| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > brsiga | Structured version Visualization version GIF version | ||
| Description: The Borel Algebra on real numbers is a Borel sigma-algebra. (Contributed by Thierry Arnoux, 27-Dec-2016.) |
| Ref | Expression |
|---|---|
| brsiga | ⊢ 𝔅ℝ ∈ (sigaGen “ Top) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-brsiga 34218 | . 2 ⊢ 𝔅ℝ = (sigaGen‘(topGen‘ran (,))) | |
| 2 | retop 24705 | . . 3 ⊢ (topGen‘ran (,)) ∈ Top | |
| 3 | df-sigagen 34175 | . . . . 5 ⊢ sigaGen = (𝑥 ∈ V ↦ ∩ {𝑠 ∈ (sigAlgebra‘∪ 𝑥) ∣ 𝑥 ⊆ 𝑠}) | |
| 4 | 3 | funmpt2 6580 | . . . 4 ⊢ Fun sigaGen |
| 5 | fvex 6894 | . . . . . 6 ⊢ (topGen‘ran (,)) ∈ V | |
| 6 | sigagensiga 34177 | . . . . . 6 ⊢ ((topGen‘ran (,)) ∈ V → (sigaGen‘(topGen‘ran (,))) ∈ (sigAlgebra‘∪ (topGen‘ran (,)))) | |
| 7 | elrnsiga 34162 | . . . . . 6 ⊢ ((sigaGen‘(topGen‘ran (,))) ∈ (sigAlgebra‘∪ (topGen‘ran (,))) → (sigaGen‘(topGen‘ran (,))) ∈ ∪ ran sigAlgebra) | |
| 8 | 5, 6, 7 | mp2b 10 | . . . . 5 ⊢ (sigaGen‘(topGen‘ran (,))) ∈ ∪ ran sigAlgebra |
| 9 | 0elsiga 34150 | . . . . 5 ⊢ ((sigaGen‘(topGen‘ran (,))) ∈ ∪ ran sigAlgebra → ∅ ∈ (sigaGen‘(topGen‘ran (,)))) | |
| 10 | elfvdm 6918 | . . . . 5 ⊢ (∅ ∈ (sigaGen‘(topGen‘ran (,))) → (topGen‘ran (,)) ∈ dom sigaGen) | |
| 11 | 8, 9, 10 | mp2b 10 | . . . 4 ⊢ (topGen‘ran (,)) ∈ dom sigaGen |
| 12 | funfvima 7227 | . . . 4 ⊢ ((Fun sigaGen ∧ (topGen‘ran (,)) ∈ dom sigaGen) → ((topGen‘ran (,)) ∈ Top → (sigaGen‘(topGen‘ran (,))) ∈ (sigaGen “ Top))) | |
| 13 | 4, 11, 12 | mp2an 692 | . . 3 ⊢ ((topGen‘ran (,)) ∈ Top → (sigaGen‘(topGen‘ran (,))) ∈ (sigaGen “ Top)) |
| 14 | 2, 13 | ax-mp 5 | . 2 ⊢ (sigaGen‘(topGen‘ran (,))) ∈ (sigaGen “ Top) |
| 15 | 1, 14 | eqeltri 2831 | 1 ⊢ 𝔅ℝ ∈ (sigaGen “ Top) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 {crab 3420 Vcvv 3464 ⊆ wss 3931 ∅c0 4313 ∪ cuni 4888 ∩ cint 4927 dom cdm 5659 ran crn 5660 “ cima 5662 Fun wfun 6530 ‘cfv 6536 (,)cioo 13367 topGenctg 17456 Topctop 22836 sigAlgebracsiga 34144 sigaGencsigagen 34174 𝔅ℝcbrsiga 34217 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-cnex 11190 ax-resscn 11191 ax-pre-lttri 11208 ax-pre-lttrn 11209 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-int 4928 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-id 5553 df-po 5566 df-so 5567 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-ov 7413 df-oprab 7414 df-mpo 7415 df-1st 7993 df-2nd 7994 df-er 8724 df-en 8965 df-dom 8966 df-sdom 8967 df-pnf 11276 df-mnf 11277 df-xr 11278 df-ltxr 11279 df-le 11280 df-ioo 13371 df-topgen 17462 df-top 22837 df-bases 22889 df-siga 34145 df-sigagen 34175 df-brsiga 34218 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |