| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > brsiga | Structured version Visualization version GIF version | ||
| Description: The Borel Algebra on real numbers is a Borel sigma-algebra. (Contributed by Thierry Arnoux, 27-Dec-2016.) |
| Ref | Expression |
|---|---|
| brsiga | ⊢ 𝔅ℝ ∈ (sigaGen “ Top) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-brsiga 34155 | . 2 ⊢ 𝔅ℝ = (sigaGen‘(topGen‘ran (,))) | |
| 2 | retop 24647 | . . 3 ⊢ (topGen‘ran (,)) ∈ Top | |
| 3 | df-sigagen 34112 | . . . . 5 ⊢ sigaGen = (𝑥 ∈ V ↦ ∩ {𝑠 ∈ (sigAlgebra‘∪ 𝑥) ∣ 𝑥 ⊆ 𝑠}) | |
| 4 | 3 | funmpt2 6521 | . . . 4 ⊢ Fun sigaGen |
| 5 | fvex 6835 | . . . . . 6 ⊢ (topGen‘ran (,)) ∈ V | |
| 6 | sigagensiga 34114 | . . . . . 6 ⊢ ((topGen‘ran (,)) ∈ V → (sigaGen‘(topGen‘ran (,))) ∈ (sigAlgebra‘∪ (topGen‘ran (,)))) | |
| 7 | elrnsiga 34099 | . . . . . 6 ⊢ ((sigaGen‘(topGen‘ran (,))) ∈ (sigAlgebra‘∪ (topGen‘ran (,))) → (sigaGen‘(topGen‘ran (,))) ∈ ∪ ran sigAlgebra) | |
| 8 | 5, 6, 7 | mp2b 10 | . . . . 5 ⊢ (sigaGen‘(topGen‘ran (,))) ∈ ∪ ran sigAlgebra |
| 9 | 0elsiga 34087 | . . . . 5 ⊢ ((sigaGen‘(topGen‘ran (,))) ∈ ∪ ran sigAlgebra → ∅ ∈ (sigaGen‘(topGen‘ran (,)))) | |
| 10 | elfvdm 6857 | . . . . 5 ⊢ (∅ ∈ (sigaGen‘(topGen‘ran (,))) → (topGen‘ran (,)) ∈ dom sigaGen) | |
| 11 | 8, 9, 10 | mp2b 10 | . . . 4 ⊢ (topGen‘ran (,)) ∈ dom sigaGen |
| 12 | funfvima 7166 | . . . 4 ⊢ ((Fun sigaGen ∧ (topGen‘ran (,)) ∈ dom sigaGen) → ((topGen‘ran (,)) ∈ Top → (sigaGen‘(topGen‘ran (,))) ∈ (sigaGen “ Top))) | |
| 13 | 4, 11, 12 | mp2an 692 | . . 3 ⊢ ((topGen‘ran (,)) ∈ Top → (sigaGen‘(topGen‘ran (,))) ∈ (sigaGen “ Top)) |
| 14 | 2, 13 | ax-mp 5 | . 2 ⊢ (sigaGen‘(topGen‘ran (,))) ∈ (sigaGen “ Top) |
| 15 | 1, 14 | eqeltri 2824 | 1 ⊢ 𝔅ℝ ∈ (sigaGen “ Top) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 {crab 3394 Vcvv 3436 ⊆ wss 3903 ∅c0 4284 ∪ cuni 4858 ∩ cint 4896 dom cdm 5619 ran crn 5620 “ cima 5622 Fun wfun 6476 ‘cfv 6482 (,)cioo 13248 topGenctg 17341 Topctop 22778 sigAlgebracsiga 34081 sigaGencsigagen 34111 𝔅ℝcbrsiga 34154 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-cnex 11065 ax-resscn 11066 ax-pre-lttri 11083 ax-pre-lttrn 11084 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-int 4897 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-id 5514 df-po 5527 df-so 5528 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-ov 7352 df-oprab 7353 df-mpo 7354 df-1st 7924 df-2nd 7925 df-er 8625 df-en 8873 df-dom 8874 df-sdom 8875 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 df-ioo 13252 df-topgen 17347 df-top 22779 df-bases 22831 df-siga 34082 df-sigagen 34112 df-brsiga 34155 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |