Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sitgval Structured version   Visualization version   GIF version

Theorem sitgval 34297
Description: Value of the simple function integral builder for a given space 𝑊 and measure 𝑀. (Contributed by Thierry Arnoux, 30-Jan-2018.)
Hypotheses
Ref Expression
sitgval.b 𝐵 = (Base‘𝑊)
sitgval.j 𝐽 = (TopOpen‘𝑊)
sitgval.s 𝑆 = (sigaGen‘𝐽)
sitgval.0 0 = (0g𝑊)
sitgval.x · = ( ·𝑠𝑊)
sitgval.h 𝐻 = (ℝHom‘(Scalar‘𝑊))
sitgval.1 (𝜑𝑊𝑉)
sitgval.2 (𝜑𝑀 ran measures)
Assertion
Ref Expression
sitgval (𝜑 → (𝑊sitg𝑀) = (𝑓 ∈ {𝑔 ∈ (dom 𝑀MblFnM𝑆) ∣ (ran 𝑔 ∈ Fin ∧ ∀𝑥 ∈ (ran 𝑔 ∖ { 0 })(𝑀‘(𝑔 “ {𝑥})) ∈ (0[,)+∞))} ↦ (𝑊 Σg (𝑥 ∈ (ran 𝑓 ∖ { 0 }) ↦ ((𝐻‘(𝑀‘(𝑓 “ {𝑥}))) · 𝑥)))))
Distinct variable groups:   𝐵,𝑓   𝑓,𝑔,𝑥   𝑓,𝐻   𝑓,𝑀,𝑔,𝑥   𝑆,𝑓,𝑔   𝑓,𝑊,𝑔,𝑥   0 ,𝑓,𝑔,𝑥   · ,𝑓
Allowed substitution hints:   𝜑(𝑥,𝑓,𝑔)   𝐵(𝑥,𝑔)   𝑆(𝑥)   · (𝑥,𝑔)   𝐻(𝑥,𝑔)   𝐽(𝑥,𝑓,𝑔)   𝑉(𝑥,𝑓,𝑔)

Proof of Theorem sitgval
Dummy variables 𝑚 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sitgval.1 . . 3 (𝜑𝑊𝑉)
21elexd 3512 . 2 (𝜑𝑊 ∈ V)
3 sitgval.2 . 2 (𝜑𝑀 ran measures)
4 2fveq3 6925 . . . . . . 7 (𝑤 = 𝑊 → (sigaGen‘(TopOpen‘𝑤)) = (sigaGen‘(TopOpen‘𝑊)))
5 sitgval.s . . . . . . . 8 𝑆 = (sigaGen‘𝐽)
6 sitgval.j . . . . . . . . 9 𝐽 = (TopOpen‘𝑊)
76fveq2i 6923 . . . . . . . 8 (sigaGen‘𝐽) = (sigaGen‘(TopOpen‘𝑊))
85, 7eqtri 2768 . . . . . . 7 𝑆 = (sigaGen‘(TopOpen‘𝑊))
94, 8eqtr4di 2798 . . . . . 6 (𝑤 = 𝑊 → (sigaGen‘(TopOpen‘𝑤)) = 𝑆)
109oveq2d 7464 . . . . 5 (𝑤 = 𝑊 → (dom 𝑚MblFnM(sigaGen‘(TopOpen‘𝑤))) = (dom 𝑚MblFnM𝑆))
11 fveq2 6920 . . . . . . . . . 10 (𝑤 = 𝑊 → (0g𝑤) = (0g𝑊))
12 sitgval.0 . . . . . . . . . 10 0 = (0g𝑊)
1311, 12eqtr4di 2798 . . . . . . . . 9 (𝑤 = 𝑊 → (0g𝑤) = 0 )
1413sneqd 4660 . . . . . . . 8 (𝑤 = 𝑊 → {(0g𝑤)} = { 0 })
1514difeq2d 4149 . . . . . . 7 (𝑤 = 𝑊 → (ran 𝑔 ∖ {(0g𝑤)}) = (ran 𝑔 ∖ { 0 }))
1615raleqdv 3334 . . . . . 6 (𝑤 = 𝑊 → (∀𝑥 ∈ (ran 𝑔 ∖ {(0g𝑤)})(𝑚‘(𝑔 “ {𝑥})) ∈ (0[,)+∞) ↔ ∀𝑥 ∈ (ran 𝑔 ∖ { 0 })(𝑚‘(𝑔 “ {𝑥})) ∈ (0[,)+∞)))
1716anbi2d 629 . . . . 5 (𝑤 = 𝑊 → ((ran 𝑔 ∈ Fin ∧ ∀𝑥 ∈ (ran 𝑔 ∖ {(0g𝑤)})(𝑚‘(𝑔 “ {𝑥})) ∈ (0[,)+∞)) ↔ (ran 𝑔 ∈ Fin ∧ ∀𝑥 ∈ (ran 𝑔 ∖ { 0 })(𝑚‘(𝑔 “ {𝑥})) ∈ (0[,)+∞))))
1810, 17rabeqbidv 3462 . . . 4 (𝑤 = 𝑊 → {𝑔 ∈ (dom 𝑚MblFnM(sigaGen‘(TopOpen‘𝑤))) ∣ (ran 𝑔 ∈ Fin ∧ ∀𝑥 ∈ (ran 𝑔 ∖ {(0g𝑤)})(𝑚‘(𝑔 “ {𝑥})) ∈ (0[,)+∞))} = {𝑔 ∈ (dom 𝑚MblFnM𝑆) ∣ (ran 𝑔 ∈ Fin ∧ ∀𝑥 ∈ (ran 𝑔 ∖ { 0 })(𝑚‘(𝑔 “ {𝑥})) ∈ (0[,)+∞))})
19 id 22 . . . . 5 (𝑤 = 𝑊𝑤 = 𝑊)
2014difeq2d 4149 . . . . . 6 (𝑤 = 𝑊 → (ran 𝑓 ∖ {(0g𝑤)}) = (ran 𝑓 ∖ { 0 }))
21 fveq2 6920 . . . . . . . 8 (𝑤 = 𝑊 → ( ·𝑠𝑤) = ( ·𝑠𝑊))
22 sitgval.x . . . . . . . 8 · = ( ·𝑠𝑊)
2321, 22eqtr4di 2798 . . . . . . 7 (𝑤 = 𝑊 → ( ·𝑠𝑤) = · )
24 2fveq3 6925 . . . . . . . . 9 (𝑤 = 𝑊 → (ℝHom‘(Scalar‘𝑤)) = (ℝHom‘(Scalar‘𝑊)))
25 sitgval.h . . . . . . . . 9 𝐻 = (ℝHom‘(Scalar‘𝑊))
2624, 25eqtr4di 2798 . . . . . . . 8 (𝑤 = 𝑊 → (ℝHom‘(Scalar‘𝑤)) = 𝐻)
2726fveq1d 6922 . . . . . . 7 (𝑤 = 𝑊 → ((ℝHom‘(Scalar‘𝑤))‘(𝑚‘(𝑓 “ {𝑥}))) = (𝐻‘(𝑚‘(𝑓 “ {𝑥}))))
28 eqidd 2741 . . . . . . 7 (𝑤 = 𝑊𝑥 = 𝑥)
2923, 27, 28oveq123d 7469 . . . . . 6 (𝑤 = 𝑊 → (((ℝHom‘(Scalar‘𝑤))‘(𝑚‘(𝑓 “ {𝑥})))( ·𝑠𝑤)𝑥) = ((𝐻‘(𝑚‘(𝑓 “ {𝑥}))) · 𝑥))
3020, 29mpteq12dv 5257 . . . . 5 (𝑤 = 𝑊 → (𝑥 ∈ (ran 𝑓 ∖ {(0g𝑤)}) ↦ (((ℝHom‘(Scalar‘𝑤))‘(𝑚‘(𝑓 “ {𝑥})))( ·𝑠𝑤)𝑥)) = (𝑥 ∈ (ran 𝑓 ∖ { 0 }) ↦ ((𝐻‘(𝑚‘(𝑓 “ {𝑥}))) · 𝑥)))
3119, 30oveq12d 7466 . . . 4 (𝑤 = 𝑊 → (𝑤 Σg (𝑥 ∈ (ran 𝑓 ∖ {(0g𝑤)}) ↦ (((ℝHom‘(Scalar‘𝑤))‘(𝑚‘(𝑓 “ {𝑥})))( ·𝑠𝑤)𝑥))) = (𝑊 Σg (𝑥 ∈ (ran 𝑓 ∖ { 0 }) ↦ ((𝐻‘(𝑚‘(𝑓 “ {𝑥}))) · 𝑥))))
3218, 31mpteq12dv 5257 . . 3 (𝑤 = 𝑊 → (𝑓 ∈ {𝑔 ∈ (dom 𝑚MblFnM(sigaGen‘(TopOpen‘𝑤))) ∣ (ran 𝑔 ∈ Fin ∧ ∀𝑥 ∈ (ran 𝑔 ∖ {(0g𝑤)})(𝑚‘(𝑔 “ {𝑥})) ∈ (0[,)+∞))} ↦ (𝑤 Σg (𝑥 ∈ (ran 𝑓 ∖ {(0g𝑤)}) ↦ (((ℝHom‘(Scalar‘𝑤))‘(𝑚‘(𝑓 “ {𝑥})))( ·𝑠𝑤)𝑥)))) = (𝑓 ∈ {𝑔 ∈ (dom 𝑚MblFnM𝑆) ∣ (ran 𝑔 ∈ Fin ∧ ∀𝑥 ∈ (ran 𝑔 ∖ { 0 })(𝑚‘(𝑔 “ {𝑥})) ∈ (0[,)+∞))} ↦ (𝑊 Σg (𝑥 ∈ (ran 𝑓 ∖ { 0 }) ↦ ((𝐻‘(𝑚‘(𝑓 “ {𝑥}))) · 𝑥)))))
33 dmeq 5928 . . . . . 6 (𝑚 = 𝑀 → dom 𝑚 = dom 𝑀)
3433oveq1d 7463 . . . . 5 (𝑚 = 𝑀 → (dom 𝑚MblFnM𝑆) = (dom 𝑀MblFnM𝑆))
35 fveq1 6919 . . . . . . . 8 (𝑚 = 𝑀 → (𝑚‘(𝑔 “ {𝑥})) = (𝑀‘(𝑔 “ {𝑥})))
3635eleq1d 2829 . . . . . . 7 (𝑚 = 𝑀 → ((𝑚‘(𝑔 “ {𝑥})) ∈ (0[,)+∞) ↔ (𝑀‘(𝑔 “ {𝑥})) ∈ (0[,)+∞)))
3736ralbidv 3184 . . . . . 6 (𝑚 = 𝑀 → (∀𝑥 ∈ (ran 𝑔 ∖ { 0 })(𝑚‘(𝑔 “ {𝑥})) ∈ (0[,)+∞) ↔ ∀𝑥 ∈ (ran 𝑔 ∖ { 0 })(𝑀‘(𝑔 “ {𝑥})) ∈ (0[,)+∞)))
3837anbi2d 629 . . . . 5 (𝑚 = 𝑀 → ((ran 𝑔 ∈ Fin ∧ ∀𝑥 ∈ (ran 𝑔 ∖ { 0 })(𝑚‘(𝑔 “ {𝑥})) ∈ (0[,)+∞)) ↔ (ran 𝑔 ∈ Fin ∧ ∀𝑥 ∈ (ran 𝑔 ∖ { 0 })(𝑀‘(𝑔 “ {𝑥})) ∈ (0[,)+∞))))
3934, 38rabeqbidv 3462 . . . 4 (𝑚 = 𝑀 → {𝑔 ∈ (dom 𝑚MblFnM𝑆) ∣ (ran 𝑔 ∈ Fin ∧ ∀𝑥 ∈ (ran 𝑔 ∖ { 0 })(𝑚‘(𝑔 “ {𝑥})) ∈ (0[,)+∞))} = {𝑔 ∈ (dom 𝑀MblFnM𝑆) ∣ (ran 𝑔 ∈ Fin ∧ ∀𝑥 ∈ (ran 𝑔 ∖ { 0 })(𝑀‘(𝑔 “ {𝑥})) ∈ (0[,)+∞))})
40 simpl 482 . . . . . . . . 9 ((𝑚 = 𝑀𝑥 ∈ (ran 𝑓 ∖ { 0 })) → 𝑚 = 𝑀)
4140fveq1d 6922 . . . . . . . 8 ((𝑚 = 𝑀𝑥 ∈ (ran 𝑓 ∖ { 0 })) → (𝑚‘(𝑓 “ {𝑥})) = (𝑀‘(𝑓 “ {𝑥})))
4241fveq2d 6924 . . . . . . 7 ((𝑚 = 𝑀𝑥 ∈ (ran 𝑓 ∖ { 0 })) → (𝐻‘(𝑚‘(𝑓 “ {𝑥}))) = (𝐻‘(𝑀‘(𝑓 “ {𝑥}))))
4342oveq1d 7463 . . . . . 6 ((𝑚 = 𝑀𝑥 ∈ (ran 𝑓 ∖ { 0 })) → ((𝐻‘(𝑚‘(𝑓 “ {𝑥}))) · 𝑥) = ((𝐻‘(𝑀‘(𝑓 “ {𝑥}))) · 𝑥))
4443mpteq2dva 5266 . . . . 5 (𝑚 = 𝑀 → (𝑥 ∈ (ran 𝑓 ∖ { 0 }) ↦ ((𝐻‘(𝑚‘(𝑓 “ {𝑥}))) · 𝑥)) = (𝑥 ∈ (ran 𝑓 ∖ { 0 }) ↦ ((𝐻‘(𝑀‘(𝑓 “ {𝑥}))) · 𝑥)))
4544oveq2d 7464 . . . 4 (𝑚 = 𝑀 → (𝑊 Σg (𝑥 ∈ (ran 𝑓 ∖ { 0 }) ↦ ((𝐻‘(𝑚‘(𝑓 “ {𝑥}))) · 𝑥))) = (𝑊 Σg (𝑥 ∈ (ran 𝑓 ∖ { 0 }) ↦ ((𝐻‘(𝑀‘(𝑓 “ {𝑥}))) · 𝑥))))
4639, 45mpteq12dv 5257 . . 3 (𝑚 = 𝑀 → (𝑓 ∈ {𝑔 ∈ (dom 𝑚MblFnM𝑆) ∣ (ran 𝑔 ∈ Fin ∧ ∀𝑥 ∈ (ran 𝑔 ∖ { 0 })(𝑚‘(𝑔 “ {𝑥})) ∈ (0[,)+∞))} ↦ (𝑊 Σg (𝑥 ∈ (ran 𝑓 ∖ { 0 }) ↦ ((𝐻‘(𝑚‘(𝑓 “ {𝑥}))) · 𝑥)))) = (𝑓 ∈ {𝑔 ∈ (dom 𝑀MblFnM𝑆) ∣ (ran 𝑔 ∈ Fin ∧ ∀𝑥 ∈ (ran 𝑔 ∖ { 0 })(𝑀‘(𝑔 “ {𝑥})) ∈ (0[,)+∞))} ↦ (𝑊 Σg (𝑥 ∈ (ran 𝑓 ∖ { 0 }) ↦ ((𝐻‘(𝑀‘(𝑓 “ {𝑥}))) · 𝑥)))))
47 df-sitg 34295 . . 3 sitg = (𝑤 ∈ V, 𝑚 ran measures ↦ (𝑓 ∈ {𝑔 ∈ (dom 𝑚MblFnM(sigaGen‘(TopOpen‘𝑤))) ∣ (ran 𝑔 ∈ Fin ∧ ∀𝑥 ∈ (ran 𝑔 ∖ {(0g𝑤)})(𝑚‘(𝑔 “ {𝑥})) ∈ (0[,)+∞))} ↦ (𝑤 Σg (𝑥 ∈ (ran 𝑓 ∖ {(0g𝑤)}) ↦ (((ℝHom‘(Scalar‘𝑤))‘(𝑚‘(𝑓 “ {𝑥})))( ·𝑠𝑤)𝑥)))))
48 ovex 7481 . . . 4 (dom 𝑀MblFnM𝑆) ∈ V
4948mptrabex 7262 . . 3 (𝑓 ∈ {𝑔 ∈ (dom 𝑀MblFnM𝑆) ∣ (ran 𝑔 ∈ Fin ∧ ∀𝑥 ∈ (ran 𝑔 ∖ { 0 })(𝑀‘(𝑔 “ {𝑥})) ∈ (0[,)+∞))} ↦ (𝑊 Σg (𝑥 ∈ (ran 𝑓 ∖ { 0 }) ↦ ((𝐻‘(𝑀‘(𝑓 “ {𝑥}))) · 𝑥)))) ∈ V
5032, 46, 47, 49ovmpo 7610 . 2 ((𝑊 ∈ V ∧ 𝑀 ran measures) → (𝑊sitg𝑀) = (𝑓 ∈ {𝑔 ∈ (dom 𝑀MblFnM𝑆) ∣ (ran 𝑔 ∈ Fin ∧ ∀𝑥 ∈ (ran 𝑔 ∖ { 0 })(𝑀‘(𝑔 “ {𝑥})) ∈ (0[,)+∞))} ↦ (𝑊 Σg (𝑥 ∈ (ran 𝑓 ∖ { 0 }) ↦ ((𝐻‘(𝑀‘(𝑓 “ {𝑥}))) · 𝑥)))))
512, 3, 50syl2anc 583 1 (𝜑 → (𝑊sitg𝑀) = (𝑓 ∈ {𝑔 ∈ (dom 𝑀MblFnM𝑆) ∣ (ran 𝑔 ∈ Fin ∧ ∀𝑥 ∈ (ran 𝑔 ∖ { 0 })(𝑀‘(𝑔 “ {𝑥})) ∈ (0[,)+∞))} ↦ (𝑊 Σg (𝑥 ∈ (ran 𝑓 ∖ { 0 }) ↦ ((𝐻‘(𝑀‘(𝑓 “ {𝑥}))) · 𝑥)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  wral 3067  {crab 3443  Vcvv 3488  cdif 3973  {csn 4648   cuni 4931  cmpt 5249  ccnv 5699  dom cdm 5700  ran crn 5701  cima 5703  cfv 6573  (class class class)co 7448  Fincfn 9003  0cc0 11184  +∞cpnf 11321  [,)cico 13409  Basecbs 17258  Scalarcsca 17314   ·𝑠 cvsca 17315  TopOpenctopn 17481  0gc0g 17499   Σg cgsu 17500  ℝHomcrrh 33939  sigaGencsigagen 34102  measurescmeas 34159  MblFnMcmbfm 34213  sitgcsitg 34294
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-sitg 34295
This theorem is referenced by:  issibf  34298  sitgfval  34306  sitgf  34312
  Copyright terms: Public domain W3C validator