Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > sigagenval | Structured version Visualization version GIF version |
Description: Value of the generated sigma-algebra. (Contributed by Thierry Arnoux, 27-Dec-2016.) |
Ref | Expression |
---|---|
sigagenval | ⊢ (𝐴 ∈ 𝑉 → (sigaGen‘𝐴) = ∩ {𝑠 ∈ (sigAlgebra‘∪ 𝐴) ∣ 𝐴 ⊆ 𝑠}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-sigagen 32007 | . . 3 ⊢ sigaGen = (𝑥 ∈ V ↦ ∩ {𝑠 ∈ (sigAlgebra‘∪ 𝑥) ∣ 𝑥 ⊆ 𝑠}) | |
2 | 1 | a1i 11 | . 2 ⊢ (𝐴 ∈ 𝑉 → sigaGen = (𝑥 ∈ V ↦ ∩ {𝑠 ∈ (sigAlgebra‘∪ 𝑥) ∣ 𝑥 ⊆ 𝑠})) |
3 | unieq 4847 | . . . . . 6 ⊢ (𝑥 = 𝐴 → ∪ 𝑥 = ∪ 𝐴) | |
4 | 3 | fveq2d 6760 | . . . . 5 ⊢ (𝑥 = 𝐴 → (sigAlgebra‘∪ 𝑥) = (sigAlgebra‘∪ 𝐴)) |
5 | sseq1 3942 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝑥 ⊆ 𝑠 ↔ 𝐴 ⊆ 𝑠)) | |
6 | 4, 5 | rabeqbidv 3410 | . . . 4 ⊢ (𝑥 = 𝐴 → {𝑠 ∈ (sigAlgebra‘∪ 𝑥) ∣ 𝑥 ⊆ 𝑠} = {𝑠 ∈ (sigAlgebra‘∪ 𝐴) ∣ 𝐴 ⊆ 𝑠}) |
7 | 6 | inteqd 4881 | . . 3 ⊢ (𝑥 = 𝐴 → ∩ {𝑠 ∈ (sigAlgebra‘∪ 𝑥) ∣ 𝑥 ⊆ 𝑠} = ∩ {𝑠 ∈ (sigAlgebra‘∪ 𝐴) ∣ 𝐴 ⊆ 𝑠}) |
8 | 7 | adantl 481 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑥 = 𝐴) → ∩ {𝑠 ∈ (sigAlgebra‘∪ 𝑥) ∣ 𝑥 ⊆ 𝑠} = ∩ {𝑠 ∈ (sigAlgebra‘∪ 𝐴) ∣ 𝐴 ⊆ 𝑠}) |
9 | elex 3440 | . 2 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ V) | |
10 | uniexg 7571 | . . . . . . 7 ⊢ (𝐴 ∈ 𝑉 → ∪ 𝐴 ∈ V) | |
11 | pwsiga 31998 | . . . . . . 7 ⊢ (∪ 𝐴 ∈ V → 𝒫 ∪ 𝐴 ∈ (sigAlgebra‘∪ 𝐴)) | |
12 | 10, 11 | syl 17 | . . . . . 6 ⊢ (𝐴 ∈ 𝑉 → 𝒫 ∪ 𝐴 ∈ (sigAlgebra‘∪ 𝐴)) |
13 | pwuni 4875 | . . . . . 6 ⊢ 𝐴 ⊆ 𝒫 ∪ 𝐴 | |
14 | 12, 13 | jctir 520 | . . . . 5 ⊢ (𝐴 ∈ 𝑉 → (𝒫 ∪ 𝐴 ∈ (sigAlgebra‘∪ 𝐴) ∧ 𝐴 ⊆ 𝒫 ∪ 𝐴)) |
15 | sseq2 3943 | . . . . . 6 ⊢ (𝑠 = 𝒫 ∪ 𝐴 → (𝐴 ⊆ 𝑠 ↔ 𝐴 ⊆ 𝒫 ∪ 𝐴)) | |
16 | 15 | elrab 3617 | . . . . 5 ⊢ (𝒫 ∪ 𝐴 ∈ {𝑠 ∈ (sigAlgebra‘∪ 𝐴) ∣ 𝐴 ⊆ 𝑠} ↔ (𝒫 ∪ 𝐴 ∈ (sigAlgebra‘∪ 𝐴) ∧ 𝐴 ⊆ 𝒫 ∪ 𝐴)) |
17 | 14, 16 | sylibr 233 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → 𝒫 ∪ 𝐴 ∈ {𝑠 ∈ (sigAlgebra‘∪ 𝐴) ∣ 𝐴 ⊆ 𝑠}) |
18 | 17 | ne0d 4266 | . . 3 ⊢ (𝐴 ∈ 𝑉 → {𝑠 ∈ (sigAlgebra‘∪ 𝐴) ∣ 𝐴 ⊆ 𝑠} ≠ ∅) |
19 | intex 5256 | . . 3 ⊢ ({𝑠 ∈ (sigAlgebra‘∪ 𝐴) ∣ 𝐴 ⊆ 𝑠} ≠ ∅ ↔ ∩ {𝑠 ∈ (sigAlgebra‘∪ 𝐴) ∣ 𝐴 ⊆ 𝑠} ∈ V) | |
20 | 18, 19 | sylib 217 | . 2 ⊢ (𝐴 ∈ 𝑉 → ∩ {𝑠 ∈ (sigAlgebra‘∪ 𝐴) ∣ 𝐴 ⊆ 𝑠} ∈ V) |
21 | 2, 8, 9, 20 | fvmptd 6864 | 1 ⊢ (𝐴 ∈ 𝑉 → (sigaGen‘𝐴) = ∩ {𝑠 ∈ (sigAlgebra‘∪ 𝐴) ∣ 𝐴 ⊆ 𝑠}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ≠ wne 2942 {crab 3067 Vcvv 3422 ⊆ wss 3883 ∅c0 4253 𝒫 cpw 4530 ∪ cuni 4836 ∩ cint 4876 ↦ cmpt 5153 ‘cfv 6418 sigAlgebracsiga 31976 sigaGencsigagen 32006 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-int 4877 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-iota 6376 df-fun 6420 df-fv 6426 df-siga 31977 df-sigagen 32007 |
This theorem is referenced by: sigagensiga 32009 sssigagen 32013 sigagenss 32017 |
Copyright terms: Public domain | W3C validator |