Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sigagenval Structured version   Visualization version   GIF version

Theorem sigagenval 33126
Description: Value of the generated sigma-algebra. (Contributed by Thierry Arnoux, 27-Dec-2016.)
Assertion
Ref Expression
sigagenval (𝐴 ∈ 𝑉 β†’ (sigaGenβ€˜π΄) = ∩ {𝑠 ∈ (sigAlgebraβ€˜βˆͺ 𝐴) ∣ 𝐴 βŠ† 𝑠})
Distinct variable group:   𝐴,𝑠
Allowed substitution hint:   𝑉(𝑠)

Proof of Theorem sigagenval
Dummy variable π‘₯ is distinct from all other variables.
StepHypRef Expression
1 df-sigagen 33125 . . 3 sigaGen = (π‘₯ ∈ V ↦ ∩ {𝑠 ∈ (sigAlgebraβ€˜βˆͺ π‘₯) ∣ π‘₯ βŠ† 𝑠})
21a1i 11 . 2 (𝐴 ∈ 𝑉 β†’ sigaGen = (π‘₯ ∈ V ↦ ∩ {𝑠 ∈ (sigAlgebraβ€˜βˆͺ π‘₯) ∣ π‘₯ βŠ† 𝑠}))
3 unieq 4918 . . . . . 6 (π‘₯ = 𝐴 β†’ βˆͺ π‘₯ = βˆͺ 𝐴)
43fveq2d 6892 . . . . 5 (π‘₯ = 𝐴 β†’ (sigAlgebraβ€˜βˆͺ π‘₯) = (sigAlgebraβ€˜βˆͺ 𝐴))
5 sseq1 4006 . . . . 5 (π‘₯ = 𝐴 β†’ (π‘₯ βŠ† 𝑠 ↔ 𝐴 βŠ† 𝑠))
64, 5rabeqbidv 3449 . . . 4 (π‘₯ = 𝐴 β†’ {𝑠 ∈ (sigAlgebraβ€˜βˆͺ π‘₯) ∣ π‘₯ βŠ† 𝑠} = {𝑠 ∈ (sigAlgebraβ€˜βˆͺ 𝐴) ∣ 𝐴 βŠ† 𝑠})
76inteqd 4954 . . 3 (π‘₯ = 𝐴 β†’ ∩ {𝑠 ∈ (sigAlgebraβ€˜βˆͺ π‘₯) ∣ π‘₯ βŠ† 𝑠} = ∩ {𝑠 ∈ (sigAlgebraβ€˜βˆͺ 𝐴) ∣ 𝐴 βŠ† 𝑠})
87adantl 482 . 2 ((𝐴 ∈ 𝑉 ∧ π‘₯ = 𝐴) β†’ ∩ {𝑠 ∈ (sigAlgebraβ€˜βˆͺ π‘₯) ∣ π‘₯ βŠ† 𝑠} = ∩ {𝑠 ∈ (sigAlgebraβ€˜βˆͺ 𝐴) ∣ 𝐴 βŠ† 𝑠})
9 elex 3492 . 2 (𝐴 ∈ 𝑉 β†’ 𝐴 ∈ V)
10 uniexg 7726 . . . . . . 7 (𝐴 ∈ 𝑉 β†’ βˆͺ 𝐴 ∈ V)
11 pwsiga 33116 . . . . . . 7 (βˆͺ 𝐴 ∈ V β†’ 𝒫 βˆͺ 𝐴 ∈ (sigAlgebraβ€˜βˆͺ 𝐴))
1210, 11syl 17 . . . . . 6 (𝐴 ∈ 𝑉 β†’ 𝒫 βˆͺ 𝐴 ∈ (sigAlgebraβ€˜βˆͺ 𝐴))
13 pwuni 4948 . . . . . 6 𝐴 βŠ† 𝒫 βˆͺ 𝐴
1412, 13jctir 521 . . . . 5 (𝐴 ∈ 𝑉 β†’ (𝒫 βˆͺ 𝐴 ∈ (sigAlgebraβ€˜βˆͺ 𝐴) ∧ 𝐴 βŠ† 𝒫 βˆͺ 𝐴))
15 sseq2 4007 . . . . . 6 (𝑠 = 𝒫 βˆͺ 𝐴 β†’ (𝐴 βŠ† 𝑠 ↔ 𝐴 βŠ† 𝒫 βˆͺ 𝐴))
1615elrab 3682 . . . . 5 (𝒫 βˆͺ 𝐴 ∈ {𝑠 ∈ (sigAlgebraβ€˜βˆͺ 𝐴) ∣ 𝐴 βŠ† 𝑠} ↔ (𝒫 βˆͺ 𝐴 ∈ (sigAlgebraβ€˜βˆͺ 𝐴) ∧ 𝐴 βŠ† 𝒫 βˆͺ 𝐴))
1714, 16sylibr 233 . . . 4 (𝐴 ∈ 𝑉 β†’ 𝒫 βˆͺ 𝐴 ∈ {𝑠 ∈ (sigAlgebraβ€˜βˆͺ 𝐴) ∣ 𝐴 βŠ† 𝑠})
1817ne0d 4334 . . 3 (𝐴 ∈ 𝑉 β†’ {𝑠 ∈ (sigAlgebraβ€˜βˆͺ 𝐴) ∣ 𝐴 βŠ† 𝑠} β‰  βˆ…)
19 intex 5336 . . 3 ({𝑠 ∈ (sigAlgebraβ€˜βˆͺ 𝐴) ∣ 𝐴 βŠ† 𝑠} β‰  βˆ… ↔ ∩ {𝑠 ∈ (sigAlgebraβ€˜βˆͺ 𝐴) ∣ 𝐴 βŠ† 𝑠} ∈ V)
2018, 19sylib 217 . 2 (𝐴 ∈ 𝑉 β†’ ∩ {𝑠 ∈ (sigAlgebraβ€˜βˆͺ 𝐴) ∣ 𝐴 βŠ† 𝑠} ∈ V)
212, 8, 9, 20fvmptd 7002 1 (𝐴 ∈ 𝑉 β†’ (sigaGenβ€˜π΄) = ∩ {𝑠 ∈ (sigAlgebraβ€˜βˆͺ 𝐴) ∣ 𝐴 βŠ† 𝑠})
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 396   = wceq 1541   ∈ wcel 2106   β‰  wne 2940  {crab 3432  Vcvv 3474   βŠ† wss 3947  βˆ…c0 4321  π’« cpw 4601  βˆͺ cuni 4907  βˆ© cint 4949   ↦ cmpt 5230  β€˜cfv 6540  sigAlgebracsiga 33094  sigaGencsigagen 33124
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-int 4950  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-iota 6492  df-fun 6542  df-fv 6548  df-siga 33095  df-sigagen 33125
This theorem is referenced by:  sigagensiga  33127  sssigagen  33131  sigagenss  33135
  Copyright terms: Public domain W3C validator