Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sitmval Structured version   Visualization version   GIF version

Theorem sitmval 34360
Description: Value of the simple function integral metric for a given space 𝑊 and measure 𝑀. (Contributed by Thierry Arnoux, 30-Jan-2018.)
Hypotheses
Ref Expression
sitmval.d 𝐷 = (dist‘𝑊)
sitmval.1 (𝜑𝑊𝑉)
sitmval.2 (𝜑𝑀 ran measures)
Assertion
Ref Expression
sitmval (𝜑 → (𝑊sitm𝑀) = (𝑓 ∈ dom (𝑊sitg𝑀), 𝑔 ∈ dom (𝑊sitg𝑀) ↦ (((ℝ*𝑠s (0[,]+∞))sitg𝑀)‘(𝑓f 𝐷𝑔))))
Distinct variable groups:   𝑓,𝑔,𝑀   𝑓,𝑊,𝑔
Allowed substitution hints:   𝜑(𝑓,𝑔)   𝐷(𝑓,𝑔)   𝑉(𝑓,𝑔)

Proof of Theorem sitmval
Dummy variables 𝑤 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sitmval.1 . . 3 (𝜑𝑊𝑉)
2 elex 3457 . . 3 (𝑊𝑉𝑊 ∈ V)
31, 2syl 17 . 2 (𝜑𝑊 ∈ V)
4 sitmval.2 . 2 (𝜑𝑀 ran measures)
5 oveq1 7353 . . . . 5 (𝑤 = 𝑊 → (𝑤sitg𝑚) = (𝑊sitg𝑚))
65dmeqd 5845 . . . 4 (𝑤 = 𝑊 → dom (𝑤sitg𝑚) = dom (𝑊sitg𝑚))
7 fveq2 6822 . . . . . . 7 (𝑤 = 𝑊 → (dist‘𝑤) = (dist‘𝑊))
87ofeqd 7612 . . . . . 6 (𝑤 = 𝑊 → ∘f (dist‘𝑤) = ∘f (dist‘𝑊))
98oveqd 7363 . . . . 5 (𝑤 = 𝑊 → (𝑓f (dist‘𝑤)𝑔) = (𝑓f (dist‘𝑊)𝑔))
109fveq2d 6826 . . . 4 (𝑤 = 𝑊 → (((ℝ*𝑠s (0[,]+∞))sitg𝑚)‘(𝑓f (dist‘𝑤)𝑔)) = (((ℝ*𝑠s (0[,]+∞))sitg𝑚)‘(𝑓f (dist‘𝑊)𝑔)))
116, 6, 10mpoeq123dv 7421 . . 3 (𝑤 = 𝑊 → (𝑓 ∈ dom (𝑤sitg𝑚), 𝑔 ∈ dom (𝑤sitg𝑚) ↦ (((ℝ*𝑠s (0[,]+∞))sitg𝑚)‘(𝑓f (dist‘𝑤)𝑔))) = (𝑓 ∈ dom (𝑊sitg𝑚), 𝑔 ∈ dom (𝑊sitg𝑚) ↦ (((ℝ*𝑠s (0[,]+∞))sitg𝑚)‘(𝑓f (dist‘𝑊)𝑔))))
12 oveq2 7354 . . . . 5 (𝑚 = 𝑀 → (𝑊sitg𝑚) = (𝑊sitg𝑀))
1312dmeqd 5845 . . . 4 (𝑚 = 𝑀 → dom (𝑊sitg𝑚) = dom (𝑊sitg𝑀))
14 oveq2 7354 . . . . 5 (𝑚 = 𝑀 → ((ℝ*𝑠s (0[,]+∞))sitg𝑚) = ((ℝ*𝑠s (0[,]+∞))sitg𝑀))
15 sitmval.d . . . . . . . 8 𝐷 = (dist‘𝑊)
1615eqcomi 2740 . . . . . . 7 (dist‘𝑊) = 𝐷
17 ofeq 7613 . . . . . . 7 ((dist‘𝑊) = 𝐷 → ∘f (dist‘𝑊) = ∘f 𝐷)
1816, 17mp1i 13 . . . . . 6 (𝑚 = 𝑀 → ∘f (dist‘𝑊) = ∘f 𝐷)
1918oveqd 7363 . . . . 5 (𝑚 = 𝑀 → (𝑓f (dist‘𝑊)𝑔) = (𝑓f 𝐷𝑔))
2014, 19fveq12d 6829 . . . 4 (𝑚 = 𝑀 → (((ℝ*𝑠s (0[,]+∞))sitg𝑚)‘(𝑓f (dist‘𝑊)𝑔)) = (((ℝ*𝑠s (0[,]+∞))sitg𝑀)‘(𝑓f 𝐷𝑔)))
2113, 13, 20mpoeq123dv 7421 . . 3 (𝑚 = 𝑀 → (𝑓 ∈ dom (𝑊sitg𝑚), 𝑔 ∈ dom (𝑊sitg𝑚) ↦ (((ℝ*𝑠s (0[,]+∞))sitg𝑚)‘(𝑓f (dist‘𝑊)𝑔))) = (𝑓 ∈ dom (𝑊sitg𝑀), 𝑔 ∈ dom (𝑊sitg𝑀) ↦ (((ℝ*𝑠s (0[,]+∞))sitg𝑀)‘(𝑓f 𝐷𝑔))))
22 df-sitm 34342 . . 3 sitm = (𝑤 ∈ V, 𝑚 ran measures ↦ (𝑓 ∈ dom (𝑤sitg𝑚), 𝑔 ∈ dom (𝑤sitg𝑚) ↦ (((ℝ*𝑠s (0[,]+∞))sitg𝑚)‘(𝑓f (dist‘𝑤)𝑔))))
23 ovex 7379 . . . . 5 (𝑊sitg𝑀) ∈ V
2423dmex 7839 . . . 4 dom (𝑊sitg𝑀) ∈ V
2524, 24mpoex 8011 . . 3 (𝑓 ∈ dom (𝑊sitg𝑀), 𝑔 ∈ dom (𝑊sitg𝑀) ↦ (((ℝ*𝑠s (0[,]+∞))sitg𝑀)‘(𝑓f 𝐷𝑔))) ∈ V
2611, 21, 22, 25ovmpo 7506 . 2 ((𝑊 ∈ V ∧ 𝑀 ran measures) → (𝑊sitm𝑀) = (𝑓 ∈ dom (𝑊sitg𝑀), 𝑔 ∈ dom (𝑊sitg𝑀) ↦ (((ℝ*𝑠s (0[,]+∞))sitg𝑀)‘(𝑓f 𝐷𝑔))))
273, 4, 26syl2anc 584 1 (𝜑 → (𝑊sitm𝑀) = (𝑓 ∈ dom (𝑊sitg𝑀), 𝑔 ∈ dom (𝑊sitg𝑀) ↦ (((ℝ*𝑠s (0[,]+∞))sitg𝑀)‘(𝑓f 𝐷𝑔))))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2111  Vcvv 3436   cuni 4859  dom cdm 5616  ran crn 5617  cfv 6481  (class class class)co 7346  cmpo 7348  f cof 7608  0cc0 11006  +∞cpnf 11143  [,]cicc 13248  s cress 17141  distcds 17170  *𝑠cxrs 17404  measurescmeas 34206  sitmcsitm 34339  sitgcsitg 34340
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-of 7610  df-1st 7921  df-2nd 7922  df-sitm 34342
This theorem is referenced by:  sitmfval  34361  sitmf  34363
  Copyright terms: Public domain W3C validator