Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dmsigagen Structured version   Visualization version   GIF version

Theorem dmsigagen 34157
Description: A sigma-algebra can be generated from any set. (Contributed by Thierry Arnoux, 21-Jan-2017.)
Assertion
Ref Expression
dmsigagen dom sigaGen = V

Proof of Theorem dmsigagen
Dummy variables 𝑗 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vuniex 7672 . . . . . 6 𝑗 ∈ V
2 pwsiga 34143 . . . . . 6 ( 𝑗 ∈ V → 𝒫 𝑗 ∈ (sigAlgebra‘ 𝑗))
31, 2ax-mp 5 . . . . 5 𝒫 𝑗 ∈ (sigAlgebra‘ 𝑗)
4 pwuni 4894 . . . . 5 𝑗 ⊆ 𝒫 𝑗
5 sseq2 3956 . . . . . 6 (𝑠 = 𝒫 𝑗 → (𝑗𝑠𝑗 ⊆ 𝒫 𝑗))
65rspcev 3572 . . . . 5 ((𝒫 𝑗 ∈ (sigAlgebra‘ 𝑗) ∧ 𝑗 ⊆ 𝒫 𝑗) → ∃𝑠 ∈ (sigAlgebra‘ 𝑗)𝑗𝑠)
73, 4, 6mp2an 692 . . . 4 𝑠 ∈ (sigAlgebra‘ 𝑗)𝑗𝑠
8 rabn0 4336 . . . 4 ({𝑠 ∈ (sigAlgebra‘ 𝑗) ∣ 𝑗𝑠} ≠ ∅ ↔ ∃𝑠 ∈ (sigAlgebra‘ 𝑗)𝑗𝑠)
97, 8mpbir 231 . . 3 {𝑠 ∈ (sigAlgebra‘ 𝑗) ∣ 𝑗𝑠} ≠ ∅
10 intex 5280 . . 3 ({𝑠 ∈ (sigAlgebra‘ 𝑗) ∣ 𝑗𝑠} ≠ ∅ ↔ {𝑠 ∈ (sigAlgebra‘ 𝑗) ∣ 𝑗𝑠} ∈ V)
119, 10mpbi 230 . 2 {𝑠 ∈ (sigAlgebra‘ 𝑗) ∣ 𝑗𝑠} ∈ V
12 df-sigagen 34152 . 2 sigaGen = (𝑗 ∈ V ↦ {𝑠 ∈ (sigAlgebra‘ 𝑗) ∣ 𝑗𝑠})
1311, 12dmmpti 6625 1 dom sigaGen = V
Colors of variables: wff setvar class
Syntax hints:   = wceq 1541  wcel 2111  wne 2928  wrex 3056  {crab 3395  Vcvv 3436  wss 3897  c0 4280  𝒫 cpw 4547   cuni 4856   cint 4895  dom cdm 5614  cfv 6481  sigAlgebracsiga 34121  sigaGencsigagen 34151
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-int 4896  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-iota 6437  df-fun 6483  df-fn 6484  df-fv 6489  df-siga 34122  df-sigagen 34152
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator