Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dmsigagen Structured version   Visualization version   GIF version

Theorem dmsigagen 32112
Description: A sigma-algebra can be generated from any set. (Contributed by Thierry Arnoux, 21-Jan-2017.)
Assertion
Ref Expression
dmsigagen dom sigaGen = V

Proof of Theorem dmsigagen
Dummy variables 𝑗 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vuniex 7592 . . . . . 6 𝑗 ∈ V
2 pwsiga 32098 . . . . . 6 ( 𝑗 ∈ V → 𝒫 𝑗 ∈ (sigAlgebra‘ 𝑗))
31, 2ax-mp 5 . . . . 5 𝒫 𝑗 ∈ (sigAlgebra‘ 𝑗)
4 pwuni 4878 . . . . 5 𝑗 ⊆ 𝒫 𝑗
5 sseq2 3947 . . . . . 6 (𝑠 = 𝒫 𝑗 → (𝑗𝑠𝑗 ⊆ 𝒫 𝑗))
65rspcev 3561 . . . . 5 ((𝒫 𝑗 ∈ (sigAlgebra‘ 𝑗) ∧ 𝑗 ⊆ 𝒫 𝑗) → ∃𝑠 ∈ (sigAlgebra‘ 𝑗)𝑗𝑠)
73, 4, 6mp2an 689 . . . 4 𝑠 ∈ (sigAlgebra‘ 𝑗)𝑗𝑠
8 rabn0 4319 . . . 4 ({𝑠 ∈ (sigAlgebra‘ 𝑗) ∣ 𝑗𝑠} ≠ ∅ ↔ ∃𝑠 ∈ (sigAlgebra‘ 𝑗)𝑗𝑠)
97, 8mpbir 230 . . 3 {𝑠 ∈ (sigAlgebra‘ 𝑗) ∣ 𝑗𝑠} ≠ ∅
10 intex 5261 . . 3 ({𝑠 ∈ (sigAlgebra‘ 𝑗) ∣ 𝑗𝑠} ≠ ∅ ↔ {𝑠 ∈ (sigAlgebra‘ 𝑗) ∣ 𝑗𝑠} ∈ V)
119, 10mpbi 229 . 2 {𝑠 ∈ (sigAlgebra‘ 𝑗) ∣ 𝑗𝑠} ∈ V
12 df-sigagen 32107 . 2 sigaGen = (𝑗 ∈ V ↦ {𝑠 ∈ (sigAlgebra‘ 𝑗) ∣ 𝑗𝑠})
1311, 12dmmpti 6577 1 dom sigaGen = V
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  wcel 2106  wne 2943  wrex 3065  {crab 3068  Vcvv 3432  wss 3887  c0 4256  𝒫 cpw 4533   cuni 4839   cint 4879  dom cdm 5589  cfv 6433  sigAlgebracsiga 32076  sigaGencsigagen 32106
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-iota 6391  df-fun 6435  df-fn 6436  df-fv 6441  df-siga 32077  df-sigagen 32107
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator