Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sitgval Structured version   Visualization version   GIF version

Theorem sitgval 31700
Description: Value of the simple function integral builder for a given space 𝑊 and measure 𝑀. (Contributed by Thierry Arnoux, 30-Jan-2018.)
Hypotheses
Ref Expression
sitgval.b 𝐵 = (Base‘𝑊)
sitgval.j 𝐽 = (TopOpen‘𝑊)
sitgval.s 𝑆 = (sigaGen‘𝐽)
sitgval.0 0 = (0g𝑊)
sitgval.x · = ( ·𝑠𝑊)
sitgval.h 𝐻 = (ℝHom‘(Scalar‘𝑊))
sitgval.1 (𝜑𝑊𝑉)
sitgval.2 (𝜑𝑀 ran measures)
Assertion
Ref Expression
sitgval (𝜑 → (𝑊sitg𝑀) = (𝑓 ∈ {𝑔 ∈ (dom 𝑀MblFnM𝑆) ∣ (ran 𝑔 ∈ Fin ∧ ∀𝑥 ∈ (ran 𝑔 ∖ { 0 })(𝑀‘(𝑔 “ {𝑥})) ∈ (0[,)+∞))} ↦ (𝑊 Σg (𝑥 ∈ (ran 𝑓 ∖ { 0 }) ↦ ((𝐻‘(𝑀‘(𝑓 “ {𝑥}))) · 𝑥)))))
Distinct variable groups:   𝐵,𝑓   𝑓,𝑔,𝑥   𝑓,𝐻   𝑓,𝑀,𝑔,𝑥   𝑆,𝑓,𝑔   𝑓,𝑊,𝑔,𝑥   0 ,𝑓,𝑔,𝑥   · ,𝑓
Allowed substitution hints:   𝜑(𝑥,𝑓,𝑔)   𝐵(𝑥,𝑔)   𝑆(𝑥)   · (𝑥,𝑔)   𝐻(𝑥,𝑔)   𝐽(𝑥,𝑓,𝑔)   𝑉(𝑥,𝑓,𝑔)

Proof of Theorem sitgval
Dummy variables 𝑚 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sitgval.1 . . 3 (𝜑𝑊𝑉)
21elexd 3461 . 2 (𝜑𝑊 ∈ V)
3 sitgval.2 . 2 (𝜑𝑀 ran measures)
4 2fveq3 6650 . . . . . . 7 (𝑤 = 𝑊 → (sigaGen‘(TopOpen‘𝑤)) = (sigaGen‘(TopOpen‘𝑊)))
5 sitgval.s . . . . . . . 8 𝑆 = (sigaGen‘𝐽)
6 sitgval.j . . . . . . . . 9 𝐽 = (TopOpen‘𝑊)
76fveq2i 6648 . . . . . . . 8 (sigaGen‘𝐽) = (sigaGen‘(TopOpen‘𝑊))
85, 7eqtri 2821 . . . . . . 7 𝑆 = (sigaGen‘(TopOpen‘𝑊))
94, 8eqtr4di 2851 . . . . . 6 (𝑤 = 𝑊 → (sigaGen‘(TopOpen‘𝑤)) = 𝑆)
109oveq2d 7151 . . . . 5 (𝑤 = 𝑊 → (dom 𝑚MblFnM(sigaGen‘(TopOpen‘𝑤))) = (dom 𝑚MblFnM𝑆))
11 fveq2 6645 . . . . . . . . . 10 (𝑤 = 𝑊 → (0g𝑤) = (0g𝑊))
12 sitgval.0 . . . . . . . . . 10 0 = (0g𝑊)
1311, 12eqtr4di 2851 . . . . . . . . 9 (𝑤 = 𝑊 → (0g𝑤) = 0 )
1413sneqd 4537 . . . . . . . 8 (𝑤 = 𝑊 → {(0g𝑤)} = { 0 })
1514difeq2d 4050 . . . . . . 7 (𝑤 = 𝑊 → (ran 𝑔 ∖ {(0g𝑤)}) = (ran 𝑔 ∖ { 0 }))
1615raleqdv 3364 . . . . . 6 (𝑤 = 𝑊 → (∀𝑥 ∈ (ran 𝑔 ∖ {(0g𝑤)})(𝑚‘(𝑔 “ {𝑥})) ∈ (0[,)+∞) ↔ ∀𝑥 ∈ (ran 𝑔 ∖ { 0 })(𝑚‘(𝑔 “ {𝑥})) ∈ (0[,)+∞)))
1716anbi2d 631 . . . . 5 (𝑤 = 𝑊 → ((ran 𝑔 ∈ Fin ∧ ∀𝑥 ∈ (ran 𝑔 ∖ {(0g𝑤)})(𝑚‘(𝑔 “ {𝑥})) ∈ (0[,)+∞)) ↔ (ran 𝑔 ∈ Fin ∧ ∀𝑥 ∈ (ran 𝑔 ∖ { 0 })(𝑚‘(𝑔 “ {𝑥})) ∈ (0[,)+∞))))
1810, 17rabeqbidv 3433 . . . 4 (𝑤 = 𝑊 → {𝑔 ∈ (dom 𝑚MblFnM(sigaGen‘(TopOpen‘𝑤))) ∣ (ran 𝑔 ∈ Fin ∧ ∀𝑥 ∈ (ran 𝑔 ∖ {(0g𝑤)})(𝑚‘(𝑔 “ {𝑥})) ∈ (0[,)+∞))} = {𝑔 ∈ (dom 𝑚MblFnM𝑆) ∣ (ran 𝑔 ∈ Fin ∧ ∀𝑥 ∈ (ran 𝑔 ∖ { 0 })(𝑚‘(𝑔 “ {𝑥})) ∈ (0[,)+∞))})
19 id 22 . . . . 5 (𝑤 = 𝑊𝑤 = 𝑊)
2014difeq2d 4050 . . . . . 6 (𝑤 = 𝑊 → (ran 𝑓 ∖ {(0g𝑤)}) = (ran 𝑓 ∖ { 0 }))
21 fveq2 6645 . . . . . . . 8 (𝑤 = 𝑊 → ( ·𝑠𝑤) = ( ·𝑠𝑊))
22 sitgval.x . . . . . . . 8 · = ( ·𝑠𝑊)
2321, 22eqtr4di 2851 . . . . . . 7 (𝑤 = 𝑊 → ( ·𝑠𝑤) = · )
24 2fveq3 6650 . . . . . . . . 9 (𝑤 = 𝑊 → (ℝHom‘(Scalar‘𝑤)) = (ℝHom‘(Scalar‘𝑊)))
25 sitgval.h . . . . . . . . 9 𝐻 = (ℝHom‘(Scalar‘𝑊))
2624, 25eqtr4di 2851 . . . . . . . 8 (𝑤 = 𝑊 → (ℝHom‘(Scalar‘𝑤)) = 𝐻)
2726fveq1d 6647 . . . . . . 7 (𝑤 = 𝑊 → ((ℝHom‘(Scalar‘𝑤))‘(𝑚‘(𝑓 “ {𝑥}))) = (𝐻‘(𝑚‘(𝑓 “ {𝑥}))))
28 eqidd 2799 . . . . . . 7 (𝑤 = 𝑊𝑥 = 𝑥)
2923, 27, 28oveq123d 7156 . . . . . 6 (𝑤 = 𝑊 → (((ℝHom‘(Scalar‘𝑤))‘(𝑚‘(𝑓 “ {𝑥})))( ·𝑠𝑤)𝑥) = ((𝐻‘(𝑚‘(𝑓 “ {𝑥}))) · 𝑥))
3020, 29mpteq12dv 5115 . . . . 5 (𝑤 = 𝑊 → (𝑥 ∈ (ran 𝑓 ∖ {(0g𝑤)}) ↦ (((ℝHom‘(Scalar‘𝑤))‘(𝑚‘(𝑓 “ {𝑥})))( ·𝑠𝑤)𝑥)) = (𝑥 ∈ (ran 𝑓 ∖ { 0 }) ↦ ((𝐻‘(𝑚‘(𝑓 “ {𝑥}))) · 𝑥)))
3119, 30oveq12d 7153 . . . 4 (𝑤 = 𝑊 → (𝑤 Σg (𝑥 ∈ (ran 𝑓 ∖ {(0g𝑤)}) ↦ (((ℝHom‘(Scalar‘𝑤))‘(𝑚‘(𝑓 “ {𝑥})))( ·𝑠𝑤)𝑥))) = (𝑊 Σg (𝑥 ∈ (ran 𝑓 ∖ { 0 }) ↦ ((𝐻‘(𝑚‘(𝑓 “ {𝑥}))) · 𝑥))))
3218, 31mpteq12dv 5115 . . 3 (𝑤 = 𝑊 → (𝑓 ∈ {𝑔 ∈ (dom 𝑚MblFnM(sigaGen‘(TopOpen‘𝑤))) ∣ (ran 𝑔 ∈ Fin ∧ ∀𝑥 ∈ (ran 𝑔 ∖ {(0g𝑤)})(𝑚‘(𝑔 “ {𝑥})) ∈ (0[,)+∞))} ↦ (𝑤 Σg (𝑥 ∈ (ran 𝑓 ∖ {(0g𝑤)}) ↦ (((ℝHom‘(Scalar‘𝑤))‘(𝑚‘(𝑓 “ {𝑥})))( ·𝑠𝑤)𝑥)))) = (𝑓 ∈ {𝑔 ∈ (dom 𝑚MblFnM𝑆) ∣ (ran 𝑔 ∈ Fin ∧ ∀𝑥 ∈ (ran 𝑔 ∖ { 0 })(𝑚‘(𝑔 “ {𝑥})) ∈ (0[,)+∞))} ↦ (𝑊 Σg (𝑥 ∈ (ran 𝑓 ∖ { 0 }) ↦ ((𝐻‘(𝑚‘(𝑓 “ {𝑥}))) · 𝑥)))))
33 dmeq 5736 . . . . . 6 (𝑚 = 𝑀 → dom 𝑚 = dom 𝑀)
3433oveq1d 7150 . . . . 5 (𝑚 = 𝑀 → (dom 𝑚MblFnM𝑆) = (dom 𝑀MblFnM𝑆))
35 fveq1 6644 . . . . . . . 8 (𝑚 = 𝑀 → (𝑚‘(𝑔 “ {𝑥})) = (𝑀‘(𝑔 “ {𝑥})))
3635eleq1d 2874 . . . . . . 7 (𝑚 = 𝑀 → ((𝑚‘(𝑔 “ {𝑥})) ∈ (0[,)+∞) ↔ (𝑀‘(𝑔 “ {𝑥})) ∈ (0[,)+∞)))
3736ralbidv 3162 . . . . . 6 (𝑚 = 𝑀 → (∀𝑥 ∈ (ran 𝑔 ∖ { 0 })(𝑚‘(𝑔 “ {𝑥})) ∈ (0[,)+∞) ↔ ∀𝑥 ∈ (ran 𝑔 ∖ { 0 })(𝑀‘(𝑔 “ {𝑥})) ∈ (0[,)+∞)))
3837anbi2d 631 . . . . 5 (𝑚 = 𝑀 → ((ran 𝑔 ∈ Fin ∧ ∀𝑥 ∈ (ran 𝑔 ∖ { 0 })(𝑚‘(𝑔 “ {𝑥})) ∈ (0[,)+∞)) ↔ (ran 𝑔 ∈ Fin ∧ ∀𝑥 ∈ (ran 𝑔 ∖ { 0 })(𝑀‘(𝑔 “ {𝑥})) ∈ (0[,)+∞))))
3934, 38rabeqbidv 3433 . . . 4 (𝑚 = 𝑀 → {𝑔 ∈ (dom 𝑚MblFnM𝑆) ∣ (ran 𝑔 ∈ Fin ∧ ∀𝑥 ∈ (ran 𝑔 ∖ { 0 })(𝑚‘(𝑔 “ {𝑥})) ∈ (0[,)+∞))} = {𝑔 ∈ (dom 𝑀MblFnM𝑆) ∣ (ran 𝑔 ∈ Fin ∧ ∀𝑥 ∈ (ran 𝑔 ∖ { 0 })(𝑀‘(𝑔 “ {𝑥})) ∈ (0[,)+∞))})
40 simpl 486 . . . . . . . . 9 ((𝑚 = 𝑀𝑥 ∈ (ran 𝑓 ∖ { 0 })) → 𝑚 = 𝑀)
4140fveq1d 6647 . . . . . . . 8 ((𝑚 = 𝑀𝑥 ∈ (ran 𝑓 ∖ { 0 })) → (𝑚‘(𝑓 “ {𝑥})) = (𝑀‘(𝑓 “ {𝑥})))
4241fveq2d 6649 . . . . . . 7 ((𝑚 = 𝑀𝑥 ∈ (ran 𝑓 ∖ { 0 })) → (𝐻‘(𝑚‘(𝑓 “ {𝑥}))) = (𝐻‘(𝑀‘(𝑓 “ {𝑥}))))
4342oveq1d 7150 . . . . . 6 ((𝑚 = 𝑀𝑥 ∈ (ran 𝑓 ∖ { 0 })) → ((𝐻‘(𝑚‘(𝑓 “ {𝑥}))) · 𝑥) = ((𝐻‘(𝑀‘(𝑓 “ {𝑥}))) · 𝑥))
4443mpteq2dva 5125 . . . . 5 (𝑚 = 𝑀 → (𝑥 ∈ (ran 𝑓 ∖ { 0 }) ↦ ((𝐻‘(𝑚‘(𝑓 “ {𝑥}))) · 𝑥)) = (𝑥 ∈ (ran 𝑓 ∖ { 0 }) ↦ ((𝐻‘(𝑀‘(𝑓 “ {𝑥}))) · 𝑥)))
4544oveq2d 7151 . . . 4 (𝑚 = 𝑀 → (𝑊 Σg (𝑥 ∈ (ran 𝑓 ∖ { 0 }) ↦ ((𝐻‘(𝑚‘(𝑓 “ {𝑥}))) · 𝑥))) = (𝑊 Σg (𝑥 ∈ (ran 𝑓 ∖ { 0 }) ↦ ((𝐻‘(𝑀‘(𝑓 “ {𝑥}))) · 𝑥))))
4639, 45mpteq12dv 5115 . . 3 (𝑚 = 𝑀 → (𝑓 ∈ {𝑔 ∈ (dom 𝑚MblFnM𝑆) ∣ (ran 𝑔 ∈ Fin ∧ ∀𝑥 ∈ (ran 𝑔 ∖ { 0 })(𝑚‘(𝑔 “ {𝑥})) ∈ (0[,)+∞))} ↦ (𝑊 Σg (𝑥 ∈ (ran 𝑓 ∖ { 0 }) ↦ ((𝐻‘(𝑚‘(𝑓 “ {𝑥}))) · 𝑥)))) = (𝑓 ∈ {𝑔 ∈ (dom 𝑀MblFnM𝑆) ∣ (ran 𝑔 ∈ Fin ∧ ∀𝑥 ∈ (ran 𝑔 ∖ { 0 })(𝑀‘(𝑔 “ {𝑥})) ∈ (0[,)+∞))} ↦ (𝑊 Σg (𝑥 ∈ (ran 𝑓 ∖ { 0 }) ↦ ((𝐻‘(𝑀‘(𝑓 “ {𝑥}))) · 𝑥)))))
47 df-sitg 31698 . . 3 sitg = (𝑤 ∈ V, 𝑚 ran measures ↦ (𝑓 ∈ {𝑔 ∈ (dom 𝑚MblFnM(sigaGen‘(TopOpen‘𝑤))) ∣ (ran 𝑔 ∈ Fin ∧ ∀𝑥 ∈ (ran 𝑔 ∖ {(0g𝑤)})(𝑚‘(𝑔 “ {𝑥})) ∈ (0[,)+∞))} ↦ (𝑤 Σg (𝑥 ∈ (ran 𝑓 ∖ {(0g𝑤)}) ↦ (((ℝHom‘(Scalar‘𝑤))‘(𝑚‘(𝑓 “ {𝑥})))( ·𝑠𝑤)𝑥)))))
48 ovex 7168 . . . 4 (dom 𝑀MblFnM𝑆) ∈ V
4948mptrabex 6965 . . 3 (𝑓 ∈ {𝑔 ∈ (dom 𝑀MblFnM𝑆) ∣ (ran 𝑔 ∈ Fin ∧ ∀𝑥 ∈ (ran 𝑔 ∖ { 0 })(𝑀‘(𝑔 “ {𝑥})) ∈ (0[,)+∞))} ↦ (𝑊 Σg (𝑥 ∈ (ran 𝑓 ∖ { 0 }) ↦ ((𝐻‘(𝑀‘(𝑓 “ {𝑥}))) · 𝑥)))) ∈ V
5032, 46, 47, 49ovmpo 7289 . 2 ((𝑊 ∈ V ∧ 𝑀 ran measures) → (𝑊sitg𝑀) = (𝑓 ∈ {𝑔 ∈ (dom 𝑀MblFnM𝑆) ∣ (ran 𝑔 ∈ Fin ∧ ∀𝑥 ∈ (ran 𝑔 ∖ { 0 })(𝑀‘(𝑔 “ {𝑥})) ∈ (0[,)+∞))} ↦ (𝑊 Σg (𝑥 ∈ (ran 𝑓 ∖ { 0 }) ↦ ((𝐻‘(𝑀‘(𝑓 “ {𝑥}))) · 𝑥)))))
512, 3, 50syl2anc 587 1 (𝜑 → (𝑊sitg𝑀) = (𝑓 ∈ {𝑔 ∈ (dom 𝑀MblFnM𝑆) ∣ (ran 𝑔 ∈ Fin ∧ ∀𝑥 ∈ (ran 𝑔 ∖ { 0 })(𝑀‘(𝑔 “ {𝑥})) ∈ (0[,)+∞))} ↦ (𝑊 Σg (𝑥 ∈ (ran 𝑓 ∖ { 0 }) ↦ ((𝐻‘(𝑀‘(𝑓 “ {𝑥}))) · 𝑥)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1538  wcel 2111  wral 3106  {crab 3110  Vcvv 3441  cdif 3878  {csn 4525   cuni 4800  cmpt 5110  ccnv 5518  dom cdm 5519  ran crn 5520  cima 5522  cfv 6324  (class class class)co 7135  Fincfn 8492  0cc0 10526  +∞cpnf 10661  [,)cico 12728  Basecbs 16475  Scalarcsca 16560   ·𝑠 cvsca 16561  TopOpenctopn 16687  0gc0g 16705   Σg cgsu 16706  ℝHomcrrh 31344  sigaGencsigagen 31507  measurescmeas 31564  MblFnMcmbfm 31618  sitgcsitg 31697
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pr 5295
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5425  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-ov 7138  df-oprab 7139  df-mpo 7140  df-sitg 31698
This theorem is referenced by:  issibf  31701  sitgfval  31709  sitgf  31715
  Copyright terms: Public domain W3C validator