Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sitgval Structured version   Visualization version   GIF version

Theorem sitgval 34330
Description: Value of the simple function integral builder for a given space 𝑊 and measure 𝑀. (Contributed by Thierry Arnoux, 30-Jan-2018.)
Hypotheses
Ref Expression
sitgval.b 𝐵 = (Base‘𝑊)
sitgval.j 𝐽 = (TopOpen‘𝑊)
sitgval.s 𝑆 = (sigaGen‘𝐽)
sitgval.0 0 = (0g𝑊)
sitgval.x · = ( ·𝑠𝑊)
sitgval.h 𝐻 = (ℝHom‘(Scalar‘𝑊))
sitgval.1 (𝜑𝑊𝑉)
sitgval.2 (𝜑𝑀 ran measures)
Assertion
Ref Expression
sitgval (𝜑 → (𝑊sitg𝑀) = (𝑓 ∈ {𝑔 ∈ (dom 𝑀MblFnM𝑆) ∣ (ran 𝑔 ∈ Fin ∧ ∀𝑥 ∈ (ran 𝑔 ∖ { 0 })(𝑀‘(𝑔 “ {𝑥})) ∈ (0[,)+∞))} ↦ (𝑊 Σg (𝑥 ∈ (ran 𝑓 ∖ { 0 }) ↦ ((𝐻‘(𝑀‘(𝑓 “ {𝑥}))) · 𝑥)))))
Distinct variable groups:   𝐵,𝑓   𝑓,𝑔,𝑥   𝑓,𝐻   𝑓,𝑀,𝑔,𝑥   𝑆,𝑓,𝑔   𝑓,𝑊,𝑔,𝑥   0 ,𝑓,𝑔,𝑥   · ,𝑓
Allowed substitution hints:   𝜑(𝑥,𝑓,𝑔)   𝐵(𝑥,𝑔)   𝑆(𝑥)   · (𝑥,𝑔)   𝐻(𝑥,𝑔)   𝐽(𝑥,𝑓,𝑔)   𝑉(𝑥,𝑓,𝑔)

Proof of Theorem sitgval
Dummy variables 𝑚 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sitgval.1 . . 3 (𝜑𝑊𝑉)
21elexd 3474 . 2 (𝜑𝑊 ∈ V)
3 sitgval.2 . 2 (𝜑𝑀 ran measures)
4 2fveq3 6866 . . . . . . 7 (𝑤 = 𝑊 → (sigaGen‘(TopOpen‘𝑤)) = (sigaGen‘(TopOpen‘𝑊)))
5 sitgval.s . . . . . . . 8 𝑆 = (sigaGen‘𝐽)
6 sitgval.j . . . . . . . . 9 𝐽 = (TopOpen‘𝑊)
76fveq2i 6864 . . . . . . . 8 (sigaGen‘𝐽) = (sigaGen‘(TopOpen‘𝑊))
85, 7eqtri 2753 . . . . . . 7 𝑆 = (sigaGen‘(TopOpen‘𝑊))
94, 8eqtr4di 2783 . . . . . 6 (𝑤 = 𝑊 → (sigaGen‘(TopOpen‘𝑤)) = 𝑆)
109oveq2d 7406 . . . . 5 (𝑤 = 𝑊 → (dom 𝑚MblFnM(sigaGen‘(TopOpen‘𝑤))) = (dom 𝑚MblFnM𝑆))
11 fveq2 6861 . . . . . . . . . 10 (𝑤 = 𝑊 → (0g𝑤) = (0g𝑊))
12 sitgval.0 . . . . . . . . . 10 0 = (0g𝑊)
1311, 12eqtr4di 2783 . . . . . . . . 9 (𝑤 = 𝑊 → (0g𝑤) = 0 )
1413sneqd 4604 . . . . . . . 8 (𝑤 = 𝑊 → {(0g𝑤)} = { 0 })
1514difeq2d 4092 . . . . . . 7 (𝑤 = 𝑊 → (ran 𝑔 ∖ {(0g𝑤)}) = (ran 𝑔 ∖ { 0 }))
1615raleqdv 3301 . . . . . 6 (𝑤 = 𝑊 → (∀𝑥 ∈ (ran 𝑔 ∖ {(0g𝑤)})(𝑚‘(𝑔 “ {𝑥})) ∈ (0[,)+∞) ↔ ∀𝑥 ∈ (ran 𝑔 ∖ { 0 })(𝑚‘(𝑔 “ {𝑥})) ∈ (0[,)+∞)))
1716anbi2d 630 . . . . 5 (𝑤 = 𝑊 → ((ran 𝑔 ∈ Fin ∧ ∀𝑥 ∈ (ran 𝑔 ∖ {(0g𝑤)})(𝑚‘(𝑔 “ {𝑥})) ∈ (0[,)+∞)) ↔ (ran 𝑔 ∈ Fin ∧ ∀𝑥 ∈ (ran 𝑔 ∖ { 0 })(𝑚‘(𝑔 “ {𝑥})) ∈ (0[,)+∞))))
1810, 17rabeqbidv 3427 . . . 4 (𝑤 = 𝑊 → {𝑔 ∈ (dom 𝑚MblFnM(sigaGen‘(TopOpen‘𝑤))) ∣ (ran 𝑔 ∈ Fin ∧ ∀𝑥 ∈ (ran 𝑔 ∖ {(0g𝑤)})(𝑚‘(𝑔 “ {𝑥})) ∈ (0[,)+∞))} = {𝑔 ∈ (dom 𝑚MblFnM𝑆) ∣ (ran 𝑔 ∈ Fin ∧ ∀𝑥 ∈ (ran 𝑔 ∖ { 0 })(𝑚‘(𝑔 “ {𝑥})) ∈ (0[,)+∞))})
19 id 22 . . . . 5 (𝑤 = 𝑊𝑤 = 𝑊)
2014difeq2d 4092 . . . . . 6 (𝑤 = 𝑊 → (ran 𝑓 ∖ {(0g𝑤)}) = (ran 𝑓 ∖ { 0 }))
21 fveq2 6861 . . . . . . . 8 (𝑤 = 𝑊 → ( ·𝑠𝑤) = ( ·𝑠𝑊))
22 sitgval.x . . . . . . . 8 · = ( ·𝑠𝑊)
2321, 22eqtr4di 2783 . . . . . . 7 (𝑤 = 𝑊 → ( ·𝑠𝑤) = · )
24 2fveq3 6866 . . . . . . . . 9 (𝑤 = 𝑊 → (ℝHom‘(Scalar‘𝑤)) = (ℝHom‘(Scalar‘𝑊)))
25 sitgval.h . . . . . . . . 9 𝐻 = (ℝHom‘(Scalar‘𝑊))
2624, 25eqtr4di 2783 . . . . . . . 8 (𝑤 = 𝑊 → (ℝHom‘(Scalar‘𝑤)) = 𝐻)
2726fveq1d 6863 . . . . . . 7 (𝑤 = 𝑊 → ((ℝHom‘(Scalar‘𝑤))‘(𝑚‘(𝑓 “ {𝑥}))) = (𝐻‘(𝑚‘(𝑓 “ {𝑥}))))
28 eqidd 2731 . . . . . . 7 (𝑤 = 𝑊𝑥 = 𝑥)
2923, 27, 28oveq123d 7411 . . . . . 6 (𝑤 = 𝑊 → (((ℝHom‘(Scalar‘𝑤))‘(𝑚‘(𝑓 “ {𝑥})))( ·𝑠𝑤)𝑥) = ((𝐻‘(𝑚‘(𝑓 “ {𝑥}))) · 𝑥))
3020, 29mpteq12dv 5197 . . . . 5 (𝑤 = 𝑊 → (𝑥 ∈ (ran 𝑓 ∖ {(0g𝑤)}) ↦ (((ℝHom‘(Scalar‘𝑤))‘(𝑚‘(𝑓 “ {𝑥})))( ·𝑠𝑤)𝑥)) = (𝑥 ∈ (ran 𝑓 ∖ { 0 }) ↦ ((𝐻‘(𝑚‘(𝑓 “ {𝑥}))) · 𝑥)))
3119, 30oveq12d 7408 . . . 4 (𝑤 = 𝑊 → (𝑤 Σg (𝑥 ∈ (ran 𝑓 ∖ {(0g𝑤)}) ↦ (((ℝHom‘(Scalar‘𝑤))‘(𝑚‘(𝑓 “ {𝑥})))( ·𝑠𝑤)𝑥))) = (𝑊 Σg (𝑥 ∈ (ran 𝑓 ∖ { 0 }) ↦ ((𝐻‘(𝑚‘(𝑓 “ {𝑥}))) · 𝑥))))
3218, 31mpteq12dv 5197 . . 3 (𝑤 = 𝑊 → (𝑓 ∈ {𝑔 ∈ (dom 𝑚MblFnM(sigaGen‘(TopOpen‘𝑤))) ∣ (ran 𝑔 ∈ Fin ∧ ∀𝑥 ∈ (ran 𝑔 ∖ {(0g𝑤)})(𝑚‘(𝑔 “ {𝑥})) ∈ (0[,)+∞))} ↦ (𝑤 Σg (𝑥 ∈ (ran 𝑓 ∖ {(0g𝑤)}) ↦ (((ℝHom‘(Scalar‘𝑤))‘(𝑚‘(𝑓 “ {𝑥})))( ·𝑠𝑤)𝑥)))) = (𝑓 ∈ {𝑔 ∈ (dom 𝑚MblFnM𝑆) ∣ (ran 𝑔 ∈ Fin ∧ ∀𝑥 ∈ (ran 𝑔 ∖ { 0 })(𝑚‘(𝑔 “ {𝑥})) ∈ (0[,)+∞))} ↦ (𝑊 Σg (𝑥 ∈ (ran 𝑓 ∖ { 0 }) ↦ ((𝐻‘(𝑚‘(𝑓 “ {𝑥}))) · 𝑥)))))
33 dmeq 5870 . . . . . 6 (𝑚 = 𝑀 → dom 𝑚 = dom 𝑀)
3433oveq1d 7405 . . . . 5 (𝑚 = 𝑀 → (dom 𝑚MblFnM𝑆) = (dom 𝑀MblFnM𝑆))
35 fveq1 6860 . . . . . . . 8 (𝑚 = 𝑀 → (𝑚‘(𝑔 “ {𝑥})) = (𝑀‘(𝑔 “ {𝑥})))
3635eleq1d 2814 . . . . . . 7 (𝑚 = 𝑀 → ((𝑚‘(𝑔 “ {𝑥})) ∈ (0[,)+∞) ↔ (𝑀‘(𝑔 “ {𝑥})) ∈ (0[,)+∞)))
3736ralbidv 3157 . . . . . 6 (𝑚 = 𝑀 → (∀𝑥 ∈ (ran 𝑔 ∖ { 0 })(𝑚‘(𝑔 “ {𝑥})) ∈ (0[,)+∞) ↔ ∀𝑥 ∈ (ran 𝑔 ∖ { 0 })(𝑀‘(𝑔 “ {𝑥})) ∈ (0[,)+∞)))
3837anbi2d 630 . . . . 5 (𝑚 = 𝑀 → ((ran 𝑔 ∈ Fin ∧ ∀𝑥 ∈ (ran 𝑔 ∖ { 0 })(𝑚‘(𝑔 “ {𝑥})) ∈ (0[,)+∞)) ↔ (ran 𝑔 ∈ Fin ∧ ∀𝑥 ∈ (ran 𝑔 ∖ { 0 })(𝑀‘(𝑔 “ {𝑥})) ∈ (0[,)+∞))))
3934, 38rabeqbidv 3427 . . . 4 (𝑚 = 𝑀 → {𝑔 ∈ (dom 𝑚MblFnM𝑆) ∣ (ran 𝑔 ∈ Fin ∧ ∀𝑥 ∈ (ran 𝑔 ∖ { 0 })(𝑚‘(𝑔 “ {𝑥})) ∈ (0[,)+∞))} = {𝑔 ∈ (dom 𝑀MblFnM𝑆) ∣ (ran 𝑔 ∈ Fin ∧ ∀𝑥 ∈ (ran 𝑔 ∖ { 0 })(𝑀‘(𝑔 “ {𝑥})) ∈ (0[,)+∞))})
40 simpl 482 . . . . . . . . 9 ((𝑚 = 𝑀𝑥 ∈ (ran 𝑓 ∖ { 0 })) → 𝑚 = 𝑀)
4140fveq1d 6863 . . . . . . . 8 ((𝑚 = 𝑀𝑥 ∈ (ran 𝑓 ∖ { 0 })) → (𝑚‘(𝑓 “ {𝑥})) = (𝑀‘(𝑓 “ {𝑥})))
4241fveq2d 6865 . . . . . . 7 ((𝑚 = 𝑀𝑥 ∈ (ran 𝑓 ∖ { 0 })) → (𝐻‘(𝑚‘(𝑓 “ {𝑥}))) = (𝐻‘(𝑀‘(𝑓 “ {𝑥}))))
4342oveq1d 7405 . . . . . 6 ((𝑚 = 𝑀𝑥 ∈ (ran 𝑓 ∖ { 0 })) → ((𝐻‘(𝑚‘(𝑓 “ {𝑥}))) · 𝑥) = ((𝐻‘(𝑀‘(𝑓 “ {𝑥}))) · 𝑥))
4443mpteq2dva 5203 . . . . 5 (𝑚 = 𝑀 → (𝑥 ∈ (ran 𝑓 ∖ { 0 }) ↦ ((𝐻‘(𝑚‘(𝑓 “ {𝑥}))) · 𝑥)) = (𝑥 ∈ (ran 𝑓 ∖ { 0 }) ↦ ((𝐻‘(𝑀‘(𝑓 “ {𝑥}))) · 𝑥)))
4544oveq2d 7406 . . . 4 (𝑚 = 𝑀 → (𝑊 Σg (𝑥 ∈ (ran 𝑓 ∖ { 0 }) ↦ ((𝐻‘(𝑚‘(𝑓 “ {𝑥}))) · 𝑥))) = (𝑊 Σg (𝑥 ∈ (ran 𝑓 ∖ { 0 }) ↦ ((𝐻‘(𝑀‘(𝑓 “ {𝑥}))) · 𝑥))))
4639, 45mpteq12dv 5197 . . 3 (𝑚 = 𝑀 → (𝑓 ∈ {𝑔 ∈ (dom 𝑚MblFnM𝑆) ∣ (ran 𝑔 ∈ Fin ∧ ∀𝑥 ∈ (ran 𝑔 ∖ { 0 })(𝑚‘(𝑔 “ {𝑥})) ∈ (0[,)+∞))} ↦ (𝑊 Σg (𝑥 ∈ (ran 𝑓 ∖ { 0 }) ↦ ((𝐻‘(𝑚‘(𝑓 “ {𝑥}))) · 𝑥)))) = (𝑓 ∈ {𝑔 ∈ (dom 𝑀MblFnM𝑆) ∣ (ran 𝑔 ∈ Fin ∧ ∀𝑥 ∈ (ran 𝑔 ∖ { 0 })(𝑀‘(𝑔 “ {𝑥})) ∈ (0[,)+∞))} ↦ (𝑊 Σg (𝑥 ∈ (ran 𝑓 ∖ { 0 }) ↦ ((𝐻‘(𝑀‘(𝑓 “ {𝑥}))) · 𝑥)))))
47 df-sitg 34328 . . 3 sitg = (𝑤 ∈ V, 𝑚 ran measures ↦ (𝑓 ∈ {𝑔 ∈ (dom 𝑚MblFnM(sigaGen‘(TopOpen‘𝑤))) ∣ (ran 𝑔 ∈ Fin ∧ ∀𝑥 ∈ (ran 𝑔 ∖ {(0g𝑤)})(𝑚‘(𝑔 “ {𝑥})) ∈ (0[,)+∞))} ↦ (𝑤 Σg (𝑥 ∈ (ran 𝑓 ∖ {(0g𝑤)}) ↦ (((ℝHom‘(Scalar‘𝑤))‘(𝑚‘(𝑓 “ {𝑥})))( ·𝑠𝑤)𝑥)))))
48 ovex 7423 . . . 4 (dom 𝑀MblFnM𝑆) ∈ V
4948mptrabex 7202 . . 3 (𝑓 ∈ {𝑔 ∈ (dom 𝑀MblFnM𝑆) ∣ (ran 𝑔 ∈ Fin ∧ ∀𝑥 ∈ (ran 𝑔 ∖ { 0 })(𝑀‘(𝑔 “ {𝑥})) ∈ (0[,)+∞))} ↦ (𝑊 Σg (𝑥 ∈ (ran 𝑓 ∖ { 0 }) ↦ ((𝐻‘(𝑀‘(𝑓 “ {𝑥}))) · 𝑥)))) ∈ V
5032, 46, 47, 49ovmpo 7552 . 2 ((𝑊 ∈ V ∧ 𝑀 ran measures) → (𝑊sitg𝑀) = (𝑓 ∈ {𝑔 ∈ (dom 𝑀MblFnM𝑆) ∣ (ran 𝑔 ∈ Fin ∧ ∀𝑥 ∈ (ran 𝑔 ∖ { 0 })(𝑀‘(𝑔 “ {𝑥})) ∈ (0[,)+∞))} ↦ (𝑊 Σg (𝑥 ∈ (ran 𝑓 ∖ { 0 }) ↦ ((𝐻‘(𝑀‘(𝑓 “ {𝑥}))) · 𝑥)))))
512, 3, 50syl2anc 584 1 (𝜑 → (𝑊sitg𝑀) = (𝑓 ∈ {𝑔 ∈ (dom 𝑀MblFnM𝑆) ∣ (ran 𝑔 ∈ Fin ∧ ∀𝑥 ∈ (ran 𝑔 ∖ { 0 })(𝑀‘(𝑔 “ {𝑥})) ∈ (0[,)+∞))} ↦ (𝑊 Σg (𝑥 ∈ (ran 𝑓 ∖ { 0 }) ↦ ((𝐻‘(𝑀‘(𝑓 “ {𝑥}))) · 𝑥)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wral 3045  {crab 3408  Vcvv 3450  cdif 3914  {csn 4592   cuni 4874  cmpt 5191  ccnv 5640  dom cdm 5641  ran crn 5642  cima 5644  cfv 6514  (class class class)co 7390  Fincfn 8921  0cc0 11075  +∞cpnf 11212  [,)cico 13315  Basecbs 17186  Scalarcsca 17230   ·𝑠 cvsca 17231  TopOpenctopn 17391  0gc0g 17409   Σg cgsu 17410  ℝHomcrrh 33990  sigaGencsigagen 34135  measurescmeas 34192  MblFnMcmbfm 34246  sitgcsitg 34327
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-ov 7393  df-oprab 7394  df-mpo 7395  df-sitg 34328
This theorem is referenced by:  issibf  34331  sitgfval  34339  sitgf  34345
  Copyright terms: Public domain W3C validator