | intex 5362 | . . 3 ⊢ ({𝑠 ∈ (sigAlgebra‘∪ 𝐴) ∣ 𝐴 ⊆ 𝑠} ≠ ∅ ↔ ∩ {𝑠 ∈ (sigAlgebra‘∪ 𝐴) ∣ 𝐴 ⊆ 𝑠} ∈ V) | |
20 | 18, 19 | sylib 218 | . 2 ⊢ (𝐴 ∈ 𝑉 → ∩ {𝑠 ∈ (sigAlgebra‘∪ 𝐴) ∣ 𝐴 ⊆ 𝑠} ∈ V) |
21 | 2, 8, 9, 20 | fvmptd 7036 | 1 ⊢ (𝐴 ∈ 𝑉 → (sigaGen‘𝐴) = ∩ {𝑠 ∈ (sigAlgebra‘∪ 𝐴) ∣ 𝐴 ⊆ 𝑠}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ≠ wne 2946 {crab 3443 Vcvv 3488 ⊆ wss 3976 ∅c0 4352 𝒫 cpw 4622 ∪ cuni 4931 ∩ cint 4970 ↦ cmpt 5249 ‘cfv 6573 sigAlgebracsiga 34072 sigaGencsigagen 34102 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-int 4971 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-iota 6525 df-fun 6575 df-fv 6581 df-siga 34073 df-sigagen 34103 |
This theorem is referenced by: sigagensiga 34105 sssigagen 34109 sigagenss 34113 |
Copyright terms: Public domain | W3C validator |