| Step | Hyp | Ref
| Expression |
| 1 | | sitgval.1 |
. . 3
⊢ (𝜑 → 𝑊 ∈ 𝑉) |
| 2 | 1 | elexd 3488 |
. 2
⊢ (𝜑 → 𝑊 ∈ V) |
| 3 | | sitgval.2 |
. 2
⊢ (𝜑 → 𝑀 ∈ ∪ ran
measures) |
| 4 | | 2fveq3 6886 |
. . . . . . 7
⊢ (𝑤 = 𝑊 → (sigaGen‘(TopOpen‘𝑤)) =
(sigaGen‘(TopOpen‘𝑊))) |
| 5 | | sitgval.s |
. . . . . . . 8
⊢ 𝑆 = (sigaGen‘𝐽) |
| 6 | | sitgval.j |
. . . . . . . . 9
⊢ 𝐽 = (TopOpen‘𝑊) |
| 7 | 6 | fveq2i 6884 |
. . . . . . . 8
⊢
(sigaGen‘𝐽) =
(sigaGen‘(TopOpen‘𝑊)) |
| 8 | 5, 7 | eqtri 2759 |
. . . . . . 7
⊢ 𝑆 =
(sigaGen‘(TopOpen‘𝑊)) |
| 9 | 4, 8 | eqtr4di 2789 |
. . . . . 6
⊢ (𝑤 = 𝑊 → (sigaGen‘(TopOpen‘𝑤)) = 𝑆) |
| 10 | 9 | oveq2d 7426 |
. . . . 5
⊢ (𝑤 = 𝑊 → (dom 𝑚MblFnM(sigaGen‘(TopOpen‘𝑤))) = (dom 𝑚MblFnM𝑆)) |
| 11 | | fveq2 6881 |
. . . . . . . . . 10
⊢ (𝑤 = 𝑊 → (0g‘𝑤) = (0g‘𝑊)) |
| 12 | | sitgval.0 |
. . . . . . . . . 10
⊢ 0 =
(0g‘𝑊) |
| 13 | 11, 12 | eqtr4di 2789 |
. . . . . . . . 9
⊢ (𝑤 = 𝑊 → (0g‘𝑤) = 0 ) |
| 14 | 13 | sneqd 4618 |
. . . . . . . 8
⊢ (𝑤 = 𝑊 → {(0g‘𝑤)} = { 0 }) |
| 15 | 14 | difeq2d 4106 |
. . . . . . 7
⊢ (𝑤 = 𝑊 → (ran 𝑔 ∖ {(0g‘𝑤)}) = (ran 𝑔 ∖ { 0 })) |
| 16 | 15 | raleqdv 3309 |
. . . . . 6
⊢ (𝑤 = 𝑊 → (∀𝑥 ∈ (ran 𝑔 ∖ {(0g‘𝑤)})(𝑚‘(◡𝑔 “ {𝑥})) ∈ (0[,)+∞) ↔
∀𝑥 ∈ (ran 𝑔 ∖ { 0 })(𝑚‘(◡𝑔 “ {𝑥})) ∈ (0[,)+∞))) |
| 17 | 16 | anbi2d 630 |
. . . . 5
⊢ (𝑤 = 𝑊 → ((ran 𝑔 ∈ Fin ∧ ∀𝑥 ∈ (ran 𝑔 ∖ {(0g‘𝑤)})(𝑚‘(◡𝑔 “ {𝑥})) ∈ (0[,)+∞)) ↔ (ran 𝑔 ∈ Fin ∧ ∀𝑥 ∈ (ran 𝑔 ∖ { 0 })(𝑚‘(◡𝑔 “ {𝑥})) ∈ (0[,)+∞)))) |
| 18 | 10, 17 | rabeqbidv 3439 |
. . . 4
⊢ (𝑤 = 𝑊 → {𝑔 ∈ (dom 𝑚MblFnM(sigaGen‘(TopOpen‘𝑤))) ∣ (ran 𝑔 ∈ Fin ∧ ∀𝑥 ∈ (ran 𝑔 ∖ {(0g‘𝑤)})(𝑚‘(◡𝑔 “ {𝑥})) ∈ (0[,)+∞))} = {𝑔 ∈ (dom 𝑚MblFnM𝑆) ∣ (ran 𝑔 ∈ Fin ∧ ∀𝑥 ∈ (ran 𝑔 ∖ { 0 })(𝑚‘(◡𝑔 “ {𝑥})) ∈ (0[,)+∞))}) |
| 19 | | id 22 |
. . . . 5
⊢ (𝑤 = 𝑊 → 𝑤 = 𝑊) |
| 20 | 14 | difeq2d 4106 |
. . . . . 6
⊢ (𝑤 = 𝑊 → (ran 𝑓 ∖ {(0g‘𝑤)}) = (ran 𝑓 ∖ { 0 })) |
| 21 | | fveq2 6881 |
. . . . . . . 8
⊢ (𝑤 = 𝑊 → (
·𝑠 ‘𝑤) = ( ·𝑠
‘𝑊)) |
| 22 | | sitgval.x |
. . . . . . . 8
⊢ · = (
·𝑠 ‘𝑊) |
| 23 | 21, 22 | eqtr4di 2789 |
. . . . . . 7
⊢ (𝑤 = 𝑊 → (
·𝑠 ‘𝑤) = · ) |
| 24 | | 2fveq3 6886 |
. . . . . . . . 9
⊢ (𝑤 = 𝑊 →
(ℝHom‘(Scalar‘𝑤)) = (ℝHom‘(Scalar‘𝑊))) |
| 25 | | sitgval.h |
. . . . . . . . 9
⊢ 𝐻 =
(ℝHom‘(Scalar‘𝑊)) |
| 26 | 24, 25 | eqtr4di 2789 |
. . . . . . . 8
⊢ (𝑤 = 𝑊 →
(ℝHom‘(Scalar‘𝑤)) = 𝐻) |
| 27 | 26 | fveq1d 6883 |
. . . . . . 7
⊢ (𝑤 = 𝑊 →
((ℝHom‘(Scalar‘𝑤))‘(𝑚‘(◡𝑓 “ {𝑥}))) = (𝐻‘(𝑚‘(◡𝑓 “ {𝑥})))) |
| 28 | | eqidd 2737 |
. . . . . . 7
⊢ (𝑤 = 𝑊 → 𝑥 = 𝑥) |
| 29 | 23, 27, 28 | oveq123d 7431 |
. . . . . 6
⊢ (𝑤 = 𝑊 →
(((ℝHom‘(Scalar‘𝑤))‘(𝑚‘(◡𝑓 “ {𝑥})))( ·𝑠
‘𝑤)𝑥) = ((𝐻‘(𝑚‘(◡𝑓 “ {𝑥}))) · 𝑥)) |
| 30 | 20, 29 | mpteq12dv 5212 |
. . . . 5
⊢ (𝑤 = 𝑊 → (𝑥 ∈ (ran 𝑓 ∖ {(0g‘𝑤)}) ↦
(((ℝHom‘(Scalar‘𝑤))‘(𝑚‘(◡𝑓 “ {𝑥})))( ·𝑠
‘𝑤)𝑥)) = (𝑥 ∈ (ran 𝑓 ∖ { 0 }) ↦ ((𝐻‘(𝑚‘(◡𝑓 “ {𝑥}))) · 𝑥))) |
| 31 | 19, 30 | oveq12d 7428 |
. . . 4
⊢ (𝑤 = 𝑊 → (𝑤 Σg (𝑥 ∈ (ran 𝑓 ∖ {(0g‘𝑤)}) ↦
(((ℝHom‘(Scalar‘𝑤))‘(𝑚‘(◡𝑓 “ {𝑥})))( ·𝑠
‘𝑤)𝑥))) = (𝑊 Σg (𝑥 ∈ (ran 𝑓 ∖ { 0 }) ↦ ((𝐻‘(𝑚‘(◡𝑓 “ {𝑥}))) · 𝑥)))) |
| 32 | 18, 31 | mpteq12dv 5212 |
. . 3
⊢ (𝑤 = 𝑊 → (𝑓 ∈ {𝑔 ∈ (dom 𝑚MblFnM(sigaGen‘(TopOpen‘𝑤))) ∣ (ran 𝑔 ∈ Fin ∧ ∀𝑥 ∈ (ran 𝑔 ∖ {(0g‘𝑤)})(𝑚‘(◡𝑔 “ {𝑥})) ∈ (0[,)+∞))} ↦ (𝑤 Σg
(𝑥 ∈ (ran 𝑓 ∖
{(0g‘𝑤)})
↦ (((ℝHom‘(Scalar‘𝑤))‘(𝑚‘(◡𝑓 “ {𝑥})))( ·𝑠
‘𝑤)𝑥)))) = (𝑓 ∈ {𝑔 ∈ (dom 𝑚MblFnM𝑆) ∣ (ran 𝑔 ∈ Fin ∧ ∀𝑥 ∈ (ran 𝑔 ∖ { 0 })(𝑚‘(◡𝑔 “ {𝑥})) ∈ (0[,)+∞))} ↦ (𝑊 Σg
(𝑥 ∈ (ran 𝑓 ∖ { 0 }) ↦ ((𝐻‘(𝑚‘(◡𝑓 “ {𝑥}))) · 𝑥))))) |
| 33 | | dmeq 5888 |
. . . . . 6
⊢ (𝑚 = 𝑀 → dom 𝑚 = dom 𝑀) |
| 34 | 33 | oveq1d 7425 |
. . . . 5
⊢ (𝑚 = 𝑀 → (dom 𝑚MblFnM𝑆) = (dom 𝑀MblFnM𝑆)) |
| 35 | | fveq1 6880 |
. . . . . . . 8
⊢ (𝑚 = 𝑀 → (𝑚‘(◡𝑔 “ {𝑥})) = (𝑀‘(◡𝑔 “ {𝑥}))) |
| 36 | 35 | eleq1d 2820 |
. . . . . . 7
⊢ (𝑚 = 𝑀 → ((𝑚‘(◡𝑔 “ {𝑥})) ∈ (0[,)+∞) ↔ (𝑀‘(◡𝑔 “ {𝑥})) ∈ (0[,)+∞))) |
| 37 | 36 | ralbidv 3164 |
. . . . . 6
⊢ (𝑚 = 𝑀 → (∀𝑥 ∈ (ran 𝑔 ∖ { 0 })(𝑚‘(◡𝑔 “ {𝑥})) ∈ (0[,)+∞) ↔
∀𝑥 ∈ (ran 𝑔 ∖ { 0 })(𝑀‘(◡𝑔 “ {𝑥})) ∈ (0[,)+∞))) |
| 38 | 37 | anbi2d 630 |
. . . . 5
⊢ (𝑚 = 𝑀 → ((ran 𝑔 ∈ Fin ∧ ∀𝑥 ∈ (ran 𝑔 ∖ { 0 })(𝑚‘(◡𝑔 “ {𝑥})) ∈ (0[,)+∞)) ↔ (ran 𝑔 ∈ Fin ∧ ∀𝑥 ∈ (ran 𝑔 ∖ { 0 })(𝑀‘(◡𝑔 “ {𝑥})) ∈ (0[,)+∞)))) |
| 39 | 34, 38 | rabeqbidv 3439 |
. . . 4
⊢ (𝑚 = 𝑀 → {𝑔 ∈ (dom 𝑚MblFnM𝑆) ∣ (ran 𝑔 ∈ Fin ∧ ∀𝑥 ∈ (ran 𝑔 ∖ { 0 })(𝑚‘(◡𝑔 “ {𝑥})) ∈ (0[,)+∞))} = {𝑔 ∈ (dom 𝑀MblFnM𝑆) ∣ (ran 𝑔 ∈ Fin ∧ ∀𝑥 ∈ (ran 𝑔 ∖ { 0 })(𝑀‘(◡𝑔 “ {𝑥})) ∈ (0[,)+∞))}) |
| 40 | | simpl 482 |
. . . . . . . . 9
⊢ ((𝑚 = 𝑀 ∧ 𝑥 ∈ (ran 𝑓 ∖ { 0 })) → 𝑚 = 𝑀) |
| 41 | 40 | fveq1d 6883 |
. . . . . . . 8
⊢ ((𝑚 = 𝑀 ∧ 𝑥 ∈ (ran 𝑓 ∖ { 0 })) → (𝑚‘(◡𝑓 “ {𝑥})) = (𝑀‘(◡𝑓 “ {𝑥}))) |
| 42 | 41 | fveq2d 6885 |
. . . . . . 7
⊢ ((𝑚 = 𝑀 ∧ 𝑥 ∈ (ran 𝑓 ∖ { 0 })) → (𝐻‘(𝑚‘(◡𝑓 “ {𝑥}))) = (𝐻‘(𝑀‘(◡𝑓 “ {𝑥})))) |
| 43 | 42 | oveq1d 7425 |
. . . . . 6
⊢ ((𝑚 = 𝑀 ∧ 𝑥 ∈ (ran 𝑓 ∖ { 0 })) → ((𝐻‘(𝑚‘(◡𝑓 “ {𝑥}))) · 𝑥) = ((𝐻‘(𝑀‘(◡𝑓 “ {𝑥}))) · 𝑥)) |
| 44 | 43 | mpteq2dva 5219 |
. . . . 5
⊢ (𝑚 = 𝑀 → (𝑥 ∈ (ran 𝑓 ∖ { 0 }) ↦ ((𝐻‘(𝑚‘(◡𝑓 “ {𝑥}))) · 𝑥)) = (𝑥 ∈ (ran 𝑓 ∖ { 0 }) ↦ ((𝐻‘(𝑀‘(◡𝑓 “ {𝑥}))) · 𝑥))) |
| 45 | 44 | oveq2d 7426 |
. . . 4
⊢ (𝑚 = 𝑀 → (𝑊 Σg (𝑥 ∈ (ran 𝑓 ∖ { 0 }) ↦ ((𝐻‘(𝑚‘(◡𝑓 “ {𝑥}))) · 𝑥))) = (𝑊 Σg (𝑥 ∈ (ran 𝑓 ∖ { 0 }) ↦ ((𝐻‘(𝑀‘(◡𝑓 “ {𝑥}))) · 𝑥)))) |
| 46 | 39, 45 | mpteq12dv 5212 |
. . 3
⊢ (𝑚 = 𝑀 → (𝑓 ∈ {𝑔 ∈ (dom 𝑚MblFnM𝑆) ∣ (ran 𝑔 ∈ Fin ∧ ∀𝑥 ∈ (ran 𝑔 ∖ { 0 })(𝑚‘(◡𝑔 “ {𝑥})) ∈ (0[,)+∞))} ↦ (𝑊 Σg
(𝑥 ∈ (ran 𝑓 ∖ { 0 }) ↦ ((𝐻‘(𝑚‘(◡𝑓 “ {𝑥}))) · 𝑥)))) = (𝑓 ∈ {𝑔 ∈ (dom 𝑀MblFnM𝑆) ∣ (ran 𝑔 ∈ Fin ∧ ∀𝑥 ∈ (ran 𝑔 ∖ { 0 })(𝑀‘(◡𝑔 “ {𝑥})) ∈ (0[,)+∞))} ↦ (𝑊 Σg
(𝑥 ∈ (ran 𝑓 ∖ { 0 }) ↦ ((𝐻‘(𝑀‘(◡𝑓 “ {𝑥}))) · 𝑥))))) |
| 47 | | df-sitg 34367 |
. . 3
⊢ sitg =
(𝑤 ∈ V, 𝑚 ∈ ∪ ran measures ↦ (𝑓 ∈ {𝑔 ∈ (dom 𝑚MblFnM(sigaGen‘(TopOpen‘𝑤))) ∣ (ran 𝑔 ∈ Fin ∧ ∀𝑥 ∈ (ran 𝑔 ∖ {(0g‘𝑤)})(𝑚‘(◡𝑔 “ {𝑥})) ∈ (0[,)+∞))} ↦ (𝑤 Σg
(𝑥 ∈ (ran 𝑓 ∖
{(0g‘𝑤)})
↦ (((ℝHom‘(Scalar‘𝑤))‘(𝑚‘(◡𝑓 “ {𝑥})))( ·𝑠
‘𝑤)𝑥))))) |
| 48 | | ovex 7443 |
. . . 4
⊢ (dom
𝑀MblFnM𝑆) ∈ V |
| 49 | 48 | mptrabex 7222 |
. . 3
⊢ (𝑓 ∈ {𝑔 ∈ (dom 𝑀MblFnM𝑆) ∣ (ran 𝑔 ∈ Fin ∧ ∀𝑥 ∈ (ran 𝑔 ∖ { 0 })(𝑀‘(◡𝑔 “ {𝑥})) ∈ (0[,)+∞))} ↦ (𝑊 Σg
(𝑥 ∈ (ran 𝑓 ∖ { 0 }) ↦ ((𝐻‘(𝑀‘(◡𝑓 “ {𝑥}))) · 𝑥)))) ∈ V |
| 50 | 32, 46, 47, 49 | ovmpo 7572 |
. 2
⊢ ((𝑊 ∈ V ∧ 𝑀 ∈ ∪ ran measures) → (𝑊sitg𝑀) = (𝑓 ∈ {𝑔 ∈ (dom 𝑀MblFnM𝑆) ∣ (ran 𝑔 ∈ Fin ∧ ∀𝑥 ∈ (ran 𝑔 ∖ { 0 })(𝑀‘(◡𝑔 “ {𝑥})) ∈ (0[,)+∞))} ↦ (𝑊 Σg
(𝑥 ∈ (ran 𝑓 ∖ { 0 }) ↦ ((𝐻‘(𝑀‘(◡𝑓 “ {𝑥}))) · 𝑥))))) |
| 51 | 2, 3, 50 | syl2anc 584 |
1
⊢ (𝜑 → (𝑊sitg𝑀) = (𝑓 ∈ {𝑔 ∈ (dom 𝑀MblFnM𝑆) ∣ (ran 𝑔 ∈ Fin ∧ ∀𝑥 ∈ (ran 𝑔 ∖ { 0 })(𝑀‘(◡𝑔 “ {𝑥})) ∈ (0[,)+∞))} ↦ (𝑊 Σg
(𝑥 ∈ (ran 𝑓 ∖ { 0 }) ↦ ((𝐻‘(𝑀‘(◡𝑓 “ {𝑥}))) · 𝑥))))) |