| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dmsigagen | Structured version Visualization version GIF version | ||
| Description: A sigma-algebra can be generated from any set. (Contributed by Thierry Arnoux, 21-Jan-2017.) |
| Ref | Expression |
|---|---|
| dmsigagen | ⊢ dom sigaGen = V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vuniex 7718 | . . . . . 6 ⊢ ∪ 𝑗 ∈ V | |
| 2 | pwsiga 34127 | . . . . . 6 ⊢ (∪ 𝑗 ∈ V → 𝒫 ∪ 𝑗 ∈ (sigAlgebra‘∪ 𝑗)) | |
| 3 | 1, 2 | ax-mp 5 | . . . . 5 ⊢ 𝒫 ∪ 𝑗 ∈ (sigAlgebra‘∪ 𝑗) |
| 4 | pwuni 4912 | . . . . 5 ⊢ 𝑗 ⊆ 𝒫 ∪ 𝑗 | |
| 5 | sseq2 3976 | . . . . . 6 ⊢ (𝑠 = 𝒫 ∪ 𝑗 → (𝑗 ⊆ 𝑠 ↔ 𝑗 ⊆ 𝒫 ∪ 𝑗)) | |
| 6 | 5 | rspcev 3591 | . . . . 5 ⊢ ((𝒫 ∪ 𝑗 ∈ (sigAlgebra‘∪ 𝑗) ∧ 𝑗 ⊆ 𝒫 ∪ 𝑗) → ∃𝑠 ∈ (sigAlgebra‘∪ 𝑗)𝑗 ⊆ 𝑠) |
| 7 | 3, 4, 6 | mp2an 692 | . . . 4 ⊢ ∃𝑠 ∈ (sigAlgebra‘∪ 𝑗)𝑗 ⊆ 𝑠 |
| 8 | rabn0 4355 | . . . 4 ⊢ ({𝑠 ∈ (sigAlgebra‘∪ 𝑗) ∣ 𝑗 ⊆ 𝑠} ≠ ∅ ↔ ∃𝑠 ∈ (sigAlgebra‘∪ 𝑗)𝑗 ⊆ 𝑠) | |
| 9 | 7, 8 | mpbir 231 | . . 3 ⊢ {𝑠 ∈ (sigAlgebra‘∪ 𝑗) ∣ 𝑗 ⊆ 𝑠} ≠ ∅ |
| 10 | intex 5302 | . . 3 ⊢ ({𝑠 ∈ (sigAlgebra‘∪ 𝑗) ∣ 𝑗 ⊆ 𝑠} ≠ ∅ ↔ ∩ {𝑠 ∈ (sigAlgebra‘∪ 𝑗) ∣ 𝑗 ⊆ 𝑠} ∈ V) | |
| 11 | 9, 10 | mpbi 230 | . 2 ⊢ ∩ {𝑠 ∈ (sigAlgebra‘∪ 𝑗) ∣ 𝑗 ⊆ 𝑠} ∈ V |
| 12 | df-sigagen 34136 | . 2 ⊢ sigaGen = (𝑗 ∈ V ↦ ∩ {𝑠 ∈ (sigAlgebra‘∪ 𝑗) ∣ 𝑗 ⊆ 𝑠}) | |
| 13 | 11, 12 | dmmpti 6665 | 1 ⊢ dom sigaGen = V |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 ≠ wne 2926 ∃wrex 3054 {crab 3408 Vcvv 3450 ⊆ wss 3917 ∅c0 4299 𝒫 cpw 4566 ∪ cuni 4874 ∩ cint 4913 dom cdm 5641 ‘cfv 6514 sigAlgebracsiga 34105 sigaGencsigagen 34135 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-int 4914 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-iota 6467 df-fun 6516 df-fn 6517 df-fv 6522 df-siga 34106 df-sigagen 34136 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |