![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > brsiga | Structured version Visualization version GIF version |
Description: The Borel Algebra on real numbers is a Borel sigma-algebra. (Contributed by Thierry Arnoux, 27-Dec-2016.) |
Ref | Expression |
---|---|
brsiga | ⊢ 𝔅ℝ ∈ (sigaGen “ Top) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-brsiga 33180 | . 2 ⊢ 𝔅ℝ = (sigaGen‘(topGen‘ran (,))) | |
2 | retop 24278 | . . 3 ⊢ (topGen‘ran (,)) ∈ Top | |
3 | df-sigagen 33137 | . . . . 5 ⊢ sigaGen = (𝑥 ∈ V ↦ ∩ {𝑠 ∈ (sigAlgebra‘∪ 𝑥) ∣ 𝑥 ⊆ 𝑠}) | |
4 | 3 | funmpt2 6588 | . . . 4 ⊢ Fun sigaGen |
5 | fvex 6905 | . . . . . 6 ⊢ (topGen‘ran (,)) ∈ V | |
6 | sigagensiga 33139 | . . . . . 6 ⊢ ((topGen‘ran (,)) ∈ V → (sigaGen‘(topGen‘ran (,))) ∈ (sigAlgebra‘∪ (topGen‘ran (,)))) | |
7 | elrnsiga 33124 | . . . . . 6 ⊢ ((sigaGen‘(topGen‘ran (,))) ∈ (sigAlgebra‘∪ (topGen‘ran (,))) → (sigaGen‘(topGen‘ran (,))) ∈ ∪ ran sigAlgebra) | |
8 | 5, 6, 7 | mp2b 10 | . . . . 5 ⊢ (sigaGen‘(topGen‘ran (,))) ∈ ∪ ran sigAlgebra |
9 | 0elsiga 33112 | . . . . 5 ⊢ ((sigaGen‘(topGen‘ran (,))) ∈ ∪ ran sigAlgebra → ∅ ∈ (sigaGen‘(topGen‘ran (,)))) | |
10 | elfvdm 6929 | . . . . 5 ⊢ (∅ ∈ (sigaGen‘(topGen‘ran (,))) → (topGen‘ran (,)) ∈ dom sigaGen) | |
11 | 8, 9, 10 | mp2b 10 | . . . 4 ⊢ (topGen‘ran (,)) ∈ dom sigaGen |
12 | funfvima 7232 | . . . 4 ⊢ ((Fun sigaGen ∧ (topGen‘ran (,)) ∈ dom sigaGen) → ((topGen‘ran (,)) ∈ Top → (sigaGen‘(topGen‘ran (,))) ∈ (sigaGen “ Top))) | |
13 | 4, 11, 12 | mp2an 691 | . . 3 ⊢ ((topGen‘ran (,)) ∈ Top → (sigaGen‘(topGen‘ran (,))) ∈ (sigaGen “ Top)) |
14 | 2, 13 | ax-mp 5 | . 2 ⊢ (sigaGen‘(topGen‘ran (,))) ∈ (sigaGen “ Top) |
15 | 1, 14 | eqeltri 2830 | 1 ⊢ 𝔅ℝ ∈ (sigaGen “ Top) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2107 {crab 3433 Vcvv 3475 ⊆ wss 3949 ∅c0 4323 ∪ cuni 4909 ∩ cint 4951 dom cdm 5677 ran crn 5678 “ cima 5680 Fun wfun 6538 ‘cfv 6544 (,)cioo 13324 topGenctg 17383 Topctop 22395 sigAlgebracsiga 33106 sigaGencsigagen 33136 𝔅ℝcbrsiga 33179 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7725 ax-cnex 11166 ax-resscn 11167 ax-pre-lttri 11184 ax-pre-lttrn 11185 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-int 4952 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5575 df-po 5589 df-so 5590 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-ov 7412 df-oprab 7413 df-mpo 7414 df-1st 7975 df-2nd 7976 df-er 8703 df-en 8940 df-dom 8941 df-sdom 8942 df-pnf 11250 df-mnf 11251 df-xr 11252 df-ltxr 11253 df-le 11254 df-ioo 13328 df-topgen 17389 df-top 22396 df-bases 22449 df-siga 33107 df-sigagen 33137 df-brsiga 33180 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |