Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  brsiga Structured version   Visualization version   GIF version

Theorem brsiga 34185
Description: The Borel Algebra on real numbers is a Borel sigma-algebra. (Contributed by Thierry Arnoux, 27-Dec-2016.)
Assertion
Ref Expression
brsiga 𝔅 ∈ (sigaGen “ Top)

Proof of Theorem brsiga
Dummy variables 𝑥 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-brsiga 34184 . 2 𝔅 = (sigaGen‘(topGen‘ran (,)))
2 retop 24783 . . 3 (topGen‘ran (,)) ∈ Top
3 df-sigagen 34141 . . . . 5 sigaGen = (𝑥 ∈ V ↦ {𝑠 ∈ (sigAlgebra‘ 𝑥) ∣ 𝑥𝑠})
43funmpt2 6604 . . . 4 Fun sigaGen
5 fvex 6918 . . . . . 6 (topGen‘ran (,)) ∈ V
6 sigagensiga 34143 . . . . . 6 ((topGen‘ran (,)) ∈ V → (sigaGen‘(topGen‘ran (,))) ∈ (sigAlgebra‘ (topGen‘ran (,))))
7 elrnsiga 34128 . . . . . 6 ((sigaGen‘(topGen‘ran (,))) ∈ (sigAlgebra‘ (topGen‘ran (,))) → (sigaGen‘(topGen‘ran (,))) ∈ ran sigAlgebra)
85, 6, 7mp2b 10 . . . . 5 (sigaGen‘(topGen‘ran (,))) ∈ ran sigAlgebra
9 0elsiga 34116 . . . . 5 ((sigaGen‘(topGen‘ran (,))) ∈ ran sigAlgebra → ∅ ∈ (sigaGen‘(topGen‘ran (,))))
10 elfvdm 6942 . . . . 5 (∅ ∈ (sigaGen‘(topGen‘ran (,))) → (topGen‘ran (,)) ∈ dom sigaGen)
118, 9, 10mp2b 10 . . . 4 (topGen‘ran (,)) ∈ dom sigaGen
12 funfvima 7251 . . . 4 ((Fun sigaGen ∧ (topGen‘ran (,)) ∈ dom sigaGen) → ((topGen‘ran (,)) ∈ Top → (sigaGen‘(topGen‘ran (,))) ∈ (sigaGen “ Top)))
134, 11, 12mp2an 692 . . 3 ((topGen‘ran (,)) ∈ Top → (sigaGen‘(topGen‘ran (,))) ∈ (sigaGen “ Top))
142, 13ax-mp 5 . 2 (sigaGen‘(topGen‘ran (,))) ∈ (sigaGen “ Top)
151, 14eqeltri 2836 1 𝔅 ∈ (sigaGen “ Top)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2107  {crab 3435  Vcvv 3479  wss 3950  c0 4332   cuni 4906   cint 4945  dom cdm 5684  ran crn 5685  cima 5687  Fun wfun 6554  cfv 6560  (,)cioo 13388  topGenctg 17483  Topctop 22900  sigAlgebracsiga 34110  sigaGencsigagen 34140  𝔅cbrsiga 34183
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756  ax-cnex 11212  ax-resscn 11213  ax-pre-lttri 11230  ax-pre-lttrn 11231
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-int 4946  df-iun 4992  df-br 5143  df-opab 5205  df-mpt 5225  df-id 5577  df-po 5591  df-so 5592  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-ov 7435  df-oprab 7436  df-mpo 7437  df-1st 8015  df-2nd 8016  df-er 8746  df-en 8987  df-dom 8988  df-sdom 8989  df-pnf 11298  df-mnf 11299  df-xr 11300  df-ltxr 11301  df-le 11302  df-ioo 13392  df-topgen 17489  df-top 22901  df-bases 22954  df-siga 34111  df-sigagen 34141  df-brsiga 34184
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator