Step | Hyp | Ref
| Expression |
1 | | sitmval.1 |
. . 3
⊢ (𝜑 → 𝑊 ∈ 𝑉) |
2 | | elex 3440 |
. . 3
⊢ (𝑊 ∈ 𝑉 → 𝑊 ∈ V) |
3 | 1, 2 | syl 17 |
. 2
⊢ (𝜑 → 𝑊 ∈ V) |
4 | | sitmval.2 |
. 2
⊢ (𝜑 → 𝑀 ∈ ∪ ran
measures) |
5 | | oveq1 7262 |
. . . . 5
⊢ (𝑤 = 𝑊 → (𝑤sitg𝑚) = (𝑊sitg𝑚)) |
6 | 5 | dmeqd 5803 |
. . . 4
⊢ (𝑤 = 𝑊 → dom (𝑤sitg𝑚) = dom (𝑊sitg𝑚)) |
7 | | fveq2 6756 |
. . . . . . 7
⊢ (𝑤 = 𝑊 → (dist‘𝑤) = (dist‘𝑊)) |
8 | 7 | ofeqd 7513 |
. . . . . 6
⊢ (𝑤 = 𝑊 → ∘f
(dist‘𝑤) =
∘f (dist‘𝑊)) |
9 | 8 | oveqd 7272 |
. . . . 5
⊢ (𝑤 = 𝑊 → (𝑓 ∘f (dist‘𝑤)𝑔) = (𝑓 ∘f (dist‘𝑊)𝑔)) |
10 | 9 | fveq2d 6760 |
. . . 4
⊢ (𝑤 = 𝑊 →
(((ℝ*𝑠 ↾s
(0[,]+∞))sitg𝑚)‘(𝑓 ∘f (dist‘𝑤)𝑔)) =
(((ℝ*𝑠 ↾s
(0[,]+∞))sitg𝑚)‘(𝑓 ∘f (dist‘𝑊)𝑔))) |
11 | 6, 6, 10 | mpoeq123dv 7328 |
. . 3
⊢ (𝑤 = 𝑊 → (𝑓 ∈ dom (𝑤sitg𝑚), 𝑔 ∈ dom (𝑤sitg𝑚) ↦
(((ℝ*𝑠 ↾s
(0[,]+∞))sitg𝑚)‘(𝑓 ∘f (dist‘𝑤)𝑔))) = (𝑓 ∈ dom (𝑊sitg𝑚), 𝑔 ∈ dom (𝑊sitg𝑚) ↦
(((ℝ*𝑠 ↾s
(0[,]+∞))sitg𝑚)‘(𝑓 ∘f (dist‘𝑊)𝑔)))) |
12 | | oveq2 7263 |
. . . . 5
⊢ (𝑚 = 𝑀 → (𝑊sitg𝑚) = (𝑊sitg𝑀)) |
13 | 12 | dmeqd 5803 |
. . . 4
⊢ (𝑚 = 𝑀 → dom (𝑊sitg𝑚) = dom (𝑊sitg𝑀)) |
14 | | oveq2 7263 |
. . . . 5
⊢ (𝑚 = 𝑀 →
((ℝ*𝑠 ↾s
(0[,]+∞))sitg𝑚) =
((ℝ*𝑠 ↾s
(0[,]+∞))sitg𝑀)) |
15 | | sitmval.d |
. . . . . . . 8
⊢ 𝐷 = (dist‘𝑊) |
16 | 15 | eqcomi 2747 |
. . . . . . 7
⊢
(dist‘𝑊) =
𝐷 |
17 | | ofeq 7514 |
. . . . . . 7
⊢
((dist‘𝑊) =
𝐷 →
∘f (dist‘𝑊) = ∘f 𝐷) |
18 | 16, 17 | mp1i 13 |
. . . . . 6
⊢ (𝑚 = 𝑀 → ∘f
(dist‘𝑊) =
∘f 𝐷) |
19 | 18 | oveqd 7272 |
. . . . 5
⊢ (𝑚 = 𝑀 → (𝑓 ∘f (dist‘𝑊)𝑔) = (𝑓 ∘f 𝐷𝑔)) |
20 | 14, 19 | fveq12d 6763 |
. . . 4
⊢ (𝑚 = 𝑀 →
(((ℝ*𝑠 ↾s
(0[,]+∞))sitg𝑚)‘(𝑓 ∘f (dist‘𝑊)𝑔)) =
(((ℝ*𝑠 ↾s
(0[,]+∞))sitg𝑀)‘(𝑓 ∘f 𝐷𝑔))) |
21 | 13, 13, 20 | mpoeq123dv 7328 |
. . 3
⊢ (𝑚 = 𝑀 → (𝑓 ∈ dom (𝑊sitg𝑚), 𝑔 ∈ dom (𝑊sitg𝑚) ↦
(((ℝ*𝑠 ↾s
(0[,]+∞))sitg𝑚)‘(𝑓 ∘f (dist‘𝑊)𝑔))) = (𝑓 ∈ dom (𝑊sitg𝑀), 𝑔 ∈ dom (𝑊sitg𝑀) ↦
(((ℝ*𝑠 ↾s
(0[,]+∞))sitg𝑀)‘(𝑓 ∘f 𝐷𝑔)))) |
22 | | df-sitm 32198 |
. . 3
⊢ sitm =
(𝑤 ∈ V, 𝑚 ∈ ∪ ran measures ↦ (𝑓 ∈ dom (𝑤sitg𝑚), 𝑔 ∈ dom (𝑤sitg𝑚) ↦
(((ℝ*𝑠 ↾s
(0[,]+∞))sitg𝑚)‘(𝑓 ∘f (dist‘𝑤)𝑔)))) |
23 | | ovex 7288 |
. . . . 5
⊢ (𝑊sitg𝑀) ∈ V |
24 | 23 | dmex 7732 |
. . . 4
⊢ dom
(𝑊sitg𝑀) ∈ V |
25 | 24, 24 | mpoex 7893 |
. . 3
⊢ (𝑓 ∈ dom (𝑊sitg𝑀), 𝑔 ∈ dom (𝑊sitg𝑀) ↦
(((ℝ*𝑠 ↾s
(0[,]+∞))sitg𝑀)‘(𝑓 ∘f 𝐷𝑔))) ∈ V |
26 | 11, 21, 22, 25 | ovmpo 7411 |
. 2
⊢ ((𝑊 ∈ V ∧ 𝑀 ∈ ∪ ran measures) → (𝑊sitm𝑀) = (𝑓 ∈ dom (𝑊sitg𝑀), 𝑔 ∈ dom (𝑊sitg𝑀) ↦
(((ℝ*𝑠 ↾s
(0[,]+∞))sitg𝑀)‘(𝑓 ∘f 𝐷𝑔)))) |
27 | 3, 4, 26 | syl2anc 583 |
1
⊢ (𝜑 → (𝑊sitm𝑀) = (𝑓 ∈ dom (𝑊sitg𝑀), 𝑔 ∈ dom (𝑊sitg𝑀) ↦
(((ℝ*𝑠 ↾s
(0[,]+∞))sitg𝑀)‘(𝑓 ∘f 𝐷𝑔)))) |