Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > dmsigagen | Structured version Visualization version GIF version |
Description: A sigma-algebra can be generated from any set. (Contributed by Thierry Arnoux, 21-Jan-2017.) |
Ref | Expression |
---|---|
dmsigagen | ⊢ dom sigaGen = V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vuniex 7570 | . . . . . 6 ⊢ ∪ 𝑗 ∈ V | |
2 | pwsiga 31998 | . . . . . 6 ⊢ (∪ 𝑗 ∈ V → 𝒫 ∪ 𝑗 ∈ (sigAlgebra‘∪ 𝑗)) | |
3 | 1, 2 | ax-mp 5 | . . . . 5 ⊢ 𝒫 ∪ 𝑗 ∈ (sigAlgebra‘∪ 𝑗) |
4 | pwuni 4875 | . . . . 5 ⊢ 𝑗 ⊆ 𝒫 ∪ 𝑗 | |
5 | sseq2 3943 | . . . . . 6 ⊢ (𝑠 = 𝒫 ∪ 𝑗 → (𝑗 ⊆ 𝑠 ↔ 𝑗 ⊆ 𝒫 ∪ 𝑗)) | |
6 | 5 | rspcev 3552 | . . . . 5 ⊢ ((𝒫 ∪ 𝑗 ∈ (sigAlgebra‘∪ 𝑗) ∧ 𝑗 ⊆ 𝒫 ∪ 𝑗) → ∃𝑠 ∈ (sigAlgebra‘∪ 𝑗)𝑗 ⊆ 𝑠) |
7 | 3, 4, 6 | mp2an 688 | . . . 4 ⊢ ∃𝑠 ∈ (sigAlgebra‘∪ 𝑗)𝑗 ⊆ 𝑠 |
8 | rabn0 4316 | . . . 4 ⊢ ({𝑠 ∈ (sigAlgebra‘∪ 𝑗) ∣ 𝑗 ⊆ 𝑠} ≠ ∅ ↔ ∃𝑠 ∈ (sigAlgebra‘∪ 𝑗)𝑗 ⊆ 𝑠) | |
9 | 7, 8 | mpbir 230 | . . 3 ⊢ {𝑠 ∈ (sigAlgebra‘∪ 𝑗) ∣ 𝑗 ⊆ 𝑠} ≠ ∅ |
10 | intex 5256 | . . 3 ⊢ ({𝑠 ∈ (sigAlgebra‘∪ 𝑗) ∣ 𝑗 ⊆ 𝑠} ≠ ∅ ↔ ∩ {𝑠 ∈ (sigAlgebra‘∪ 𝑗) ∣ 𝑗 ⊆ 𝑠} ∈ V) | |
11 | 9, 10 | mpbi 229 | . 2 ⊢ ∩ {𝑠 ∈ (sigAlgebra‘∪ 𝑗) ∣ 𝑗 ⊆ 𝑠} ∈ V |
12 | df-sigagen 32007 | . 2 ⊢ sigaGen = (𝑗 ∈ V ↦ ∩ {𝑠 ∈ (sigAlgebra‘∪ 𝑗) ∣ 𝑗 ⊆ 𝑠}) | |
13 | 11, 12 | dmmpti 6561 | 1 ⊢ dom sigaGen = V |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∈ wcel 2108 ≠ wne 2942 ∃wrex 3064 {crab 3067 Vcvv 3422 ⊆ wss 3883 ∅c0 4253 𝒫 cpw 4530 ∪ cuni 4836 ∩ cint 4876 dom cdm 5580 ‘cfv 6418 sigAlgebracsiga 31976 sigaGencsigagen 32006 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-int 4877 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-iota 6376 df-fun 6420 df-fn 6421 df-fv 6426 df-siga 31977 df-sigagen 32007 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |