Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > dmsigagen | Structured version Visualization version GIF version |
Description: A sigma-algebra can be generated from any set. (Contributed by Thierry Arnoux, 21-Jan-2017.) |
Ref | Expression |
---|---|
dmsigagen | ⊢ dom sigaGen = V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vuniex 7592 | . . . . . 6 ⊢ ∪ 𝑗 ∈ V | |
2 | pwsiga 32098 | . . . . . 6 ⊢ (∪ 𝑗 ∈ V → 𝒫 ∪ 𝑗 ∈ (sigAlgebra‘∪ 𝑗)) | |
3 | 1, 2 | ax-mp 5 | . . . . 5 ⊢ 𝒫 ∪ 𝑗 ∈ (sigAlgebra‘∪ 𝑗) |
4 | pwuni 4878 | . . . . 5 ⊢ 𝑗 ⊆ 𝒫 ∪ 𝑗 | |
5 | sseq2 3947 | . . . . . 6 ⊢ (𝑠 = 𝒫 ∪ 𝑗 → (𝑗 ⊆ 𝑠 ↔ 𝑗 ⊆ 𝒫 ∪ 𝑗)) | |
6 | 5 | rspcev 3561 | . . . . 5 ⊢ ((𝒫 ∪ 𝑗 ∈ (sigAlgebra‘∪ 𝑗) ∧ 𝑗 ⊆ 𝒫 ∪ 𝑗) → ∃𝑠 ∈ (sigAlgebra‘∪ 𝑗)𝑗 ⊆ 𝑠) |
7 | 3, 4, 6 | mp2an 689 | . . . 4 ⊢ ∃𝑠 ∈ (sigAlgebra‘∪ 𝑗)𝑗 ⊆ 𝑠 |
8 | rabn0 4319 | . . . 4 ⊢ ({𝑠 ∈ (sigAlgebra‘∪ 𝑗) ∣ 𝑗 ⊆ 𝑠} ≠ ∅ ↔ ∃𝑠 ∈ (sigAlgebra‘∪ 𝑗)𝑗 ⊆ 𝑠) | |
9 | 7, 8 | mpbir 230 | . . 3 ⊢ {𝑠 ∈ (sigAlgebra‘∪ 𝑗) ∣ 𝑗 ⊆ 𝑠} ≠ ∅ |
10 | intex 5261 | . . 3 ⊢ ({𝑠 ∈ (sigAlgebra‘∪ 𝑗) ∣ 𝑗 ⊆ 𝑠} ≠ ∅ ↔ ∩ {𝑠 ∈ (sigAlgebra‘∪ 𝑗) ∣ 𝑗 ⊆ 𝑠} ∈ V) | |
11 | 9, 10 | mpbi 229 | . 2 ⊢ ∩ {𝑠 ∈ (sigAlgebra‘∪ 𝑗) ∣ 𝑗 ⊆ 𝑠} ∈ V |
12 | df-sigagen 32107 | . 2 ⊢ sigaGen = (𝑗 ∈ V ↦ ∩ {𝑠 ∈ (sigAlgebra‘∪ 𝑗) ∣ 𝑗 ⊆ 𝑠}) | |
13 | 11, 12 | dmmpti 6577 | 1 ⊢ dom sigaGen = V |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∈ wcel 2106 ≠ wne 2943 ∃wrex 3065 {crab 3068 Vcvv 3432 ⊆ wss 3887 ∅c0 4256 𝒫 cpw 4533 ∪ cuni 4839 ∩ cint 4879 dom cdm 5589 ‘cfv 6433 sigAlgebracsiga 32076 sigaGencsigagen 32106 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-int 4880 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-iota 6391 df-fun 6435 df-fn 6436 df-fv 6441 df-siga 32077 df-sigagen 32107 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |