Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sigagenval Structured version   Visualization version   GIF version

Theorem sigagenval 33076
Description: Value of the generated sigma-algebra. (Contributed by Thierry Arnoux, 27-Dec-2016.)
Assertion
Ref Expression
sigagenval (𝐴𝑉 → (sigaGen‘𝐴) = {𝑠 ∈ (sigAlgebra‘ 𝐴) ∣ 𝐴𝑠})
Distinct variable group:   𝐴,𝑠
Allowed substitution hint:   𝑉(𝑠)

Proof of Theorem sigagenval
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 df-sigagen 33075 . . 3 sigaGen = (𝑥 ∈ V ↦ {𝑠 ∈ (sigAlgebra‘ 𝑥) ∣ 𝑥𝑠})
21a1i 11 . 2 (𝐴𝑉 → sigaGen = (𝑥 ∈ V ↦ {𝑠 ∈ (sigAlgebra‘ 𝑥) ∣ 𝑥𝑠}))
3 unieq 4918 . . . . . 6 (𝑥 = 𝐴 𝑥 = 𝐴)
43fveq2d 6892 . . . . 5 (𝑥 = 𝐴 → (sigAlgebra‘ 𝑥) = (sigAlgebra‘ 𝐴))
5 sseq1 4006 . . . . 5 (𝑥 = 𝐴 → (𝑥𝑠𝐴𝑠))
64, 5rabeqbidv 3450 . . . 4 (𝑥 = 𝐴 → {𝑠 ∈ (sigAlgebra‘ 𝑥) ∣ 𝑥𝑠} = {𝑠 ∈ (sigAlgebra‘ 𝐴) ∣ 𝐴𝑠})
76inteqd 4954 . . 3 (𝑥 = 𝐴 {𝑠 ∈ (sigAlgebra‘ 𝑥) ∣ 𝑥𝑠} = {𝑠 ∈ (sigAlgebra‘ 𝐴) ∣ 𝐴𝑠})
87adantl 483 . 2 ((𝐴𝑉𝑥 = 𝐴) → {𝑠 ∈ (sigAlgebra‘ 𝑥) ∣ 𝑥𝑠} = {𝑠 ∈ (sigAlgebra‘ 𝐴) ∣ 𝐴𝑠})
9 elex 3493 . 2 (𝐴𝑉𝐴 ∈ V)
10 uniexg 7725 . . . . . . 7 (𝐴𝑉 𝐴 ∈ V)
11 pwsiga 33066 . . . . . . 7 ( 𝐴 ∈ V → 𝒫 𝐴 ∈ (sigAlgebra‘ 𝐴))
1210, 11syl 17 . . . . . 6 (𝐴𝑉 → 𝒫 𝐴 ∈ (sigAlgebra‘ 𝐴))
13 pwuni 4948 . . . . . 6 𝐴 ⊆ 𝒫 𝐴
1412, 13jctir 522 . . . . 5 (𝐴𝑉 → (𝒫 𝐴 ∈ (sigAlgebra‘ 𝐴) ∧ 𝐴 ⊆ 𝒫 𝐴))
15 sseq2 4007 . . . . . 6 (𝑠 = 𝒫 𝐴 → (𝐴𝑠𝐴 ⊆ 𝒫 𝐴))
1615elrab 3682 . . . . 5 (𝒫 𝐴 ∈ {𝑠 ∈ (sigAlgebra‘ 𝐴) ∣ 𝐴𝑠} ↔ (𝒫 𝐴 ∈ (sigAlgebra‘ 𝐴) ∧ 𝐴 ⊆ 𝒫 𝐴))
1714, 16sylibr 233 . . . 4 (𝐴𝑉 → 𝒫 𝐴 ∈ {𝑠 ∈ (sigAlgebra‘ 𝐴) ∣ 𝐴𝑠})
1817ne0d 4334 . . 3 (𝐴𝑉 → {𝑠 ∈ (sigAlgebra‘ 𝐴) ∣ 𝐴𝑠} ≠ ∅)
19 intex 5336 . . 3 ({𝑠 ∈ (sigAlgebra‘ 𝐴) ∣ 𝐴𝑠} ≠ ∅ ↔ {𝑠 ∈ (sigAlgebra‘ 𝐴) ∣ 𝐴𝑠} ∈ V)
2018, 19sylib 217 . 2 (𝐴𝑉 {𝑠 ∈ (sigAlgebra‘ 𝐴) ∣ 𝐴𝑠} ∈ V)
212, 8, 9, 20fvmptd 7001 1 (𝐴𝑉 → (sigaGen‘𝐴) = {𝑠 ∈ (sigAlgebra‘ 𝐴) ∣ 𝐴𝑠})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397   = wceq 1542  wcel 2107  wne 2941  {crab 3433  Vcvv 3475  wss 3947  c0 4321  𝒫 cpw 4601   cuni 4907   cint 4949  cmpt 5230  cfv 6540  sigAlgebracsiga 33044  sigaGencsigagen 33074
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7720
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-rab 3434  df-v 3477  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-int 4950  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-iota 6492  df-fun 6542  df-fv 6548  df-siga 33045  df-sigagen 33075
This theorem is referenced by:  sigagensiga  33077  sssigagen  33081  sigagenss  33085
  Copyright terms: Public domain W3C validator