Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sitgval Structured version   Visualization version   GIF version

Theorem sitgval 34345
Description: Value of the simple function integral builder for a given space 𝑊 and measure 𝑀. (Contributed by Thierry Arnoux, 30-Jan-2018.)
Hypotheses
Ref Expression
sitgval.b 𝐵 = (Base‘𝑊)
sitgval.j 𝐽 = (TopOpen‘𝑊)
sitgval.s 𝑆 = (sigaGen‘𝐽)
sitgval.0 0 = (0g𝑊)
sitgval.x · = ( ·𝑠𝑊)
sitgval.h 𝐻 = (ℝHom‘(Scalar‘𝑊))
sitgval.1 (𝜑𝑊𝑉)
sitgval.2 (𝜑𝑀 ran measures)
Assertion
Ref Expression
sitgval (𝜑 → (𝑊sitg𝑀) = (𝑓 ∈ {𝑔 ∈ (dom 𝑀MblFnM𝑆) ∣ (ran 𝑔 ∈ Fin ∧ ∀𝑥 ∈ (ran 𝑔 ∖ { 0 })(𝑀‘(𝑔 “ {𝑥})) ∈ (0[,)+∞))} ↦ (𝑊 Σg (𝑥 ∈ (ran 𝑓 ∖ { 0 }) ↦ ((𝐻‘(𝑀‘(𝑓 “ {𝑥}))) · 𝑥)))))
Distinct variable groups:   𝐵,𝑓   𝑓,𝑔,𝑥   𝑓,𝐻   𝑓,𝑀,𝑔,𝑥   𝑆,𝑓,𝑔   𝑓,𝑊,𝑔,𝑥   0 ,𝑓,𝑔,𝑥   · ,𝑓
Allowed substitution hints:   𝜑(𝑥,𝑓,𝑔)   𝐵(𝑥,𝑔)   𝑆(𝑥)   · (𝑥,𝑔)   𝐻(𝑥,𝑔)   𝐽(𝑥,𝑓,𝑔)   𝑉(𝑥,𝑓,𝑔)

Proof of Theorem sitgval
Dummy variables 𝑚 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sitgval.1 . . 3 (𝜑𝑊𝑉)
21elexd 3460 . 2 (𝜑𝑊 ∈ V)
3 sitgval.2 . 2 (𝜑𝑀 ran measures)
4 2fveq3 6827 . . . . . . 7 (𝑤 = 𝑊 → (sigaGen‘(TopOpen‘𝑤)) = (sigaGen‘(TopOpen‘𝑊)))
5 sitgval.s . . . . . . . 8 𝑆 = (sigaGen‘𝐽)
6 sitgval.j . . . . . . . . 9 𝐽 = (TopOpen‘𝑊)
76fveq2i 6825 . . . . . . . 8 (sigaGen‘𝐽) = (sigaGen‘(TopOpen‘𝑊))
85, 7eqtri 2754 . . . . . . 7 𝑆 = (sigaGen‘(TopOpen‘𝑊))
94, 8eqtr4di 2784 . . . . . 6 (𝑤 = 𝑊 → (sigaGen‘(TopOpen‘𝑤)) = 𝑆)
109oveq2d 7362 . . . . 5 (𝑤 = 𝑊 → (dom 𝑚MblFnM(sigaGen‘(TopOpen‘𝑤))) = (dom 𝑚MblFnM𝑆))
11 fveq2 6822 . . . . . . . . . 10 (𝑤 = 𝑊 → (0g𝑤) = (0g𝑊))
12 sitgval.0 . . . . . . . . . 10 0 = (0g𝑊)
1311, 12eqtr4di 2784 . . . . . . . . 9 (𝑤 = 𝑊 → (0g𝑤) = 0 )
1413sneqd 4585 . . . . . . . 8 (𝑤 = 𝑊 → {(0g𝑤)} = { 0 })
1514difeq2d 4073 . . . . . . 7 (𝑤 = 𝑊 → (ran 𝑔 ∖ {(0g𝑤)}) = (ran 𝑔 ∖ { 0 }))
1615raleqdv 3292 . . . . . 6 (𝑤 = 𝑊 → (∀𝑥 ∈ (ran 𝑔 ∖ {(0g𝑤)})(𝑚‘(𝑔 “ {𝑥})) ∈ (0[,)+∞) ↔ ∀𝑥 ∈ (ran 𝑔 ∖ { 0 })(𝑚‘(𝑔 “ {𝑥})) ∈ (0[,)+∞)))
1716anbi2d 630 . . . . 5 (𝑤 = 𝑊 → ((ran 𝑔 ∈ Fin ∧ ∀𝑥 ∈ (ran 𝑔 ∖ {(0g𝑤)})(𝑚‘(𝑔 “ {𝑥})) ∈ (0[,)+∞)) ↔ (ran 𝑔 ∈ Fin ∧ ∀𝑥 ∈ (ran 𝑔 ∖ { 0 })(𝑚‘(𝑔 “ {𝑥})) ∈ (0[,)+∞))))
1810, 17rabeqbidv 3413 . . . 4 (𝑤 = 𝑊 → {𝑔 ∈ (dom 𝑚MblFnM(sigaGen‘(TopOpen‘𝑤))) ∣ (ran 𝑔 ∈ Fin ∧ ∀𝑥 ∈ (ran 𝑔 ∖ {(0g𝑤)})(𝑚‘(𝑔 “ {𝑥})) ∈ (0[,)+∞))} = {𝑔 ∈ (dom 𝑚MblFnM𝑆) ∣ (ran 𝑔 ∈ Fin ∧ ∀𝑥 ∈ (ran 𝑔 ∖ { 0 })(𝑚‘(𝑔 “ {𝑥})) ∈ (0[,)+∞))})
19 id 22 . . . . 5 (𝑤 = 𝑊𝑤 = 𝑊)
2014difeq2d 4073 . . . . . 6 (𝑤 = 𝑊 → (ran 𝑓 ∖ {(0g𝑤)}) = (ran 𝑓 ∖ { 0 }))
21 fveq2 6822 . . . . . . . 8 (𝑤 = 𝑊 → ( ·𝑠𝑤) = ( ·𝑠𝑊))
22 sitgval.x . . . . . . . 8 · = ( ·𝑠𝑊)
2321, 22eqtr4di 2784 . . . . . . 7 (𝑤 = 𝑊 → ( ·𝑠𝑤) = · )
24 2fveq3 6827 . . . . . . . . 9 (𝑤 = 𝑊 → (ℝHom‘(Scalar‘𝑤)) = (ℝHom‘(Scalar‘𝑊)))
25 sitgval.h . . . . . . . . 9 𝐻 = (ℝHom‘(Scalar‘𝑊))
2624, 25eqtr4di 2784 . . . . . . . 8 (𝑤 = 𝑊 → (ℝHom‘(Scalar‘𝑤)) = 𝐻)
2726fveq1d 6824 . . . . . . 7 (𝑤 = 𝑊 → ((ℝHom‘(Scalar‘𝑤))‘(𝑚‘(𝑓 “ {𝑥}))) = (𝐻‘(𝑚‘(𝑓 “ {𝑥}))))
28 eqidd 2732 . . . . . . 7 (𝑤 = 𝑊𝑥 = 𝑥)
2923, 27, 28oveq123d 7367 . . . . . 6 (𝑤 = 𝑊 → (((ℝHom‘(Scalar‘𝑤))‘(𝑚‘(𝑓 “ {𝑥})))( ·𝑠𝑤)𝑥) = ((𝐻‘(𝑚‘(𝑓 “ {𝑥}))) · 𝑥))
3020, 29mpteq12dv 5176 . . . . 5 (𝑤 = 𝑊 → (𝑥 ∈ (ran 𝑓 ∖ {(0g𝑤)}) ↦ (((ℝHom‘(Scalar‘𝑤))‘(𝑚‘(𝑓 “ {𝑥})))( ·𝑠𝑤)𝑥)) = (𝑥 ∈ (ran 𝑓 ∖ { 0 }) ↦ ((𝐻‘(𝑚‘(𝑓 “ {𝑥}))) · 𝑥)))
3119, 30oveq12d 7364 . . . 4 (𝑤 = 𝑊 → (𝑤 Σg (𝑥 ∈ (ran 𝑓 ∖ {(0g𝑤)}) ↦ (((ℝHom‘(Scalar‘𝑤))‘(𝑚‘(𝑓 “ {𝑥})))( ·𝑠𝑤)𝑥))) = (𝑊 Σg (𝑥 ∈ (ran 𝑓 ∖ { 0 }) ↦ ((𝐻‘(𝑚‘(𝑓 “ {𝑥}))) · 𝑥))))
3218, 31mpteq12dv 5176 . . 3 (𝑤 = 𝑊 → (𝑓 ∈ {𝑔 ∈ (dom 𝑚MblFnM(sigaGen‘(TopOpen‘𝑤))) ∣ (ran 𝑔 ∈ Fin ∧ ∀𝑥 ∈ (ran 𝑔 ∖ {(0g𝑤)})(𝑚‘(𝑔 “ {𝑥})) ∈ (0[,)+∞))} ↦ (𝑤 Σg (𝑥 ∈ (ran 𝑓 ∖ {(0g𝑤)}) ↦ (((ℝHom‘(Scalar‘𝑤))‘(𝑚‘(𝑓 “ {𝑥})))( ·𝑠𝑤)𝑥)))) = (𝑓 ∈ {𝑔 ∈ (dom 𝑚MblFnM𝑆) ∣ (ran 𝑔 ∈ Fin ∧ ∀𝑥 ∈ (ran 𝑔 ∖ { 0 })(𝑚‘(𝑔 “ {𝑥})) ∈ (0[,)+∞))} ↦ (𝑊 Σg (𝑥 ∈ (ran 𝑓 ∖ { 0 }) ↦ ((𝐻‘(𝑚‘(𝑓 “ {𝑥}))) · 𝑥)))))
33 dmeq 5842 . . . . . 6 (𝑚 = 𝑀 → dom 𝑚 = dom 𝑀)
3433oveq1d 7361 . . . . 5 (𝑚 = 𝑀 → (dom 𝑚MblFnM𝑆) = (dom 𝑀MblFnM𝑆))
35 fveq1 6821 . . . . . . . 8 (𝑚 = 𝑀 → (𝑚‘(𝑔 “ {𝑥})) = (𝑀‘(𝑔 “ {𝑥})))
3635eleq1d 2816 . . . . . . 7 (𝑚 = 𝑀 → ((𝑚‘(𝑔 “ {𝑥})) ∈ (0[,)+∞) ↔ (𝑀‘(𝑔 “ {𝑥})) ∈ (0[,)+∞)))
3736ralbidv 3155 . . . . . 6 (𝑚 = 𝑀 → (∀𝑥 ∈ (ran 𝑔 ∖ { 0 })(𝑚‘(𝑔 “ {𝑥})) ∈ (0[,)+∞) ↔ ∀𝑥 ∈ (ran 𝑔 ∖ { 0 })(𝑀‘(𝑔 “ {𝑥})) ∈ (0[,)+∞)))
3837anbi2d 630 . . . . 5 (𝑚 = 𝑀 → ((ran 𝑔 ∈ Fin ∧ ∀𝑥 ∈ (ran 𝑔 ∖ { 0 })(𝑚‘(𝑔 “ {𝑥})) ∈ (0[,)+∞)) ↔ (ran 𝑔 ∈ Fin ∧ ∀𝑥 ∈ (ran 𝑔 ∖ { 0 })(𝑀‘(𝑔 “ {𝑥})) ∈ (0[,)+∞))))
3934, 38rabeqbidv 3413 . . . 4 (𝑚 = 𝑀 → {𝑔 ∈ (dom 𝑚MblFnM𝑆) ∣ (ran 𝑔 ∈ Fin ∧ ∀𝑥 ∈ (ran 𝑔 ∖ { 0 })(𝑚‘(𝑔 “ {𝑥})) ∈ (0[,)+∞))} = {𝑔 ∈ (dom 𝑀MblFnM𝑆) ∣ (ran 𝑔 ∈ Fin ∧ ∀𝑥 ∈ (ran 𝑔 ∖ { 0 })(𝑀‘(𝑔 “ {𝑥})) ∈ (0[,)+∞))})
40 simpl 482 . . . . . . . . 9 ((𝑚 = 𝑀𝑥 ∈ (ran 𝑓 ∖ { 0 })) → 𝑚 = 𝑀)
4140fveq1d 6824 . . . . . . . 8 ((𝑚 = 𝑀𝑥 ∈ (ran 𝑓 ∖ { 0 })) → (𝑚‘(𝑓 “ {𝑥})) = (𝑀‘(𝑓 “ {𝑥})))
4241fveq2d 6826 . . . . . . 7 ((𝑚 = 𝑀𝑥 ∈ (ran 𝑓 ∖ { 0 })) → (𝐻‘(𝑚‘(𝑓 “ {𝑥}))) = (𝐻‘(𝑀‘(𝑓 “ {𝑥}))))
4342oveq1d 7361 . . . . . 6 ((𝑚 = 𝑀𝑥 ∈ (ran 𝑓 ∖ { 0 })) → ((𝐻‘(𝑚‘(𝑓 “ {𝑥}))) · 𝑥) = ((𝐻‘(𝑀‘(𝑓 “ {𝑥}))) · 𝑥))
4443mpteq2dva 5182 . . . . 5 (𝑚 = 𝑀 → (𝑥 ∈ (ran 𝑓 ∖ { 0 }) ↦ ((𝐻‘(𝑚‘(𝑓 “ {𝑥}))) · 𝑥)) = (𝑥 ∈ (ran 𝑓 ∖ { 0 }) ↦ ((𝐻‘(𝑀‘(𝑓 “ {𝑥}))) · 𝑥)))
4544oveq2d 7362 . . . 4 (𝑚 = 𝑀 → (𝑊 Σg (𝑥 ∈ (ran 𝑓 ∖ { 0 }) ↦ ((𝐻‘(𝑚‘(𝑓 “ {𝑥}))) · 𝑥))) = (𝑊 Σg (𝑥 ∈ (ran 𝑓 ∖ { 0 }) ↦ ((𝐻‘(𝑀‘(𝑓 “ {𝑥}))) · 𝑥))))
4639, 45mpteq12dv 5176 . . 3 (𝑚 = 𝑀 → (𝑓 ∈ {𝑔 ∈ (dom 𝑚MblFnM𝑆) ∣ (ran 𝑔 ∈ Fin ∧ ∀𝑥 ∈ (ran 𝑔 ∖ { 0 })(𝑚‘(𝑔 “ {𝑥})) ∈ (0[,)+∞))} ↦ (𝑊 Σg (𝑥 ∈ (ran 𝑓 ∖ { 0 }) ↦ ((𝐻‘(𝑚‘(𝑓 “ {𝑥}))) · 𝑥)))) = (𝑓 ∈ {𝑔 ∈ (dom 𝑀MblFnM𝑆) ∣ (ran 𝑔 ∈ Fin ∧ ∀𝑥 ∈ (ran 𝑔 ∖ { 0 })(𝑀‘(𝑔 “ {𝑥})) ∈ (0[,)+∞))} ↦ (𝑊 Σg (𝑥 ∈ (ran 𝑓 ∖ { 0 }) ↦ ((𝐻‘(𝑀‘(𝑓 “ {𝑥}))) · 𝑥)))))
47 df-sitg 34343 . . 3 sitg = (𝑤 ∈ V, 𝑚 ran measures ↦ (𝑓 ∈ {𝑔 ∈ (dom 𝑚MblFnM(sigaGen‘(TopOpen‘𝑤))) ∣ (ran 𝑔 ∈ Fin ∧ ∀𝑥 ∈ (ran 𝑔 ∖ {(0g𝑤)})(𝑚‘(𝑔 “ {𝑥})) ∈ (0[,)+∞))} ↦ (𝑤 Σg (𝑥 ∈ (ran 𝑓 ∖ {(0g𝑤)}) ↦ (((ℝHom‘(Scalar‘𝑤))‘(𝑚‘(𝑓 “ {𝑥})))( ·𝑠𝑤)𝑥)))))
48 ovex 7379 . . . 4 (dom 𝑀MblFnM𝑆) ∈ V
4948mptrabex 7159 . . 3 (𝑓 ∈ {𝑔 ∈ (dom 𝑀MblFnM𝑆) ∣ (ran 𝑔 ∈ Fin ∧ ∀𝑥 ∈ (ran 𝑔 ∖ { 0 })(𝑀‘(𝑔 “ {𝑥})) ∈ (0[,)+∞))} ↦ (𝑊 Σg (𝑥 ∈ (ran 𝑓 ∖ { 0 }) ↦ ((𝐻‘(𝑀‘(𝑓 “ {𝑥}))) · 𝑥)))) ∈ V
5032, 46, 47, 49ovmpo 7506 . 2 ((𝑊 ∈ V ∧ 𝑀 ran measures) → (𝑊sitg𝑀) = (𝑓 ∈ {𝑔 ∈ (dom 𝑀MblFnM𝑆) ∣ (ran 𝑔 ∈ Fin ∧ ∀𝑥 ∈ (ran 𝑔 ∖ { 0 })(𝑀‘(𝑔 “ {𝑥})) ∈ (0[,)+∞))} ↦ (𝑊 Σg (𝑥 ∈ (ran 𝑓 ∖ { 0 }) ↦ ((𝐻‘(𝑀‘(𝑓 “ {𝑥}))) · 𝑥)))))
512, 3, 50syl2anc 584 1 (𝜑 → (𝑊sitg𝑀) = (𝑓 ∈ {𝑔 ∈ (dom 𝑀MblFnM𝑆) ∣ (ran 𝑔 ∈ Fin ∧ ∀𝑥 ∈ (ran 𝑔 ∖ { 0 })(𝑀‘(𝑔 “ {𝑥})) ∈ (0[,)+∞))} ↦ (𝑊 Σg (𝑥 ∈ (ran 𝑓 ∖ { 0 }) ↦ ((𝐻‘(𝑀‘(𝑓 “ {𝑥}))) · 𝑥)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  wral 3047  {crab 3395  Vcvv 3436  cdif 3894  {csn 4573   cuni 4856  cmpt 5170  ccnv 5613  dom cdm 5614  ran crn 5615  cima 5617  cfv 6481  (class class class)co 7346  Fincfn 8869  0cc0 11006  +∞cpnf 11143  [,)cico 13247  Basecbs 17120  Scalarcsca 17164   ·𝑠 cvsca 17165  TopOpenctopn 17325  0gc0g 17343   Σg cgsu 17344  ℝHomcrrh 34006  sigaGencsigagen 34151  measurescmeas 34208  MblFnMcmbfm 34262  sitgcsitg 34342
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pr 5368
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-sitg 34343
This theorem is referenced by:  issibf  34346  sitgfval  34354  sitgf  34360
  Copyright terms: Public domain W3C validator