Detailed syntax breakdown of Definition df-sitm
| Step | Hyp | Ref
| Expression |
| 1 | | csitm 34365 |
. 2
class
sitm |
| 2 | | vw |
. . 3
setvar 𝑤 |
| 3 | | vm |
. . 3
setvar 𝑚 |
| 4 | | cvv 3464 |
. . 3
class
V |
| 5 | | cmeas 34231 |
. . . . 5
class
measures |
| 6 | 5 | crn 5660 |
. . . 4
class ran
measures |
| 7 | 6 | cuni 4888 |
. . 3
class ∪ ran measures |
| 8 | | vf |
. . . 4
setvar 𝑓 |
| 9 | | vg |
. . . 4
setvar 𝑔 |
| 10 | 2 | cv 1539 |
. . . . . 6
class 𝑤 |
| 11 | 3 | cv 1539 |
. . . . . 6
class 𝑚 |
| 12 | | csitg 34366 |
. . . . . 6
class
sitg |
| 13 | 10, 11, 12 | co 7410 |
. . . . 5
class (𝑤sitg𝑚) |
| 14 | 13 | cdm 5659 |
. . . 4
class dom
(𝑤sitg𝑚) |
| 15 | 8 | cv 1539 |
. . . . . 6
class 𝑓 |
| 16 | 9 | cv 1539 |
. . . . . 6
class 𝑔 |
| 17 | | cds 17285 |
. . . . . . . 8
class
dist |
| 18 | 10, 17 | cfv 6536 |
. . . . . . 7
class
(dist‘𝑤) |
| 19 | 18 | cof 7674 |
. . . . . 6
class
∘f (dist‘𝑤) |
| 20 | 15, 16, 19 | co 7410 |
. . . . 5
class (𝑓 ∘f
(dist‘𝑤)𝑔) |
| 21 | | cxrs 17519 |
. . . . . . 7
class
ℝ*𝑠 |
| 22 | | cc0 11134 |
. . . . . . . 8
class
0 |
| 23 | | cpnf 11271 |
. . . . . . . 8
class
+∞ |
| 24 | | cicc 13370 |
. . . . . . . 8
class
[,] |
| 25 | 22, 23, 24 | co 7410 |
. . . . . . 7
class
(0[,]+∞) |
| 26 | | cress 17256 |
. . . . . . 7
class
↾s |
| 27 | 21, 25, 26 | co 7410 |
. . . . . 6
class
(ℝ*𝑠 ↾s
(0[,]+∞)) |
| 28 | 27, 11, 12 | co 7410 |
. . . . 5
class
((ℝ*𝑠 ↾s
(0[,]+∞))sitg𝑚) |
| 29 | 20, 28 | cfv 6536 |
. . . 4
class
(((ℝ*𝑠 ↾s
(0[,]+∞))sitg𝑚)‘(𝑓 ∘f (dist‘𝑤)𝑔)) |
| 30 | 8, 9, 14, 14, 29 | cmpo 7412 |
. . 3
class (𝑓 ∈ dom (𝑤sitg𝑚), 𝑔 ∈ dom (𝑤sitg𝑚) ↦
(((ℝ*𝑠 ↾s
(0[,]+∞))sitg𝑚)‘(𝑓 ∘f (dist‘𝑤)𝑔))) |
| 31 | 2, 3, 4, 7, 30 | cmpo 7412 |
. 2
class (𝑤 ∈ V, 𝑚 ∈ ∪ ran
measures ↦ (𝑓 ∈
dom (𝑤sitg𝑚), 𝑔 ∈ dom (𝑤sitg𝑚) ↦
(((ℝ*𝑠 ↾s
(0[,]+∞))sitg𝑚)‘(𝑓 ∘f (dist‘𝑤)𝑔)))) |
| 32 | 1, 31 | wceq 1540 |
1
wff sitm =
(𝑤 ∈ V, 𝑚 ∈ ∪ ran measures ↦ (𝑓 ∈ dom (𝑤sitg𝑚), 𝑔 ∈ dom (𝑤sitg𝑚) ↦
(((ℝ*𝑠 ↾s
(0[,]+∞))sitg𝑚)‘(𝑓 ∘f (dist‘𝑤)𝑔)))) |