| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | sitgval.1 | . . 3
⊢ (𝜑 → 𝑊 ∈ 𝑉) | 
| 2 | 1 | elexd 3504 | . 2
⊢ (𝜑 → 𝑊 ∈ V) | 
| 3 |  | sitgval.2 | . 2
⊢ (𝜑 → 𝑀 ∈ ∪ ran
measures) | 
| 4 |  | 2fveq3 6911 | . . . . . . 7
⊢ (𝑤 = 𝑊 → (sigaGen‘(TopOpen‘𝑤)) =
(sigaGen‘(TopOpen‘𝑊))) | 
| 5 |  | sitgval.s | . . . . . . . 8
⊢ 𝑆 = (sigaGen‘𝐽) | 
| 6 |  | sitgval.j | . . . . . . . . 9
⊢ 𝐽 = (TopOpen‘𝑊) | 
| 7 | 6 | fveq2i 6909 | . . . . . . . 8
⊢
(sigaGen‘𝐽) =
(sigaGen‘(TopOpen‘𝑊)) | 
| 8 | 5, 7 | eqtri 2765 | . . . . . . 7
⊢ 𝑆 =
(sigaGen‘(TopOpen‘𝑊)) | 
| 9 | 4, 8 | eqtr4di 2795 | . . . . . 6
⊢ (𝑤 = 𝑊 → (sigaGen‘(TopOpen‘𝑤)) = 𝑆) | 
| 10 | 9 | oveq2d 7447 | . . . . 5
⊢ (𝑤 = 𝑊 → (dom 𝑚MblFnM(sigaGen‘(TopOpen‘𝑤))) = (dom 𝑚MblFnM𝑆)) | 
| 11 |  | fveq2 6906 | . . . . . . . . . 10
⊢ (𝑤 = 𝑊 → (0g‘𝑤) = (0g‘𝑊)) | 
| 12 |  | sitgval.0 | . . . . . . . . . 10
⊢  0 =
(0g‘𝑊) | 
| 13 | 11, 12 | eqtr4di 2795 | . . . . . . . . 9
⊢ (𝑤 = 𝑊 → (0g‘𝑤) = 0 ) | 
| 14 | 13 | sneqd 4638 | . . . . . . . 8
⊢ (𝑤 = 𝑊 → {(0g‘𝑤)} = { 0 }) | 
| 15 | 14 | difeq2d 4126 | . . . . . . 7
⊢ (𝑤 = 𝑊 → (ran 𝑔 ∖ {(0g‘𝑤)}) = (ran 𝑔 ∖ { 0 })) | 
| 16 | 15 | raleqdv 3326 | . . . . . 6
⊢ (𝑤 = 𝑊 → (∀𝑥 ∈ (ran 𝑔 ∖ {(0g‘𝑤)})(𝑚‘(◡𝑔 “ {𝑥})) ∈ (0[,)+∞) ↔
∀𝑥 ∈ (ran 𝑔 ∖ { 0 })(𝑚‘(◡𝑔 “ {𝑥})) ∈ (0[,)+∞))) | 
| 17 | 16 | anbi2d 630 | . . . . 5
⊢ (𝑤 = 𝑊 → ((ran 𝑔 ∈ Fin ∧ ∀𝑥 ∈ (ran 𝑔 ∖ {(0g‘𝑤)})(𝑚‘(◡𝑔 “ {𝑥})) ∈ (0[,)+∞)) ↔ (ran 𝑔 ∈ Fin ∧ ∀𝑥 ∈ (ran 𝑔 ∖ { 0 })(𝑚‘(◡𝑔 “ {𝑥})) ∈ (0[,)+∞)))) | 
| 18 | 10, 17 | rabeqbidv 3455 | . . . 4
⊢ (𝑤 = 𝑊 → {𝑔 ∈ (dom 𝑚MblFnM(sigaGen‘(TopOpen‘𝑤))) ∣ (ran 𝑔 ∈ Fin ∧ ∀𝑥 ∈ (ran 𝑔 ∖ {(0g‘𝑤)})(𝑚‘(◡𝑔 “ {𝑥})) ∈ (0[,)+∞))} = {𝑔 ∈ (dom 𝑚MblFnM𝑆) ∣ (ran 𝑔 ∈ Fin ∧ ∀𝑥 ∈ (ran 𝑔 ∖ { 0 })(𝑚‘(◡𝑔 “ {𝑥})) ∈ (0[,)+∞))}) | 
| 19 |  | id 22 | . . . . 5
⊢ (𝑤 = 𝑊 → 𝑤 = 𝑊) | 
| 20 | 14 | difeq2d 4126 | . . . . . 6
⊢ (𝑤 = 𝑊 → (ran 𝑓 ∖ {(0g‘𝑤)}) = (ran 𝑓 ∖ { 0 })) | 
| 21 |  | fveq2 6906 | . . . . . . . 8
⊢ (𝑤 = 𝑊 → (
·𝑠 ‘𝑤) = ( ·𝑠
‘𝑊)) | 
| 22 |  | sitgval.x | . . . . . . . 8
⊢  · = (
·𝑠 ‘𝑊) | 
| 23 | 21, 22 | eqtr4di 2795 | . . . . . . 7
⊢ (𝑤 = 𝑊 → (
·𝑠 ‘𝑤) = · ) | 
| 24 |  | 2fveq3 6911 | . . . . . . . . 9
⊢ (𝑤 = 𝑊 →
(ℝHom‘(Scalar‘𝑤)) = (ℝHom‘(Scalar‘𝑊))) | 
| 25 |  | sitgval.h | . . . . . . . . 9
⊢ 𝐻 =
(ℝHom‘(Scalar‘𝑊)) | 
| 26 | 24, 25 | eqtr4di 2795 | . . . . . . . 8
⊢ (𝑤 = 𝑊 →
(ℝHom‘(Scalar‘𝑤)) = 𝐻) | 
| 27 | 26 | fveq1d 6908 | . . . . . . 7
⊢ (𝑤 = 𝑊 →
((ℝHom‘(Scalar‘𝑤))‘(𝑚‘(◡𝑓 “ {𝑥}))) = (𝐻‘(𝑚‘(◡𝑓 “ {𝑥})))) | 
| 28 |  | eqidd 2738 | . . . . . . 7
⊢ (𝑤 = 𝑊 → 𝑥 = 𝑥) | 
| 29 | 23, 27, 28 | oveq123d 7452 | . . . . . 6
⊢ (𝑤 = 𝑊 →
(((ℝHom‘(Scalar‘𝑤))‘(𝑚‘(◡𝑓 “ {𝑥})))( ·𝑠
‘𝑤)𝑥) = ((𝐻‘(𝑚‘(◡𝑓 “ {𝑥}))) · 𝑥)) | 
| 30 | 20, 29 | mpteq12dv 5233 | . . . . 5
⊢ (𝑤 = 𝑊 → (𝑥 ∈ (ran 𝑓 ∖ {(0g‘𝑤)}) ↦
(((ℝHom‘(Scalar‘𝑤))‘(𝑚‘(◡𝑓 “ {𝑥})))( ·𝑠
‘𝑤)𝑥)) = (𝑥 ∈ (ran 𝑓 ∖ { 0 }) ↦ ((𝐻‘(𝑚‘(◡𝑓 “ {𝑥}))) · 𝑥))) | 
| 31 | 19, 30 | oveq12d 7449 | . . . 4
⊢ (𝑤 = 𝑊 → (𝑤 Σg (𝑥 ∈ (ran 𝑓 ∖ {(0g‘𝑤)}) ↦
(((ℝHom‘(Scalar‘𝑤))‘(𝑚‘(◡𝑓 “ {𝑥})))( ·𝑠
‘𝑤)𝑥))) = (𝑊 Σg (𝑥 ∈ (ran 𝑓 ∖ { 0 }) ↦ ((𝐻‘(𝑚‘(◡𝑓 “ {𝑥}))) · 𝑥)))) | 
| 32 | 18, 31 | mpteq12dv 5233 | . . 3
⊢ (𝑤 = 𝑊 → (𝑓 ∈ {𝑔 ∈ (dom 𝑚MblFnM(sigaGen‘(TopOpen‘𝑤))) ∣ (ran 𝑔 ∈ Fin ∧ ∀𝑥 ∈ (ran 𝑔 ∖ {(0g‘𝑤)})(𝑚‘(◡𝑔 “ {𝑥})) ∈ (0[,)+∞))} ↦ (𝑤 Σg
(𝑥 ∈ (ran 𝑓 ∖
{(0g‘𝑤)})
↦ (((ℝHom‘(Scalar‘𝑤))‘(𝑚‘(◡𝑓 “ {𝑥})))( ·𝑠
‘𝑤)𝑥)))) = (𝑓 ∈ {𝑔 ∈ (dom 𝑚MblFnM𝑆) ∣ (ran 𝑔 ∈ Fin ∧ ∀𝑥 ∈ (ran 𝑔 ∖ { 0 })(𝑚‘(◡𝑔 “ {𝑥})) ∈ (0[,)+∞))} ↦ (𝑊 Σg
(𝑥 ∈ (ran 𝑓 ∖ { 0 }) ↦ ((𝐻‘(𝑚‘(◡𝑓 “ {𝑥}))) · 𝑥))))) | 
| 33 |  | dmeq 5914 | . . . . . 6
⊢ (𝑚 = 𝑀 → dom 𝑚 = dom 𝑀) | 
| 34 | 33 | oveq1d 7446 | . . . . 5
⊢ (𝑚 = 𝑀 → (dom 𝑚MblFnM𝑆) = (dom 𝑀MblFnM𝑆)) | 
| 35 |  | fveq1 6905 | . . . . . . . 8
⊢ (𝑚 = 𝑀 → (𝑚‘(◡𝑔 “ {𝑥})) = (𝑀‘(◡𝑔 “ {𝑥}))) | 
| 36 | 35 | eleq1d 2826 | . . . . . . 7
⊢ (𝑚 = 𝑀 → ((𝑚‘(◡𝑔 “ {𝑥})) ∈ (0[,)+∞) ↔ (𝑀‘(◡𝑔 “ {𝑥})) ∈ (0[,)+∞))) | 
| 37 | 36 | ralbidv 3178 | . . . . . 6
⊢ (𝑚 = 𝑀 → (∀𝑥 ∈ (ran 𝑔 ∖ { 0 })(𝑚‘(◡𝑔 “ {𝑥})) ∈ (0[,)+∞) ↔
∀𝑥 ∈ (ran 𝑔 ∖ { 0 })(𝑀‘(◡𝑔 “ {𝑥})) ∈ (0[,)+∞))) | 
| 38 | 37 | anbi2d 630 | . . . . 5
⊢ (𝑚 = 𝑀 → ((ran 𝑔 ∈ Fin ∧ ∀𝑥 ∈ (ran 𝑔 ∖ { 0 })(𝑚‘(◡𝑔 “ {𝑥})) ∈ (0[,)+∞)) ↔ (ran 𝑔 ∈ Fin ∧ ∀𝑥 ∈ (ran 𝑔 ∖ { 0 })(𝑀‘(◡𝑔 “ {𝑥})) ∈ (0[,)+∞)))) | 
| 39 | 34, 38 | rabeqbidv 3455 | . . . 4
⊢ (𝑚 = 𝑀 → {𝑔 ∈ (dom 𝑚MblFnM𝑆) ∣ (ran 𝑔 ∈ Fin ∧ ∀𝑥 ∈ (ran 𝑔 ∖ { 0 })(𝑚‘(◡𝑔 “ {𝑥})) ∈ (0[,)+∞))} = {𝑔 ∈ (dom 𝑀MblFnM𝑆) ∣ (ran 𝑔 ∈ Fin ∧ ∀𝑥 ∈ (ran 𝑔 ∖ { 0 })(𝑀‘(◡𝑔 “ {𝑥})) ∈ (0[,)+∞))}) | 
| 40 |  | simpl 482 | . . . . . . . . 9
⊢ ((𝑚 = 𝑀 ∧ 𝑥 ∈ (ran 𝑓 ∖ { 0 })) → 𝑚 = 𝑀) | 
| 41 | 40 | fveq1d 6908 | . . . . . . . 8
⊢ ((𝑚 = 𝑀 ∧ 𝑥 ∈ (ran 𝑓 ∖ { 0 })) → (𝑚‘(◡𝑓 “ {𝑥})) = (𝑀‘(◡𝑓 “ {𝑥}))) | 
| 42 | 41 | fveq2d 6910 | . . . . . . 7
⊢ ((𝑚 = 𝑀 ∧ 𝑥 ∈ (ran 𝑓 ∖ { 0 })) → (𝐻‘(𝑚‘(◡𝑓 “ {𝑥}))) = (𝐻‘(𝑀‘(◡𝑓 “ {𝑥})))) | 
| 43 | 42 | oveq1d 7446 | . . . . . 6
⊢ ((𝑚 = 𝑀 ∧ 𝑥 ∈ (ran 𝑓 ∖ { 0 })) → ((𝐻‘(𝑚‘(◡𝑓 “ {𝑥}))) · 𝑥) = ((𝐻‘(𝑀‘(◡𝑓 “ {𝑥}))) · 𝑥)) | 
| 44 | 43 | mpteq2dva 5242 | . . . . 5
⊢ (𝑚 = 𝑀 → (𝑥 ∈ (ran 𝑓 ∖ { 0 }) ↦ ((𝐻‘(𝑚‘(◡𝑓 “ {𝑥}))) · 𝑥)) = (𝑥 ∈ (ran 𝑓 ∖ { 0 }) ↦ ((𝐻‘(𝑀‘(◡𝑓 “ {𝑥}))) · 𝑥))) | 
| 45 | 44 | oveq2d 7447 | . . . 4
⊢ (𝑚 = 𝑀 → (𝑊 Σg (𝑥 ∈ (ran 𝑓 ∖ { 0 }) ↦ ((𝐻‘(𝑚‘(◡𝑓 “ {𝑥}))) · 𝑥))) = (𝑊 Σg (𝑥 ∈ (ran 𝑓 ∖ { 0 }) ↦ ((𝐻‘(𝑀‘(◡𝑓 “ {𝑥}))) · 𝑥)))) | 
| 46 | 39, 45 | mpteq12dv 5233 | . . 3
⊢ (𝑚 = 𝑀 → (𝑓 ∈ {𝑔 ∈ (dom 𝑚MblFnM𝑆) ∣ (ran 𝑔 ∈ Fin ∧ ∀𝑥 ∈ (ran 𝑔 ∖ { 0 })(𝑚‘(◡𝑔 “ {𝑥})) ∈ (0[,)+∞))} ↦ (𝑊 Σg
(𝑥 ∈ (ran 𝑓 ∖ { 0 }) ↦ ((𝐻‘(𝑚‘(◡𝑓 “ {𝑥}))) · 𝑥)))) = (𝑓 ∈ {𝑔 ∈ (dom 𝑀MblFnM𝑆) ∣ (ran 𝑔 ∈ Fin ∧ ∀𝑥 ∈ (ran 𝑔 ∖ { 0 })(𝑀‘(◡𝑔 “ {𝑥})) ∈ (0[,)+∞))} ↦ (𝑊 Σg
(𝑥 ∈ (ran 𝑓 ∖ { 0 }) ↦ ((𝐻‘(𝑀‘(◡𝑓 “ {𝑥}))) · 𝑥))))) | 
| 47 |  | df-sitg 34332 | . . 3
⊢ sitg =
(𝑤 ∈ V, 𝑚 ∈ ∪ ran measures ↦ (𝑓 ∈ {𝑔 ∈ (dom 𝑚MblFnM(sigaGen‘(TopOpen‘𝑤))) ∣ (ran 𝑔 ∈ Fin ∧ ∀𝑥 ∈ (ran 𝑔 ∖ {(0g‘𝑤)})(𝑚‘(◡𝑔 “ {𝑥})) ∈ (0[,)+∞))} ↦ (𝑤 Σg
(𝑥 ∈ (ran 𝑓 ∖
{(0g‘𝑤)})
↦ (((ℝHom‘(Scalar‘𝑤))‘(𝑚‘(◡𝑓 “ {𝑥})))( ·𝑠
‘𝑤)𝑥))))) | 
| 48 |  | ovex 7464 | . . . 4
⊢ (dom
𝑀MblFnM𝑆) ∈ V | 
| 49 | 48 | mptrabex 7245 | . . 3
⊢ (𝑓 ∈ {𝑔 ∈ (dom 𝑀MblFnM𝑆) ∣ (ran 𝑔 ∈ Fin ∧ ∀𝑥 ∈ (ran 𝑔 ∖ { 0 })(𝑀‘(◡𝑔 “ {𝑥})) ∈ (0[,)+∞))} ↦ (𝑊 Σg
(𝑥 ∈ (ran 𝑓 ∖ { 0 }) ↦ ((𝐻‘(𝑀‘(◡𝑓 “ {𝑥}))) · 𝑥)))) ∈ V | 
| 50 | 32, 46, 47, 49 | ovmpo 7593 | . 2
⊢ ((𝑊 ∈ V ∧ 𝑀 ∈ ∪ ran measures) → (𝑊sitg𝑀) = (𝑓 ∈ {𝑔 ∈ (dom 𝑀MblFnM𝑆) ∣ (ran 𝑔 ∈ Fin ∧ ∀𝑥 ∈ (ran 𝑔 ∖ { 0 })(𝑀‘(◡𝑔 “ {𝑥})) ∈ (0[,)+∞))} ↦ (𝑊 Σg
(𝑥 ∈ (ran 𝑓 ∖ { 0 }) ↦ ((𝐻‘(𝑀‘(◡𝑓 “ {𝑥}))) · 𝑥))))) | 
| 51 | 2, 3, 50 | syl2anc 584 | 1
⊢ (𝜑 → (𝑊sitg𝑀) = (𝑓 ∈ {𝑔 ∈ (dom 𝑀MblFnM𝑆) ∣ (ran 𝑔 ∈ Fin ∧ ∀𝑥 ∈ (ran 𝑔 ∖ { 0 })(𝑀‘(◡𝑔 “ {𝑥})) ∈ (0[,)+∞))} ↦ (𝑊 Σg
(𝑥 ∈ (ran 𝑓 ∖ { 0 }) ↦ ((𝐻‘(𝑀‘(◡𝑓 “ {𝑥}))) · 𝑥))))) |