Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sitgval Structured version   Visualization version   GIF version

Theorem sitgval 33629
Description: Value of the simple function integral builder for a given space π‘Š and measure 𝑀. (Contributed by Thierry Arnoux, 30-Jan-2018.)
Hypotheses
Ref Expression
sitgval.b 𝐡 = (Baseβ€˜π‘Š)
sitgval.j 𝐽 = (TopOpenβ€˜π‘Š)
sitgval.s 𝑆 = (sigaGenβ€˜π½)
sitgval.0 0 = (0gβ€˜π‘Š)
sitgval.x Β· = ( ·𝑠 β€˜π‘Š)
sitgval.h 𝐻 = (ℝHomβ€˜(Scalarβ€˜π‘Š))
sitgval.1 (πœ‘ β†’ π‘Š ∈ 𝑉)
sitgval.2 (πœ‘ β†’ 𝑀 ∈ βˆͺ ran measures)
Assertion
Ref Expression
sitgval (πœ‘ β†’ (π‘Šsitg𝑀) = (𝑓 ∈ {𝑔 ∈ (dom 𝑀MblFnM𝑆) ∣ (ran 𝑔 ∈ Fin ∧ βˆ€π‘₯ ∈ (ran 𝑔 βˆ– { 0 })(π‘€β€˜(◑𝑔 β€œ {π‘₯})) ∈ (0[,)+∞))} ↦ (π‘Š Ξ£g (π‘₯ ∈ (ran 𝑓 βˆ– { 0 }) ↦ ((π»β€˜(π‘€β€˜(◑𝑓 β€œ {π‘₯}))) Β· π‘₯)))))
Distinct variable groups:   𝐡,𝑓   𝑓,𝑔,π‘₯   𝑓,𝐻   𝑓,𝑀,𝑔,π‘₯   𝑆,𝑓,𝑔   𝑓,π‘Š,𝑔,π‘₯   0 ,𝑓,𝑔,π‘₯   Β· ,𝑓
Allowed substitution hints:   πœ‘(π‘₯,𝑓,𝑔)   𝐡(π‘₯,𝑔)   𝑆(π‘₯)   Β· (π‘₯,𝑔)   𝐻(π‘₯,𝑔)   𝐽(π‘₯,𝑓,𝑔)   𝑉(π‘₯,𝑓,𝑔)

Proof of Theorem sitgval
Dummy variables π‘š 𝑀 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sitgval.1 . . 3 (πœ‘ β†’ π‘Š ∈ 𝑉)
21elexd 3493 . 2 (πœ‘ β†’ π‘Š ∈ V)
3 sitgval.2 . 2 (πœ‘ β†’ 𝑀 ∈ βˆͺ ran measures)
4 2fveq3 6895 . . . . . . 7 (𝑀 = π‘Š β†’ (sigaGenβ€˜(TopOpenβ€˜π‘€)) = (sigaGenβ€˜(TopOpenβ€˜π‘Š)))
5 sitgval.s . . . . . . . 8 𝑆 = (sigaGenβ€˜π½)
6 sitgval.j . . . . . . . . 9 𝐽 = (TopOpenβ€˜π‘Š)
76fveq2i 6893 . . . . . . . 8 (sigaGenβ€˜π½) = (sigaGenβ€˜(TopOpenβ€˜π‘Š))
85, 7eqtri 2758 . . . . . . 7 𝑆 = (sigaGenβ€˜(TopOpenβ€˜π‘Š))
94, 8eqtr4di 2788 . . . . . 6 (𝑀 = π‘Š β†’ (sigaGenβ€˜(TopOpenβ€˜π‘€)) = 𝑆)
109oveq2d 7427 . . . . 5 (𝑀 = π‘Š β†’ (dom π‘šMblFnM(sigaGenβ€˜(TopOpenβ€˜π‘€))) = (dom π‘šMblFnM𝑆))
11 fveq2 6890 . . . . . . . . . 10 (𝑀 = π‘Š β†’ (0gβ€˜π‘€) = (0gβ€˜π‘Š))
12 sitgval.0 . . . . . . . . . 10 0 = (0gβ€˜π‘Š)
1311, 12eqtr4di 2788 . . . . . . . . 9 (𝑀 = π‘Š β†’ (0gβ€˜π‘€) = 0 )
1413sneqd 4639 . . . . . . . 8 (𝑀 = π‘Š β†’ {(0gβ€˜π‘€)} = { 0 })
1514difeq2d 4121 . . . . . . 7 (𝑀 = π‘Š β†’ (ran 𝑔 βˆ– {(0gβ€˜π‘€)}) = (ran 𝑔 βˆ– { 0 }))
1615raleqdv 3323 . . . . . 6 (𝑀 = π‘Š β†’ (βˆ€π‘₯ ∈ (ran 𝑔 βˆ– {(0gβ€˜π‘€)})(π‘šβ€˜(◑𝑔 β€œ {π‘₯})) ∈ (0[,)+∞) ↔ βˆ€π‘₯ ∈ (ran 𝑔 βˆ– { 0 })(π‘šβ€˜(◑𝑔 β€œ {π‘₯})) ∈ (0[,)+∞)))
1716anbi2d 627 . . . . 5 (𝑀 = π‘Š β†’ ((ran 𝑔 ∈ Fin ∧ βˆ€π‘₯ ∈ (ran 𝑔 βˆ– {(0gβ€˜π‘€)})(π‘šβ€˜(◑𝑔 β€œ {π‘₯})) ∈ (0[,)+∞)) ↔ (ran 𝑔 ∈ Fin ∧ βˆ€π‘₯ ∈ (ran 𝑔 βˆ– { 0 })(π‘šβ€˜(◑𝑔 β€œ {π‘₯})) ∈ (0[,)+∞))))
1810, 17rabeqbidv 3447 . . . 4 (𝑀 = π‘Š β†’ {𝑔 ∈ (dom π‘šMblFnM(sigaGenβ€˜(TopOpenβ€˜π‘€))) ∣ (ran 𝑔 ∈ Fin ∧ βˆ€π‘₯ ∈ (ran 𝑔 βˆ– {(0gβ€˜π‘€)})(π‘šβ€˜(◑𝑔 β€œ {π‘₯})) ∈ (0[,)+∞))} = {𝑔 ∈ (dom π‘šMblFnM𝑆) ∣ (ran 𝑔 ∈ Fin ∧ βˆ€π‘₯ ∈ (ran 𝑔 βˆ– { 0 })(π‘šβ€˜(◑𝑔 β€œ {π‘₯})) ∈ (0[,)+∞))})
19 id 22 . . . . 5 (𝑀 = π‘Š β†’ 𝑀 = π‘Š)
2014difeq2d 4121 . . . . . 6 (𝑀 = π‘Š β†’ (ran 𝑓 βˆ– {(0gβ€˜π‘€)}) = (ran 𝑓 βˆ– { 0 }))
21 fveq2 6890 . . . . . . . 8 (𝑀 = π‘Š β†’ ( ·𝑠 β€˜π‘€) = ( ·𝑠 β€˜π‘Š))
22 sitgval.x . . . . . . . 8 Β· = ( ·𝑠 β€˜π‘Š)
2321, 22eqtr4di 2788 . . . . . . 7 (𝑀 = π‘Š β†’ ( ·𝑠 β€˜π‘€) = Β· )
24 2fveq3 6895 . . . . . . . . 9 (𝑀 = π‘Š β†’ (ℝHomβ€˜(Scalarβ€˜π‘€)) = (ℝHomβ€˜(Scalarβ€˜π‘Š)))
25 sitgval.h . . . . . . . . 9 𝐻 = (ℝHomβ€˜(Scalarβ€˜π‘Š))
2624, 25eqtr4di 2788 . . . . . . . 8 (𝑀 = π‘Š β†’ (ℝHomβ€˜(Scalarβ€˜π‘€)) = 𝐻)
2726fveq1d 6892 . . . . . . 7 (𝑀 = π‘Š β†’ ((ℝHomβ€˜(Scalarβ€˜π‘€))β€˜(π‘šβ€˜(◑𝑓 β€œ {π‘₯}))) = (π»β€˜(π‘šβ€˜(◑𝑓 β€œ {π‘₯}))))
28 eqidd 2731 . . . . . . 7 (𝑀 = π‘Š β†’ π‘₯ = π‘₯)
2923, 27, 28oveq123d 7432 . . . . . 6 (𝑀 = π‘Š β†’ (((ℝHomβ€˜(Scalarβ€˜π‘€))β€˜(π‘šβ€˜(◑𝑓 β€œ {π‘₯})))( ·𝑠 β€˜π‘€)π‘₯) = ((π»β€˜(π‘šβ€˜(◑𝑓 β€œ {π‘₯}))) Β· π‘₯))
3020, 29mpteq12dv 5238 . . . . 5 (𝑀 = π‘Š β†’ (π‘₯ ∈ (ran 𝑓 βˆ– {(0gβ€˜π‘€)}) ↦ (((ℝHomβ€˜(Scalarβ€˜π‘€))β€˜(π‘šβ€˜(◑𝑓 β€œ {π‘₯})))( ·𝑠 β€˜π‘€)π‘₯)) = (π‘₯ ∈ (ran 𝑓 βˆ– { 0 }) ↦ ((π»β€˜(π‘šβ€˜(◑𝑓 β€œ {π‘₯}))) Β· π‘₯)))
3119, 30oveq12d 7429 . . . 4 (𝑀 = π‘Š β†’ (𝑀 Ξ£g (π‘₯ ∈ (ran 𝑓 βˆ– {(0gβ€˜π‘€)}) ↦ (((ℝHomβ€˜(Scalarβ€˜π‘€))β€˜(π‘šβ€˜(◑𝑓 β€œ {π‘₯})))( ·𝑠 β€˜π‘€)π‘₯))) = (π‘Š Ξ£g (π‘₯ ∈ (ran 𝑓 βˆ– { 0 }) ↦ ((π»β€˜(π‘šβ€˜(◑𝑓 β€œ {π‘₯}))) Β· π‘₯))))
3218, 31mpteq12dv 5238 . . 3 (𝑀 = π‘Š β†’ (𝑓 ∈ {𝑔 ∈ (dom π‘šMblFnM(sigaGenβ€˜(TopOpenβ€˜π‘€))) ∣ (ran 𝑔 ∈ Fin ∧ βˆ€π‘₯ ∈ (ran 𝑔 βˆ– {(0gβ€˜π‘€)})(π‘šβ€˜(◑𝑔 β€œ {π‘₯})) ∈ (0[,)+∞))} ↦ (𝑀 Ξ£g (π‘₯ ∈ (ran 𝑓 βˆ– {(0gβ€˜π‘€)}) ↦ (((ℝHomβ€˜(Scalarβ€˜π‘€))β€˜(π‘šβ€˜(◑𝑓 β€œ {π‘₯})))( ·𝑠 β€˜π‘€)π‘₯)))) = (𝑓 ∈ {𝑔 ∈ (dom π‘šMblFnM𝑆) ∣ (ran 𝑔 ∈ Fin ∧ βˆ€π‘₯ ∈ (ran 𝑔 βˆ– { 0 })(π‘šβ€˜(◑𝑔 β€œ {π‘₯})) ∈ (0[,)+∞))} ↦ (π‘Š Ξ£g (π‘₯ ∈ (ran 𝑓 βˆ– { 0 }) ↦ ((π»β€˜(π‘šβ€˜(◑𝑓 β€œ {π‘₯}))) Β· π‘₯)))))
33 dmeq 5902 . . . . . 6 (π‘š = 𝑀 β†’ dom π‘š = dom 𝑀)
3433oveq1d 7426 . . . . 5 (π‘š = 𝑀 β†’ (dom π‘šMblFnM𝑆) = (dom 𝑀MblFnM𝑆))
35 fveq1 6889 . . . . . . . 8 (π‘š = 𝑀 β†’ (π‘šβ€˜(◑𝑔 β€œ {π‘₯})) = (π‘€β€˜(◑𝑔 β€œ {π‘₯})))
3635eleq1d 2816 . . . . . . 7 (π‘š = 𝑀 β†’ ((π‘šβ€˜(◑𝑔 β€œ {π‘₯})) ∈ (0[,)+∞) ↔ (π‘€β€˜(◑𝑔 β€œ {π‘₯})) ∈ (0[,)+∞)))
3736ralbidv 3175 . . . . . 6 (π‘š = 𝑀 β†’ (βˆ€π‘₯ ∈ (ran 𝑔 βˆ– { 0 })(π‘šβ€˜(◑𝑔 β€œ {π‘₯})) ∈ (0[,)+∞) ↔ βˆ€π‘₯ ∈ (ran 𝑔 βˆ– { 0 })(π‘€β€˜(◑𝑔 β€œ {π‘₯})) ∈ (0[,)+∞)))
3837anbi2d 627 . . . . 5 (π‘š = 𝑀 β†’ ((ran 𝑔 ∈ Fin ∧ βˆ€π‘₯ ∈ (ran 𝑔 βˆ– { 0 })(π‘šβ€˜(◑𝑔 β€œ {π‘₯})) ∈ (0[,)+∞)) ↔ (ran 𝑔 ∈ Fin ∧ βˆ€π‘₯ ∈ (ran 𝑔 βˆ– { 0 })(π‘€β€˜(◑𝑔 β€œ {π‘₯})) ∈ (0[,)+∞))))
3934, 38rabeqbidv 3447 . . . 4 (π‘š = 𝑀 β†’ {𝑔 ∈ (dom π‘šMblFnM𝑆) ∣ (ran 𝑔 ∈ Fin ∧ βˆ€π‘₯ ∈ (ran 𝑔 βˆ– { 0 })(π‘šβ€˜(◑𝑔 β€œ {π‘₯})) ∈ (0[,)+∞))} = {𝑔 ∈ (dom 𝑀MblFnM𝑆) ∣ (ran 𝑔 ∈ Fin ∧ βˆ€π‘₯ ∈ (ran 𝑔 βˆ– { 0 })(π‘€β€˜(◑𝑔 β€œ {π‘₯})) ∈ (0[,)+∞))})
40 simpl 481 . . . . . . . . 9 ((π‘š = 𝑀 ∧ π‘₯ ∈ (ran 𝑓 βˆ– { 0 })) β†’ π‘š = 𝑀)
4140fveq1d 6892 . . . . . . . 8 ((π‘š = 𝑀 ∧ π‘₯ ∈ (ran 𝑓 βˆ– { 0 })) β†’ (π‘šβ€˜(◑𝑓 β€œ {π‘₯})) = (π‘€β€˜(◑𝑓 β€œ {π‘₯})))
4241fveq2d 6894 . . . . . . 7 ((π‘š = 𝑀 ∧ π‘₯ ∈ (ran 𝑓 βˆ– { 0 })) β†’ (π»β€˜(π‘šβ€˜(◑𝑓 β€œ {π‘₯}))) = (π»β€˜(π‘€β€˜(◑𝑓 β€œ {π‘₯}))))
4342oveq1d 7426 . . . . . 6 ((π‘š = 𝑀 ∧ π‘₯ ∈ (ran 𝑓 βˆ– { 0 })) β†’ ((π»β€˜(π‘šβ€˜(◑𝑓 β€œ {π‘₯}))) Β· π‘₯) = ((π»β€˜(π‘€β€˜(◑𝑓 β€œ {π‘₯}))) Β· π‘₯))
4443mpteq2dva 5247 . . . . 5 (π‘š = 𝑀 β†’ (π‘₯ ∈ (ran 𝑓 βˆ– { 0 }) ↦ ((π»β€˜(π‘šβ€˜(◑𝑓 β€œ {π‘₯}))) Β· π‘₯)) = (π‘₯ ∈ (ran 𝑓 βˆ– { 0 }) ↦ ((π»β€˜(π‘€β€˜(◑𝑓 β€œ {π‘₯}))) Β· π‘₯)))
4544oveq2d 7427 . . . 4 (π‘š = 𝑀 β†’ (π‘Š Ξ£g (π‘₯ ∈ (ran 𝑓 βˆ– { 0 }) ↦ ((π»β€˜(π‘šβ€˜(◑𝑓 β€œ {π‘₯}))) Β· π‘₯))) = (π‘Š Ξ£g (π‘₯ ∈ (ran 𝑓 βˆ– { 0 }) ↦ ((π»β€˜(π‘€β€˜(◑𝑓 β€œ {π‘₯}))) Β· π‘₯))))
4639, 45mpteq12dv 5238 . . 3 (π‘š = 𝑀 β†’ (𝑓 ∈ {𝑔 ∈ (dom π‘šMblFnM𝑆) ∣ (ran 𝑔 ∈ Fin ∧ βˆ€π‘₯ ∈ (ran 𝑔 βˆ– { 0 })(π‘šβ€˜(◑𝑔 β€œ {π‘₯})) ∈ (0[,)+∞))} ↦ (π‘Š Ξ£g (π‘₯ ∈ (ran 𝑓 βˆ– { 0 }) ↦ ((π»β€˜(π‘šβ€˜(◑𝑓 β€œ {π‘₯}))) Β· π‘₯)))) = (𝑓 ∈ {𝑔 ∈ (dom 𝑀MblFnM𝑆) ∣ (ran 𝑔 ∈ Fin ∧ βˆ€π‘₯ ∈ (ran 𝑔 βˆ– { 0 })(π‘€β€˜(◑𝑔 β€œ {π‘₯})) ∈ (0[,)+∞))} ↦ (π‘Š Ξ£g (π‘₯ ∈ (ran 𝑓 βˆ– { 0 }) ↦ ((π»β€˜(π‘€β€˜(◑𝑓 β€œ {π‘₯}))) Β· π‘₯)))))
47 df-sitg 33627 . . 3 sitg = (𝑀 ∈ V, π‘š ∈ βˆͺ ran measures ↦ (𝑓 ∈ {𝑔 ∈ (dom π‘šMblFnM(sigaGenβ€˜(TopOpenβ€˜π‘€))) ∣ (ran 𝑔 ∈ Fin ∧ βˆ€π‘₯ ∈ (ran 𝑔 βˆ– {(0gβ€˜π‘€)})(π‘šβ€˜(◑𝑔 β€œ {π‘₯})) ∈ (0[,)+∞))} ↦ (𝑀 Ξ£g (π‘₯ ∈ (ran 𝑓 βˆ– {(0gβ€˜π‘€)}) ↦ (((ℝHomβ€˜(Scalarβ€˜π‘€))β€˜(π‘šβ€˜(◑𝑓 β€œ {π‘₯})))( ·𝑠 β€˜π‘€)π‘₯)))))
48 ovex 7444 . . . 4 (dom 𝑀MblFnM𝑆) ∈ V
4948mptrabex 7228 . . 3 (𝑓 ∈ {𝑔 ∈ (dom 𝑀MblFnM𝑆) ∣ (ran 𝑔 ∈ Fin ∧ βˆ€π‘₯ ∈ (ran 𝑔 βˆ– { 0 })(π‘€β€˜(◑𝑔 β€œ {π‘₯})) ∈ (0[,)+∞))} ↦ (π‘Š Ξ£g (π‘₯ ∈ (ran 𝑓 βˆ– { 0 }) ↦ ((π»β€˜(π‘€β€˜(◑𝑓 β€œ {π‘₯}))) Β· π‘₯)))) ∈ V
5032, 46, 47, 49ovmpo 7570 . 2 ((π‘Š ∈ V ∧ 𝑀 ∈ βˆͺ ran measures) β†’ (π‘Šsitg𝑀) = (𝑓 ∈ {𝑔 ∈ (dom 𝑀MblFnM𝑆) ∣ (ran 𝑔 ∈ Fin ∧ βˆ€π‘₯ ∈ (ran 𝑔 βˆ– { 0 })(π‘€β€˜(◑𝑔 β€œ {π‘₯})) ∈ (0[,)+∞))} ↦ (π‘Š Ξ£g (π‘₯ ∈ (ran 𝑓 βˆ– { 0 }) ↦ ((π»β€˜(π‘€β€˜(◑𝑓 β€œ {π‘₯}))) Β· π‘₯)))))
512, 3, 50syl2anc 582 1 (πœ‘ β†’ (π‘Šsitg𝑀) = (𝑓 ∈ {𝑔 ∈ (dom 𝑀MblFnM𝑆) ∣ (ran 𝑔 ∈ Fin ∧ βˆ€π‘₯ ∈ (ran 𝑔 βˆ– { 0 })(π‘€β€˜(◑𝑔 β€œ {π‘₯})) ∈ (0[,)+∞))} ↦ (π‘Š Ξ£g (π‘₯ ∈ (ran 𝑓 βˆ– { 0 }) ↦ ((π»β€˜(π‘€β€˜(◑𝑓 β€œ {π‘₯}))) Β· π‘₯)))))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 394   = wceq 1539   ∈ wcel 2104  βˆ€wral 3059  {crab 3430  Vcvv 3472   βˆ– cdif 3944  {csn 4627  βˆͺ cuni 4907   ↦ cmpt 5230  β—‘ccnv 5674  dom cdm 5675  ran crn 5676   β€œ cima 5678  β€˜cfv 6542  (class class class)co 7411  Fincfn 8941  0cc0 11112  +∞cpnf 11249  [,)cico 13330  Basecbs 17148  Scalarcsca 17204   ·𝑠 cvsca 17205  TopOpenctopn 17371  0gc0g 17389   Ξ£g cgsu 17390  β„Homcrrh 33271  sigaGencsigagen 33434  measurescmeas 33491  MblFnMcmbfm 33545  sitgcsitg 33626
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pr 5426
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ne 2939  df-ral 3060  df-rex 3069  df-reu 3375  df-rab 3431  df-v 3474  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-ov 7414  df-oprab 7415  df-mpo 7416  df-sitg 33627
This theorem is referenced by:  issibf  33630  sitgfval  33638  sitgf  33644
  Copyright terms: Public domain W3C validator