Detailed syntax breakdown of Definition df-sitg
| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | csitg 34332 | . 2
class
sitg | 
| 2 |  | vw | . . 3
setvar 𝑤 | 
| 3 |  | vm | . . 3
setvar 𝑚 | 
| 4 |  | cvv 3479 | . . 3
class
V | 
| 5 |  | cmeas 34197 | . . . . 5
class
measures | 
| 6 | 5 | crn 5685 | . . . 4
class ran
measures | 
| 7 | 6 | cuni 4906 | . . 3
class ∪ ran measures | 
| 8 |  | vf | . . . 4
setvar 𝑓 | 
| 9 |  | vg | . . . . . . . . 9
setvar 𝑔 | 
| 10 | 9 | cv 1538 | . . . . . . . 8
class 𝑔 | 
| 11 | 10 | crn 5685 | . . . . . . 7
class ran 𝑔 | 
| 12 |  | cfn 8986 | . . . . . . 7
class
Fin | 
| 13 | 11, 12 | wcel 2107 | . . . . . 6
wff ran 𝑔 ∈ Fin | 
| 14 | 10 | ccnv 5683 | . . . . . . . . . 10
class ◡𝑔 | 
| 15 |  | vx | . . . . . . . . . . . 12
setvar 𝑥 | 
| 16 | 15 | cv 1538 | . . . . . . . . . . 11
class 𝑥 | 
| 17 | 16 | csn 4625 | . . . . . . . . . 10
class {𝑥} | 
| 18 | 14, 17 | cima 5687 | . . . . . . . . 9
class (◡𝑔 “ {𝑥}) | 
| 19 | 3 | cv 1538 | . . . . . . . . 9
class 𝑚 | 
| 20 | 18, 19 | cfv 6560 | . . . . . . . 8
class (𝑚‘(◡𝑔 “ {𝑥})) | 
| 21 |  | cc0 11156 | . . . . . . . . 9
class
0 | 
| 22 |  | cpnf 11293 | . . . . . . . . 9
class
+∞ | 
| 23 |  | cico 13390 | . . . . . . . . 9
class
[,) | 
| 24 | 21, 22, 23 | co 7432 | . . . . . . . 8
class
(0[,)+∞) | 
| 25 | 20, 24 | wcel 2107 | . . . . . . 7
wff (𝑚‘(◡𝑔 “ {𝑥})) ∈ (0[,)+∞) | 
| 26 | 2 | cv 1538 | . . . . . . . . . 10
class 𝑤 | 
| 27 |  | c0g 17485 | . . . . . . . . . 10
class
0g | 
| 28 | 26, 27 | cfv 6560 | . . . . . . . . 9
class
(0g‘𝑤) | 
| 29 | 28 | csn 4625 | . . . . . . . 8
class
{(0g‘𝑤)} | 
| 30 | 11, 29 | cdif 3947 | . . . . . . 7
class (ran
𝑔 ∖
{(0g‘𝑤)}) | 
| 31 | 25, 15, 30 | wral 3060 | . . . . . 6
wff
∀𝑥 ∈
(ran 𝑔 ∖
{(0g‘𝑤)})(𝑚‘(◡𝑔 “ {𝑥})) ∈ (0[,)+∞) | 
| 32 | 13, 31 | wa 395 | . . . . 5
wff (ran 𝑔 ∈ Fin ∧ ∀𝑥 ∈ (ran 𝑔 ∖ {(0g‘𝑤)})(𝑚‘(◡𝑔 “ {𝑥})) ∈ (0[,)+∞)) | 
| 33 | 19 | cdm 5684 | . . . . . 6
class dom 𝑚 | 
| 34 |  | ctopn 17467 | . . . . . . . 8
class
TopOpen | 
| 35 | 26, 34 | cfv 6560 | . . . . . . 7
class
(TopOpen‘𝑤) | 
| 36 |  | csigagen 34140 | . . . . . . 7
class
sigaGen | 
| 37 | 35, 36 | cfv 6560 | . . . . . 6
class
(sigaGen‘(TopOpen‘𝑤)) | 
| 38 |  | cmbfm 34251 | . . . . . 6
class
MblFnM | 
| 39 | 33, 37, 38 | co 7432 | . . . . 5
class (dom
𝑚MblFnM(sigaGen‘(TopOpen‘𝑤))) | 
| 40 | 32, 9, 39 | crab 3435 | . . . 4
class {𝑔 ∈ (dom 𝑚MblFnM(sigaGen‘(TopOpen‘𝑤))) ∣ (ran 𝑔 ∈ Fin ∧ ∀𝑥 ∈ (ran 𝑔 ∖ {(0g‘𝑤)})(𝑚‘(◡𝑔 “ {𝑥})) ∈ (0[,)+∞))} | 
| 41 | 8 | cv 1538 | . . . . . . . 8
class 𝑓 | 
| 42 | 41 | crn 5685 | . . . . . . 7
class ran 𝑓 | 
| 43 | 42, 29 | cdif 3947 | . . . . . 6
class (ran
𝑓 ∖
{(0g‘𝑤)}) | 
| 44 | 41 | ccnv 5683 | . . . . . . . . . 10
class ◡𝑓 | 
| 45 | 44, 17 | cima 5687 | . . . . . . . . 9
class (◡𝑓 “ {𝑥}) | 
| 46 | 45, 19 | cfv 6560 | . . . . . . . 8
class (𝑚‘(◡𝑓 “ {𝑥})) | 
| 47 |  | csca 17301 | . . . . . . . . . 10
class
Scalar | 
| 48 | 26, 47 | cfv 6560 | . . . . . . . . 9
class
(Scalar‘𝑤) | 
| 49 |  | crrh 33995 | . . . . . . . . 9
class
ℝHom | 
| 50 | 48, 49 | cfv 6560 | . . . . . . . 8
class
(ℝHom‘(Scalar‘𝑤)) | 
| 51 | 46, 50 | cfv 6560 | . . . . . . 7
class
((ℝHom‘(Scalar‘𝑤))‘(𝑚‘(◡𝑓 “ {𝑥}))) | 
| 52 |  | cvsca 17302 | . . . . . . . 8
class 
·𝑠 | 
| 53 | 26, 52 | cfv 6560 | . . . . . . 7
class (
·𝑠 ‘𝑤) | 
| 54 | 51, 16, 53 | co 7432 | . . . . . 6
class
(((ℝHom‘(Scalar‘𝑤))‘(𝑚‘(◡𝑓 “ {𝑥})))( ·𝑠
‘𝑤)𝑥) | 
| 55 | 15, 43, 54 | cmpt 5224 | . . . . 5
class (𝑥 ∈ (ran 𝑓 ∖ {(0g‘𝑤)}) ↦
(((ℝHom‘(Scalar‘𝑤))‘(𝑚‘(◡𝑓 “ {𝑥})))( ·𝑠
‘𝑤)𝑥)) | 
| 56 |  | cgsu 17486 | . . . . 5
class 
Σg | 
| 57 | 26, 55, 56 | co 7432 | . . . 4
class (𝑤 Σg
(𝑥 ∈ (ran 𝑓 ∖
{(0g‘𝑤)})
↦ (((ℝHom‘(Scalar‘𝑤))‘(𝑚‘(◡𝑓 “ {𝑥})))( ·𝑠
‘𝑤)𝑥))) | 
| 58 | 8, 40, 57 | cmpt 5224 | . . 3
class (𝑓 ∈ {𝑔 ∈ (dom 𝑚MblFnM(sigaGen‘(TopOpen‘𝑤))) ∣ (ran 𝑔 ∈ Fin ∧ ∀𝑥 ∈ (ran 𝑔 ∖ {(0g‘𝑤)})(𝑚‘(◡𝑔 “ {𝑥})) ∈ (0[,)+∞))} ↦ (𝑤 Σg
(𝑥 ∈ (ran 𝑓 ∖
{(0g‘𝑤)})
↦ (((ℝHom‘(Scalar‘𝑤))‘(𝑚‘(◡𝑓 “ {𝑥})))( ·𝑠
‘𝑤)𝑥)))) | 
| 59 | 2, 3, 4, 7, 58 | cmpo 7434 | . 2
class (𝑤 ∈ V, 𝑚 ∈ ∪ ran
measures ↦ (𝑓 ∈
{𝑔 ∈ (dom 𝑚MblFnM(sigaGen‘(TopOpen‘𝑤))) ∣ (ran 𝑔 ∈ Fin ∧ ∀𝑥 ∈ (ran 𝑔 ∖ {(0g‘𝑤)})(𝑚‘(◡𝑔 “ {𝑥})) ∈ (0[,)+∞))} ↦ (𝑤 Σg
(𝑥 ∈ (ran 𝑓 ∖
{(0g‘𝑤)})
↦ (((ℝHom‘(Scalar‘𝑤))‘(𝑚‘(◡𝑓 “ {𝑥})))( ·𝑠
‘𝑤)𝑥))))) | 
| 60 | 1, 59 | wceq 1539 | 1
wff sitg =
(𝑤 ∈ V, 𝑚 ∈ ∪ ran measures ↦ (𝑓 ∈ {𝑔 ∈ (dom 𝑚MblFnM(sigaGen‘(TopOpen‘𝑤))) ∣ (ran 𝑔 ∈ Fin ∧ ∀𝑥 ∈ (ran 𝑔 ∖ {(0g‘𝑤)})(𝑚‘(◡𝑔 “ {𝑥})) ∈ (0[,)+∞))} ↦ (𝑤 Σg
(𝑥 ∈ (ran 𝑓 ∖
{(0g‘𝑤)})
↦ (((ℝHom‘(Scalar‘𝑤))‘(𝑚‘(◡𝑓 “ {𝑥})))( ·𝑠
‘𝑤)𝑥))))) |