Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dmsigagen Structured version   Visualization version   GIF version

Theorem dmsigagen 34141
Description: A sigma-algebra can be generated from any set. (Contributed by Thierry Arnoux, 21-Jan-2017.)
Assertion
Ref Expression
dmsigagen dom sigaGen = V

Proof of Theorem dmsigagen
Dummy variables 𝑗 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vuniex 7718 . . . . . 6 𝑗 ∈ V
2 pwsiga 34127 . . . . . 6 ( 𝑗 ∈ V → 𝒫 𝑗 ∈ (sigAlgebra‘ 𝑗))
31, 2ax-mp 5 . . . . 5 𝒫 𝑗 ∈ (sigAlgebra‘ 𝑗)
4 pwuni 4912 . . . . 5 𝑗 ⊆ 𝒫 𝑗
5 sseq2 3976 . . . . . 6 (𝑠 = 𝒫 𝑗 → (𝑗𝑠𝑗 ⊆ 𝒫 𝑗))
65rspcev 3591 . . . . 5 ((𝒫 𝑗 ∈ (sigAlgebra‘ 𝑗) ∧ 𝑗 ⊆ 𝒫 𝑗) → ∃𝑠 ∈ (sigAlgebra‘ 𝑗)𝑗𝑠)
73, 4, 6mp2an 692 . . . 4 𝑠 ∈ (sigAlgebra‘ 𝑗)𝑗𝑠
8 rabn0 4355 . . . 4 ({𝑠 ∈ (sigAlgebra‘ 𝑗) ∣ 𝑗𝑠} ≠ ∅ ↔ ∃𝑠 ∈ (sigAlgebra‘ 𝑗)𝑗𝑠)
97, 8mpbir 231 . . 3 {𝑠 ∈ (sigAlgebra‘ 𝑗) ∣ 𝑗𝑠} ≠ ∅
10 intex 5302 . . 3 ({𝑠 ∈ (sigAlgebra‘ 𝑗) ∣ 𝑗𝑠} ≠ ∅ ↔ {𝑠 ∈ (sigAlgebra‘ 𝑗) ∣ 𝑗𝑠} ∈ V)
119, 10mpbi 230 . 2 {𝑠 ∈ (sigAlgebra‘ 𝑗) ∣ 𝑗𝑠} ∈ V
12 df-sigagen 34136 . 2 sigaGen = (𝑗 ∈ V ↦ {𝑠 ∈ (sigAlgebra‘ 𝑗) ∣ 𝑗𝑠})
1311, 12dmmpti 6665 1 dom sigaGen = V
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  wcel 2109  wne 2926  wrex 3054  {crab 3408  Vcvv 3450  wss 3917  c0 4299  𝒫 cpw 4566   cuni 4874   cint 4913  dom cdm 5641  cfv 6514  sigAlgebracsiga 34105  sigaGencsigagen 34135
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-iota 6467  df-fun 6516  df-fn 6517  df-fv 6522  df-siga 34106  df-sigagen 34136
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator