| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dmsigagen | Structured version Visualization version GIF version | ||
| Description: A sigma-algebra can be generated from any set. (Contributed by Thierry Arnoux, 21-Jan-2017.) |
| Ref | Expression |
|---|---|
| dmsigagen | ⊢ dom sigaGen = V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vuniex 7738 | . . . . . 6 ⊢ ∪ 𝑗 ∈ V | |
| 2 | pwsiga 34166 | . . . . . 6 ⊢ (∪ 𝑗 ∈ V → 𝒫 ∪ 𝑗 ∈ (sigAlgebra‘∪ 𝑗)) | |
| 3 | 1, 2 | ax-mp 5 | . . . . 5 ⊢ 𝒫 ∪ 𝑗 ∈ (sigAlgebra‘∪ 𝑗) |
| 4 | pwuni 4926 | . . . . 5 ⊢ 𝑗 ⊆ 𝒫 ∪ 𝑗 | |
| 5 | sseq2 3990 | . . . . . 6 ⊢ (𝑠 = 𝒫 ∪ 𝑗 → (𝑗 ⊆ 𝑠 ↔ 𝑗 ⊆ 𝒫 ∪ 𝑗)) | |
| 6 | 5 | rspcev 3606 | . . . . 5 ⊢ ((𝒫 ∪ 𝑗 ∈ (sigAlgebra‘∪ 𝑗) ∧ 𝑗 ⊆ 𝒫 ∪ 𝑗) → ∃𝑠 ∈ (sigAlgebra‘∪ 𝑗)𝑗 ⊆ 𝑠) |
| 7 | 3, 4, 6 | mp2an 692 | . . . 4 ⊢ ∃𝑠 ∈ (sigAlgebra‘∪ 𝑗)𝑗 ⊆ 𝑠 |
| 8 | rabn0 4369 | . . . 4 ⊢ ({𝑠 ∈ (sigAlgebra‘∪ 𝑗) ∣ 𝑗 ⊆ 𝑠} ≠ ∅ ↔ ∃𝑠 ∈ (sigAlgebra‘∪ 𝑗)𝑗 ⊆ 𝑠) | |
| 9 | 7, 8 | mpbir 231 | . . 3 ⊢ {𝑠 ∈ (sigAlgebra‘∪ 𝑗) ∣ 𝑗 ⊆ 𝑠} ≠ ∅ |
| 10 | intex 5319 | . . 3 ⊢ ({𝑠 ∈ (sigAlgebra‘∪ 𝑗) ∣ 𝑗 ⊆ 𝑠} ≠ ∅ ↔ ∩ {𝑠 ∈ (sigAlgebra‘∪ 𝑗) ∣ 𝑗 ⊆ 𝑠} ∈ V) | |
| 11 | 9, 10 | mpbi 230 | . 2 ⊢ ∩ {𝑠 ∈ (sigAlgebra‘∪ 𝑗) ∣ 𝑗 ⊆ 𝑠} ∈ V |
| 12 | df-sigagen 34175 | . 2 ⊢ sigaGen = (𝑗 ∈ V ↦ ∩ {𝑠 ∈ (sigAlgebra‘∪ 𝑗) ∣ 𝑗 ⊆ 𝑠}) | |
| 13 | 11, 12 | dmmpti 6687 | 1 ⊢ dom sigaGen = V |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 ≠ wne 2933 ∃wrex 3061 {crab 3420 Vcvv 3464 ⊆ wss 3931 ∅c0 4313 𝒫 cpw 4580 ∪ cuni 4888 ∩ cint 4927 dom cdm 5659 ‘cfv 6536 sigAlgebracsiga 34144 sigaGencsigagen 34174 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-int 4928 df-br 5125 df-opab 5187 df-mpt 5207 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-iota 6489 df-fun 6538 df-fn 6539 df-fv 6544 df-siga 34145 df-sigagen 34175 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |