|   | Mathbox for Thierry Arnoux | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > Mathboxes > sigagenval | Structured version Visualization version GIF version | ||
| Description: Value of the generated sigma-algebra. (Contributed by Thierry Arnoux, 27-Dec-2016.) | 
| Ref | Expression | 
|---|---|
| sigagenval | ⊢ (𝐴 ∈ 𝑉 → (sigaGen‘𝐴) = ∩ {𝑠 ∈ (sigAlgebra‘∪ 𝐴) ∣ 𝐴 ⊆ 𝑠}) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | df-sigagen 34141 | . . 3 ⊢ sigaGen = (𝑥 ∈ V ↦ ∩ {𝑠 ∈ (sigAlgebra‘∪ 𝑥) ∣ 𝑥 ⊆ 𝑠}) | |
| 2 | 1 | a1i 11 | . 2 ⊢ (𝐴 ∈ 𝑉 → sigaGen = (𝑥 ∈ V ↦ ∩ {𝑠 ∈ (sigAlgebra‘∪ 𝑥) ∣ 𝑥 ⊆ 𝑠})) | 
| 3 | unieq 4917 | . . . . . 6 ⊢ (𝑥 = 𝐴 → ∪ 𝑥 = ∪ 𝐴) | |
| 4 | 3 | fveq2d 6909 | . . . . 5 ⊢ (𝑥 = 𝐴 → (sigAlgebra‘∪ 𝑥) = (sigAlgebra‘∪ 𝐴)) | 
| 5 | sseq1 4008 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝑥 ⊆ 𝑠 ↔ 𝐴 ⊆ 𝑠)) | |
| 6 | 4, 5 | rabeqbidv 3454 | . . . 4 ⊢ (𝑥 = 𝐴 → {𝑠 ∈ (sigAlgebra‘∪ 𝑥) ∣ 𝑥 ⊆ 𝑠} = {𝑠 ∈ (sigAlgebra‘∪ 𝐴) ∣ 𝐴 ⊆ 𝑠}) | 
| 7 | 6 | inteqd 4950 | . . 3 ⊢ (𝑥 = 𝐴 → ∩ {𝑠 ∈ (sigAlgebra‘∪ 𝑥) ∣ 𝑥 ⊆ 𝑠} = ∩ {𝑠 ∈ (sigAlgebra‘∪ 𝐴) ∣ 𝐴 ⊆ 𝑠}) | 
| 8 | 7 | adantl 481 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑥 = 𝐴) → ∩ {𝑠 ∈ (sigAlgebra‘∪ 𝑥) ∣ 𝑥 ⊆ 𝑠} = ∩ {𝑠 ∈ (sigAlgebra‘∪ 𝐴) ∣ 𝐴 ⊆ 𝑠}) | 
| 9 | elex 3500 | . 2 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ V) | |
| 10 | uniexg 7761 | . . . . . . 7 ⊢ (𝐴 ∈ 𝑉 → ∪ 𝐴 ∈ V) | |
| 11 | pwsiga 34132 | . . . . . . 7 ⊢ (∪ 𝐴 ∈ V → 𝒫 ∪ 𝐴 ∈ (sigAlgebra‘∪ 𝐴)) | |
| 12 | 10, 11 | syl 17 | . . . . . 6 ⊢ (𝐴 ∈ 𝑉 → 𝒫 ∪ 𝐴 ∈ (sigAlgebra‘∪ 𝐴)) | 
| 13 | pwuni 4944 | . . . . . 6 ⊢ 𝐴 ⊆ 𝒫 ∪ 𝐴 | |
| 14 | 12, 13 | jctir 520 | . . . . 5 ⊢ (𝐴 ∈ 𝑉 → (𝒫 ∪ 𝐴 ∈ (sigAlgebra‘∪ 𝐴) ∧ 𝐴 ⊆ 𝒫 ∪ 𝐴)) | 
| 15 | sseq2 4009 | . . . . . 6 ⊢ (𝑠 = 𝒫 ∪ 𝐴 → (𝐴 ⊆ 𝑠 ↔ 𝐴 ⊆ 𝒫 ∪ 𝐴)) | |
| 16 | 15 | elrab 3691 | . . . . 5 ⊢ (𝒫 ∪ 𝐴 ∈ {𝑠 ∈ (sigAlgebra‘∪ 𝐴) ∣ 𝐴 ⊆ 𝑠} ↔ (𝒫 ∪ 𝐴 ∈ (sigAlgebra‘∪ 𝐴) ∧ 𝐴 ⊆ 𝒫 ∪ 𝐴)) | 
| 17 | 14, 16 | sylibr 234 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → 𝒫 ∪ 𝐴 ∈ {𝑠 ∈ (sigAlgebra‘∪ 𝐴) ∣ 𝐴 ⊆ 𝑠}) | 
| 18 | 17 | ne0d 4341 | . . 3 ⊢ (𝐴 ∈ 𝑉 → {𝑠 ∈ (sigAlgebra‘∪ 𝐴) ∣ 𝐴 ⊆ 𝑠} ≠ ∅) | 
| 19 | intex 5343 | . . 3 ⊢ ({𝑠 ∈ (sigAlgebra‘∪ 𝐴) ∣ 𝐴 ⊆ 𝑠} ≠ ∅ ↔ ∩ {𝑠 ∈ (sigAlgebra‘∪ 𝐴) ∣ 𝐴 ⊆ 𝑠} ∈ V) | |
| 20 | 18, 19 | sylib 218 | . 2 ⊢ (𝐴 ∈ 𝑉 → ∩ {𝑠 ∈ (sigAlgebra‘∪ 𝐴) ∣ 𝐴 ⊆ 𝑠} ∈ V) | 
| 21 | 2, 8, 9, 20 | fvmptd 7022 | 1 ⊢ (𝐴 ∈ 𝑉 → (sigaGen‘𝐴) = ∩ {𝑠 ∈ (sigAlgebra‘∪ 𝐴) ∣ 𝐴 ⊆ 𝑠}) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2107 ≠ wne 2939 {crab 3435 Vcvv 3479 ⊆ wss 3950 ∅c0 4332 𝒫 cpw 4599 ∪ cuni 4906 ∩ cint 4945 ↦ cmpt 5224 ‘cfv 6560 sigAlgebracsiga 34110 sigaGencsigagen 34140 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-sep 5295 ax-nul 5305 ax-pow 5364 ax-pr 5431 ax-un 7756 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-ral 3061 df-rex 3070 df-rab 3436 df-v 3481 df-sbc 3788 df-csb 3899 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-nul 4333 df-if 4525 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-int 4946 df-br 5143 df-opab 5205 df-mpt 5225 df-id 5577 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-iota 6513 df-fun 6562 df-fv 6568 df-siga 34111 df-sigagen 34141 | 
| This theorem is referenced by: sigagensiga 34143 sssigagen 34147 sigagenss 34151 | 
| Copyright terms: Public domain | W3C validator |