![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > brsiga | Structured version Visualization version GIF version |
Description: The Borel Algebra on real numbers is a Borel sigma-algebra. (Contributed by Thierry Arnoux, 27-Dec-2016.) |
Ref | Expression |
---|---|
brsiga | ⊢ 𝔅ℝ ∈ (sigaGen “ Top) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-brsiga 31086 | . 2 ⊢ 𝔅ℝ = (sigaGen‘(topGen‘ran (,))) | |
2 | retop 23076 | . . 3 ⊢ (topGen‘ran (,)) ∈ Top | |
3 | df-sigagen 31043 | . . . . 5 ⊢ sigaGen = (𝑥 ∈ V ↦ ∩ {𝑠 ∈ (sigAlgebra‘∪ 𝑥) ∣ 𝑥 ⊆ 𝑠}) | |
4 | 3 | funmpt2 6229 | . . . 4 ⊢ Fun sigaGen |
5 | fvex 6514 | . . . . . 6 ⊢ (topGen‘ran (,)) ∈ V | |
6 | sigagensiga 31045 | . . . . . 6 ⊢ ((topGen‘ran (,)) ∈ V → (sigaGen‘(topGen‘ran (,))) ∈ (sigAlgebra‘∪ (topGen‘ran (,)))) | |
7 | elrnsiga 31030 | . . . . . 6 ⊢ ((sigaGen‘(topGen‘ran (,))) ∈ (sigAlgebra‘∪ (topGen‘ran (,))) → (sigaGen‘(topGen‘ran (,))) ∈ ∪ ran sigAlgebra) | |
8 | 5, 6, 7 | mp2b 10 | . . . . 5 ⊢ (sigaGen‘(topGen‘ran (,))) ∈ ∪ ran sigAlgebra |
9 | 0elsiga 31018 | . . . . 5 ⊢ ((sigaGen‘(topGen‘ran (,))) ∈ ∪ ran sigAlgebra → ∅ ∈ (sigaGen‘(topGen‘ran (,)))) | |
10 | elfvdm 6533 | . . . . 5 ⊢ (∅ ∈ (sigaGen‘(topGen‘ran (,))) → (topGen‘ran (,)) ∈ dom sigaGen) | |
11 | 8, 9, 10 | mp2b 10 | . . . 4 ⊢ (topGen‘ran (,)) ∈ dom sigaGen |
12 | funfvima 6820 | . . . 4 ⊢ ((Fun sigaGen ∧ (topGen‘ran (,)) ∈ dom sigaGen) → ((topGen‘ran (,)) ∈ Top → (sigaGen‘(topGen‘ran (,))) ∈ (sigaGen “ Top))) | |
13 | 4, 11, 12 | mp2an 679 | . . 3 ⊢ ((topGen‘ran (,)) ∈ Top → (sigaGen‘(topGen‘ran (,))) ∈ (sigaGen “ Top)) |
14 | 2, 13 | ax-mp 5 | . 2 ⊢ (sigaGen‘(topGen‘ran (,))) ∈ (sigaGen “ Top) |
15 | 1, 14 | eqeltri 2862 | 1 ⊢ 𝔅ℝ ∈ (sigaGen “ Top) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2050 {crab 3092 Vcvv 3415 ⊆ wss 3831 ∅c0 4180 ∪ cuni 4713 ∩ cint 4750 dom cdm 5408 ran crn 5409 “ cima 5411 Fun wfun 6184 ‘cfv 6190 (,)cioo 12557 topGenctg 16570 Topctop 21208 sigAlgebracsiga 31011 sigaGencsigagen 31042 𝔅ℝcbrsiga 31085 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1965 ax-8 2052 ax-9 2059 ax-10 2079 ax-11 2093 ax-12 2106 ax-13 2301 ax-ext 2750 ax-sep 5061 ax-nul 5068 ax-pow 5120 ax-pr 5187 ax-un 7281 ax-cnex 10393 ax-resscn 10394 ax-pre-lttri 10411 ax-pre-lttrn 10412 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-3or 1069 df-3an 1070 df-tru 1510 df-fal 1520 df-ex 1743 df-nf 1747 df-sb 2016 df-mo 2547 df-eu 2583 df-clab 2759 df-cleq 2771 df-clel 2846 df-nfc 2918 df-ne 2968 df-nel 3074 df-ral 3093 df-rex 3094 df-rab 3097 df-v 3417 df-sbc 3684 df-csb 3789 df-dif 3834 df-un 3836 df-in 3838 df-ss 3845 df-nul 4181 df-if 4352 df-pw 4425 df-sn 4443 df-pr 4445 df-op 4449 df-uni 4714 df-int 4751 df-iun 4795 df-br 4931 df-opab 4993 df-mpt 5010 df-id 5313 df-po 5327 df-so 5328 df-xp 5414 df-rel 5415 df-cnv 5416 df-co 5417 df-dm 5418 df-rn 5419 df-res 5420 df-ima 5421 df-iota 6154 df-fun 6192 df-fn 6193 df-f 6194 df-f1 6195 df-fo 6196 df-f1o 6197 df-fv 6198 df-ov 6981 df-oprab 6982 df-mpo 6983 df-1st 7503 df-2nd 7504 df-er 8091 df-en 8309 df-dom 8310 df-sdom 8311 df-pnf 10478 df-mnf 10479 df-xr 10480 df-ltxr 10481 df-le 10482 df-ioo 12561 df-topgen 16576 df-top 21209 df-bases 21261 df-siga 31012 df-sigagen 31043 df-brsiga 31086 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |