Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > brsiga | Structured version Visualization version GIF version |
Description: The Borel Algebra on real numbers is a Borel sigma-algebra. (Contributed by Thierry Arnoux, 27-Dec-2016.) |
Ref | Expression |
---|---|
brsiga | ⊢ 𝔅ℝ ∈ (sigaGen “ Top) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-brsiga 31862 | . 2 ⊢ 𝔅ℝ = (sigaGen‘(topGen‘ran (,))) | |
2 | retop 23659 | . . 3 ⊢ (topGen‘ran (,)) ∈ Top | |
3 | df-sigagen 31819 | . . . . 5 ⊢ sigaGen = (𝑥 ∈ V ↦ ∩ {𝑠 ∈ (sigAlgebra‘∪ 𝑥) ∣ 𝑥 ⊆ 𝑠}) | |
4 | 3 | funmpt2 6419 | . . . 4 ⊢ Fun sigaGen |
5 | fvex 6730 | . . . . . 6 ⊢ (topGen‘ran (,)) ∈ V | |
6 | sigagensiga 31821 | . . . . . 6 ⊢ ((topGen‘ran (,)) ∈ V → (sigaGen‘(topGen‘ran (,))) ∈ (sigAlgebra‘∪ (topGen‘ran (,)))) | |
7 | elrnsiga 31806 | . . . . . 6 ⊢ ((sigaGen‘(topGen‘ran (,))) ∈ (sigAlgebra‘∪ (topGen‘ran (,))) → (sigaGen‘(topGen‘ran (,))) ∈ ∪ ran sigAlgebra) | |
8 | 5, 6, 7 | mp2b 10 | . . . . 5 ⊢ (sigaGen‘(topGen‘ran (,))) ∈ ∪ ran sigAlgebra |
9 | 0elsiga 31794 | . . . . 5 ⊢ ((sigaGen‘(topGen‘ran (,))) ∈ ∪ ran sigAlgebra → ∅ ∈ (sigaGen‘(topGen‘ran (,)))) | |
10 | elfvdm 6749 | . . . . 5 ⊢ (∅ ∈ (sigaGen‘(topGen‘ran (,))) → (topGen‘ran (,)) ∈ dom sigaGen) | |
11 | 8, 9, 10 | mp2b 10 | . . . 4 ⊢ (topGen‘ran (,)) ∈ dom sigaGen |
12 | funfvima 7046 | . . . 4 ⊢ ((Fun sigaGen ∧ (topGen‘ran (,)) ∈ dom sigaGen) → ((topGen‘ran (,)) ∈ Top → (sigaGen‘(topGen‘ran (,))) ∈ (sigaGen “ Top))) | |
13 | 4, 11, 12 | mp2an 692 | . . 3 ⊢ ((topGen‘ran (,)) ∈ Top → (sigaGen‘(topGen‘ran (,))) ∈ (sigaGen “ Top)) |
14 | 2, 13 | ax-mp 5 | . 2 ⊢ (sigaGen‘(topGen‘ran (,))) ∈ (sigaGen “ Top) |
15 | 1, 14 | eqeltri 2834 | 1 ⊢ 𝔅ℝ ∈ (sigaGen “ Top) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2110 {crab 3065 Vcvv 3408 ⊆ wss 3866 ∅c0 4237 ∪ cuni 4819 ∩ cint 4859 dom cdm 5551 ran crn 5552 “ cima 5554 Fun wfun 6374 ‘cfv 6380 (,)cioo 12935 topGenctg 16942 Topctop 21790 sigAlgebracsiga 31788 sigaGencsigagen 31818 𝔅ℝcbrsiga 31861 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-sep 5192 ax-nul 5199 ax-pow 5258 ax-pr 5322 ax-un 7523 ax-cnex 10785 ax-resscn 10786 ax-pre-lttri 10803 ax-pre-lttrn 10804 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3066 df-rex 3067 df-rab 3070 df-v 3410 df-sbc 3695 df-csb 3812 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-nul 4238 df-if 4440 df-pw 4515 df-sn 4542 df-pr 4544 df-op 4548 df-uni 4820 df-int 4860 df-iun 4906 df-br 5054 df-opab 5116 df-mpt 5136 df-id 5455 df-po 5468 df-so 5469 df-xp 5557 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-rn 5562 df-res 5563 df-ima 5564 df-iota 6338 df-fun 6382 df-fn 6383 df-f 6384 df-f1 6385 df-fo 6386 df-f1o 6387 df-fv 6388 df-ov 7216 df-oprab 7217 df-mpo 7218 df-1st 7761 df-2nd 7762 df-er 8391 df-en 8627 df-dom 8628 df-sdom 8629 df-pnf 10869 df-mnf 10870 df-xr 10871 df-ltxr 10872 df-le 10873 df-ioo 12939 df-topgen 16948 df-top 21791 df-bases 21843 df-siga 31789 df-sigagen 31819 df-brsiga 31862 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |