Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sitmval Structured version   Visualization version   GIF version

Theorem sitmval 34347
Description: Value of the simple function integral metric for a given space 𝑊 and measure 𝑀. (Contributed by Thierry Arnoux, 30-Jan-2018.)
Hypotheses
Ref Expression
sitmval.d 𝐷 = (dist‘𝑊)
sitmval.1 (𝜑𝑊𝑉)
sitmval.2 (𝜑𝑀 ran measures)
Assertion
Ref Expression
sitmval (𝜑 → (𝑊sitm𝑀) = (𝑓 ∈ dom (𝑊sitg𝑀), 𝑔 ∈ dom (𝑊sitg𝑀) ↦ (((ℝ*𝑠s (0[,]+∞))sitg𝑀)‘(𝑓f 𝐷𝑔))))
Distinct variable groups:   𝑓,𝑔,𝑀   𝑓,𝑊,𝑔
Allowed substitution hints:   𝜑(𝑓,𝑔)   𝐷(𝑓,𝑔)   𝑉(𝑓,𝑔)

Proof of Theorem sitmval
Dummy variables 𝑤 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sitmval.1 . . 3 (𝜑𝑊𝑉)
2 elex 3471 . . 3 (𝑊𝑉𝑊 ∈ V)
31, 2syl 17 . 2 (𝜑𝑊 ∈ V)
4 sitmval.2 . 2 (𝜑𝑀 ran measures)
5 oveq1 7397 . . . . 5 (𝑤 = 𝑊 → (𝑤sitg𝑚) = (𝑊sitg𝑚))
65dmeqd 5872 . . . 4 (𝑤 = 𝑊 → dom (𝑤sitg𝑚) = dom (𝑊sitg𝑚))
7 fveq2 6861 . . . . . . 7 (𝑤 = 𝑊 → (dist‘𝑤) = (dist‘𝑊))
87ofeqd 7658 . . . . . 6 (𝑤 = 𝑊 → ∘f (dist‘𝑤) = ∘f (dist‘𝑊))
98oveqd 7407 . . . . 5 (𝑤 = 𝑊 → (𝑓f (dist‘𝑤)𝑔) = (𝑓f (dist‘𝑊)𝑔))
109fveq2d 6865 . . . 4 (𝑤 = 𝑊 → (((ℝ*𝑠s (0[,]+∞))sitg𝑚)‘(𝑓f (dist‘𝑤)𝑔)) = (((ℝ*𝑠s (0[,]+∞))sitg𝑚)‘(𝑓f (dist‘𝑊)𝑔)))
116, 6, 10mpoeq123dv 7467 . . 3 (𝑤 = 𝑊 → (𝑓 ∈ dom (𝑤sitg𝑚), 𝑔 ∈ dom (𝑤sitg𝑚) ↦ (((ℝ*𝑠s (0[,]+∞))sitg𝑚)‘(𝑓f (dist‘𝑤)𝑔))) = (𝑓 ∈ dom (𝑊sitg𝑚), 𝑔 ∈ dom (𝑊sitg𝑚) ↦ (((ℝ*𝑠s (0[,]+∞))sitg𝑚)‘(𝑓f (dist‘𝑊)𝑔))))
12 oveq2 7398 . . . . 5 (𝑚 = 𝑀 → (𝑊sitg𝑚) = (𝑊sitg𝑀))
1312dmeqd 5872 . . . 4 (𝑚 = 𝑀 → dom (𝑊sitg𝑚) = dom (𝑊sitg𝑀))
14 oveq2 7398 . . . . 5 (𝑚 = 𝑀 → ((ℝ*𝑠s (0[,]+∞))sitg𝑚) = ((ℝ*𝑠s (0[,]+∞))sitg𝑀))
15 sitmval.d . . . . . . . 8 𝐷 = (dist‘𝑊)
1615eqcomi 2739 . . . . . . 7 (dist‘𝑊) = 𝐷
17 ofeq 7659 . . . . . . 7 ((dist‘𝑊) = 𝐷 → ∘f (dist‘𝑊) = ∘f 𝐷)
1816, 17mp1i 13 . . . . . 6 (𝑚 = 𝑀 → ∘f (dist‘𝑊) = ∘f 𝐷)
1918oveqd 7407 . . . . 5 (𝑚 = 𝑀 → (𝑓f (dist‘𝑊)𝑔) = (𝑓f 𝐷𝑔))
2014, 19fveq12d 6868 . . . 4 (𝑚 = 𝑀 → (((ℝ*𝑠s (0[,]+∞))sitg𝑚)‘(𝑓f (dist‘𝑊)𝑔)) = (((ℝ*𝑠s (0[,]+∞))sitg𝑀)‘(𝑓f 𝐷𝑔)))
2113, 13, 20mpoeq123dv 7467 . . 3 (𝑚 = 𝑀 → (𝑓 ∈ dom (𝑊sitg𝑚), 𝑔 ∈ dom (𝑊sitg𝑚) ↦ (((ℝ*𝑠s (0[,]+∞))sitg𝑚)‘(𝑓f (dist‘𝑊)𝑔))) = (𝑓 ∈ dom (𝑊sitg𝑀), 𝑔 ∈ dom (𝑊sitg𝑀) ↦ (((ℝ*𝑠s (0[,]+∞))sitg𝑀)‘(𝑓f 𝐷𝑔))))
22 df-sitm 34329 . . 3 sitm = (𝑤 ∈ V, 𝑚 ran measures ↦ (𝑓 ∈ dom (𝑤sitg𝑚), 𝑔 ∈ dom (𝑤sitg𝑚) ↦ (((ℝ*𝑠s (0[,]+∞))sitg𝑚)‘(𝑓f (dist‘𝑤)𝑔))))
23 ovex 7423 . . . . 5 (𝑊sitg𝑀) ∈ V
2423dmex 7888 . . . 4 dom (𝑊sitg𝑀) ∈ V
2524, 24mpoex 8061 . . 3 (𝑓 ∈ dom (𝑊sitg𝑀), 𝑔 ∈ dom (𝑊sitg𝑀) ↦ (((ℝ*𝑠s (0[,]+∞))sitg𝑀)‘(𝑓f 𝐷𝑔))) ∈ V
2611, 21, 22, 25ovmpo 7552 . 2 ((𝑊 ∈ V ∧ 𝑀 ran measures) → (𝑊sitm𝑀) = (𝑓 ∈ dom (𝑊sitg𝑀), 𝑔 ∈ dom (𝑊sitg𝑀) ↦ (((ℝ*𝑠s (0[,]+∞))sitg𝑀)‘(𝑓f 𝐷𝑔))))
273, 4, 26syl2anc 584 1 (𝜑 → (𝑊sitm𝑀) = (𝑓 ∈ dom (𝑊sitg𝑀), 𝑔 ∈ dom (𝑊sitg𝑀) ↦ (((ℝ*𝑠s (0[,]+∞))sitg𝑀)‘(𝑓f 𝐷𝑔))))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  Vcvv 3450   cuni 4874  dom cdm 5641  ran crn 5642  cfv 6514  (class class class)co 7390  cmpo 7392  f cof 7654  0cc0 11075  +∞cpnf 11212  [,]cicc 13316  s cress 17207  distcds 17236  *𝑠cxrs 17470  measurescmeas 34192  sitmcsitm 34326  sitgcsitg 34327
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-ov 7393  df-oprab 7394  df-mpo 7395  df-of 7656  df-1st 7971  df-2nd 7972  df-sitm 34329
This theorem is referenced by:  sitmfval  34348  sitmf  34350
  Copyright terms: Public domain W3C validator