Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  brsiga Structured version   Visualization version   GIF version

Theorem brsiga 32130
Description: The Borel Algebra on real numbers is a Borel sigma-algebra. (Contributed by Thierry Arnoux, 27-Dec-2016.)
Assertion
Ref Expression
brsiga 𝔅 ∈ (sigaGen “ Top)

Proof of Theorem brsiga
Dummy variables 𝑥 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-brsiga 32129 . 2 𝔅 = (sigaGen‘(topGen‘ran (,)))
2 retop 23906 . . 3 (topGen‘ran (,)) ∈ Top
3 df-sigagen 32086 . . . . 5 sigaGen = (𝑥 ∈ V ↦ {𝑠 ∈ (sigAlgebra‘ 𝑥) ∣ 𝑥𝑠})
43funmpt2 6469 . . . 4 Fun sigaGen
5 fvex 6781 . . . . . 6 (topGen‘ran (,)) ∈ V
6 sigagensiga 32088 . . . . . 6 ((topGen‘ran (,)) ∈ V → (sigaGen‘(topGen‘ran (,))) ∈ (sigAlgebra‘ (topGen‘ran (,))))
7 elrnsiga 32073 . . . . . 6 ((sigaGen‘(topGen‘ran (,))) ∈ (sigAlgebra‘ (topGen‘ran (,))) → (sigaGen‘(topGen‘ran (,))) ∈ ran sigAlgebra)
85, 6, 7mp2b 10 . . . . 5 (sigaGen‘(topGen‘ran (,))) ∈ ran sigAlgebra
9 0elsiga 32061 . . . . 5 ((sigaGen‘(topGen‘ran (,))) ∈ ran sigAlgebra → ∅ ∈ (sigaGen‘(topGen‘ran (,))))
10 elfvdm 6800 . . . . 5 (∅ ∈ (sigaGen‘(topGen‘ran (,))) → (topGen‘ran (,)) ∈ dom sigaGen)
118, 9, 10mp2b 10 . . . 4 (topGen‘ran (,)) ∈ dom sigaGen
12 funfvima 7100 . . . 4 ((Fun sigaGen ∧ (topGen‘ran (,)) ∈ dom sigaGen) → ((topGen‘ran (,)) ∈ Top → (sigaGen‘(topGen‘ran (,))) ∈ (sigaGen “ Top)))
134, 11, 12mp2an 688 . . 3 ((topGen‘ran (,)) ∈ Top → (sigaGen‘(topGen‘ran (,))) ∈ (sigaGen “ Top))
142, 13ax-mp 5 . 2 (sigaGen‘(topGen‘ran (,))) ∈ (sigaGen “ Top)
151, 14eqeltri 2836 1 𝔅 ∈ (sigaGen “ Top)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2109  {crab 3069  Vcvv 3430  wss 3891  c0 4261   cuni 4844   cint 4884  dom cdm 5588  ran crn 5589  cima 5591  Fun wfun 6424  cfv 6430  (,)cioo 13061  topGenctg 17129  Topctop 22023  sigAlgebracsiga 32055  sigaGencsigagen 32085  𝔅cbrsiga 32128
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-11 2157  ax-12 2174  ax-ext 2710  ax-sep 5226  ax-nul 5233  ax-pow 5291  ax-pr 5355  ax-un 7579  ax-cnex 10911  ax-resscn 10912  ax-pre-lttri 10929  ax-pre-lttrn 10930
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-nf 1790  df-sb 2071  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-nel 3051  df-ral 3070  df-rex 3071  df-rab 3074  df-v 3432  df-sbc 3720  df-csb 3837  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-nul 4262  df-if 4465  df-pw 4540  df-sn 4567  df-pr 4569  df-op 4573  df-uni 4845  df-int 4885  df-iun 4931  df-br 5079  df-opab 5141  df-mpt 5162  df-id 5488  df-po 5502  df-so 5503  df-xp 5594  df-rel 5595  df-cnv 5596  df-co 5597  df-dm 5598  df-rn 5599  df-res 5600  df-ima 5601  df-iota 6388  df-fun 6432  df-fn 6433  df-f 6434  df-f1 6435  df-fo 6436  df-f1o 6437  df-fv 6438  df-ov 7271  df-oprab 7272  df-mpo 7273  df-1st 7817  df-2nd 7818  df-er 8472  df-en 8708  df-dom 8709  df-sdom 8710  df-pnf 10995  df-mnf 10996  df-xr 10997  df-ltxr 10998  df-le 10999  df-ioo 13065  df-topgen 17135  df-top 22024  df-bases 22077  df-siga 32056  df-sigagen 32086  df-brsiga 32129
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator