Detailed syntax breakdown of Definition df-sitg
| Step | Hyp | Ref
| Expression |
| 1 | | csitg 34366 |
. 2
class
sitg |
| 2 | | vw |
. . 3
setvar 𝑤 |
| 3 | | vm |
. . 3
setvar 𝑚 |
| 4 | | cvv 3464 |
. . 3
class
V |
| 5 | | cmeas 34231 |
. . . . 5
class
measures |
| 6 | 5 | crn 5660 |
. . . 4
class ran
measures |
| 7 | 6 | cuni 4888 |
. . 3
class ∪ ran measures |
| 8 | | vf |
. . . 4
setvar 𝑓 |
| 9 | | vg |
. . . . . . . . 9
setvar 𝑔 |
| 10 | 9 | cv 1539 |
. . . . . . . 8
class 𝑔 |
| 11 | 10 | crn 5660 |
. . . . . . 7
class ran 𝑔 |
| 12 | | cfn 8964 |
. . . . . . 7
class
Fin |
| 13 | 11, 12 | wcel 2109 |
. . . . . 6
wff ran 𝑔 ∈ Fin |
| 14 | 10 | ccnv 5658 |
. . . . . . . . . 10
class ◡𝑔 |
| 15 | | vx |
. . . . . . . . . . . 12
setvar 𝑥 |
| 16 | 15 | cv 1539 |
. . . . . . . . . . 11
class 𝑥 |
| 17 | 16 | csn 4606 |
. . . . . . . . . 10
class {𝑥} |
| 18 | 14, 17 | cima 5662 |
. . . . . . . . 9
class (◡𝑔 “ {𝑥}) |
| 19 | 3 | cv 1539 |
. . . . . . . . 9
class 𝑚 |
| 20 | 18, 19 | cfv 6536 |
. . . . . . . 8
class (𝑚‘(◡𝑔 “ {𝑥})) |
| 21 | | cc0 11134 |
. . . . . . . . 9
class
0 |
| 22 | | cpnf 11271 |
. . . . . . . . 9
class
+∞ |
| 23 | | cico 13369 |
. . . . . . . . 9
class
[,) |
| 24 | 21, 22, 23 | co 7410 |
. . . . . . . 8
class
(0[,)+∞) |
| 25 | 20, 24 | wcel 2109 |
. . . . . . 7
wff (𝑚‘(◡𝑔 “ {𝑥})) ∈ (0[,)+∞) |
| 26 | 2 | cv 1539 |
. . . . . . . . . 10
class 𝑤 |
| 27 | | c0g 17458 |
. . . . . . . . . 10
class
0g |
| 28 | 26, 27 | cfv 6536 |
. . . . . . . . 9
class
(0g‘𝑤) |
| 29 | 28 | csn 4606 |
. . . . . . . 8
class
{(0g‘𝑤)} |
| 30 | 11, 29 | cdif 3928 |
. . . . . . 7
class (ran
𝑔 ∖
{(0g‘𝑤)}) |
| 31 | 25, 15, 30 | wral 3052 |
. . . . . 6
wff
∀𝑥 ∈
(ran 𝑔 ∖
{(0g‘𝑤)})(𝑚‘(◡𝑔 “ {𝑥})) ∈ (0[,)+∞) |
| 32 | 13, 31 | wa 395 |
. . . . 5
wff (ran 𝑔 ∈ Fin ∧ ∀𝑥 ∈ (ran 𝑔 ∖ {(0g‘𝑤)})(𝑚‘(◡𝑔 “ {𝑥})) ∈ (0[,)+∞)) |
| 33 | 19 | cdm 5659 |
. . . . . 6
class dom 𝑚 |
| 34 | | ctopn 17440 |
. . . . . . . 8
class
TopOpen |
| 35 | 26, 34 | cfv 6536 |
. . . . . . 7
class
(TopOpen‘𝑤) |
| 36 | | csigagen 34174 |
. . . . . . 7
class
sigaGen |
| 37 | 35, 36 | cfv 6536 |
. . . . . 6
class
(sigaGen‘(TopOpen‘𝑤)) |
| 38 | | cmbfm 34285 |
. . . . . 6
class
MblFnM |
| 39 | 33, 37, 38 | co 7410 |
. . . . 5
class (dom
𝑚MblFnM(sigaGen‘(TopOpen‘𝑤))) |
| 40 | 32, 9, 39 | crab 3420 |
. . . 4
class {𝑔 ∈ (dom 𝑚MblFnM(sigaGen‘(TopOpen‘𝑤))) ∣ (ran 𝑔 ∈ Fin ∧ ∀𝑥 ∈ (ran 𝑔 ∖ {(0g‘𝑤)})(𝑚‘(◡𝑔 “ {𝑥})) ∈ (0[,)+∞))} |
| 41 | 8 | cv 1539 |
. . . . . . . 8
class 𝑓 |
| 42 | 41 | crn 5660 |
. . . . . . 7
class ran 𝑓 |
| 43 | 42, 29 | cdif 3928 |
. . . . . 6
class (ran
𝑓 ∖
{(0g‘𝑤)}) |
| 44 | 41 | ccnv 5658 |
. . . . . . . . . 10
class ◡𝑓 |
| 45 | 44, 17 | cima 5662 |
. . . . . . . . 9
class (◡𝑓 “ {𝑥}) |
| 46 | 45, 19 | cfv 6536 |
. . . . . . . 8
class (𝑚‘(◡𝑓 “ {𝑥})) |
| 47 | | csca 17279 |
. . . . . . . . . 10
class
Scalar |
| 48 | 26, 47 | cfv 6536 |
. . . . . . . . 9
class
(Scalar‘𝑤) |
| 49 | | crrh 34029 |
. . . . . . . . 9
class
ℝHom |
| 50 | 48, 49 | cfv 6536 |
. . . . . . . 8
class
(ℝHom‘(Scalar‘𝑤)) |
| 51 | 46, 50 | cfv 6536 |
. . . . . . 7
class
((ℝHom‘(Scalar‘𝑤))‘(𝑚‘(◡𝑓 “ {𝑥}))) |
| 52 | | cvsca 17280 |
. . . . . . . 8
class
·𝑠 |
| 53 | 26, 52 | cfv 6536 |
. . . . . . 7
class (
·𝑠 ‘𝑤) |
| 54 | 51, 16, 53 | co 7410 |
. . . . . 6
class
(((ℝHom‘(Scalar‘𝑤))‘(𝑚‘(◡𝑓 “ {𝑥})))( ·𝑠
‘𝑤)𝑥) |
| 55 | 15, 43, 54 | cmpt 5206 |
. . . . 5
class (𝑥 ∈ (ran 𝑓 ∖ {(0g‘𝑤)}) ↦
(((ℝHom‘(Scalar‘𝑤))‘(𝑚‘(◡𝑓 “ {𝑥})))( ·𝑠
‘𝑤)𝑥)) |
| 56 | | cgsu 17459 |
. . . . 5
class
Σg |
| 57 | 26, 55, 56 | co 7410 |
. . . 4
class (𝑤 Σg
(𝑥 ∈ (ran 𝑓 ∖
{(0g‘𝑤)})
↦ (((ℝHom‘(Scalar‘𝑤))‘(𝑚‘(◡𝑓 “ {𝑥})))( ·𝑠
‘𝑤)𝑥))) |
| 58 | 8, 40, 57 | cmpt 5206 |
. . 3
class (𝑓 ∈ {𝑔 ∈ (dom 𝑚MblFnM(sigaGen‘(TopOpen‘𝑤))) ∣ (ran 𝑔 ∈ Fin ∧ ∀𝑥 ∈ (ran 𝑔 ∖ {(0g‘𝑤)})(𝑚‘(◡𝑔 “ {𝑥})) ∈ (0[,)+∞))} ↦ (𝑤 Σg
(𝑥 ∈ (ran 𝑓 ∖
{(0g‘𝑤)})
↦ (((ℝHom‘(Scalar‘𝑤))‘(𝑚‘(◡𝑓 “ {𝑥})))( ·𝑠
‘𝑤)𝑥)))) |
| 59 | 2, 3, 4, 7, 58 | cmpo 7412 |
. 2
class (𝑤 ∈ V, 𝑚 ∈ ∪ ran
measures ↦ (𝑓 ∈
{𝑔 ∈ (dom 𝑚MblFnM(sigaGen‘(TopOpen‘𝑤))) ∣ (ran 𝑔 ∈ Fin ∧ ∀𝑥 ∈ (ran 𝑔 ∖ {(0g‘𝑤)})(𝑚‘(◡𝑔 “ {𝑥})) ∈ (0[,)+∞))} ↦ (𝑤 Σg
(𝑥 ∈ (ran 𝑓 ∖
{(0g‘𝑤)})
↦ (((ℝHom‘(Scalar‘𝑤))‘(𝑚‘(◡𝑓 “ {𝑥})))( ·𝑠
‘𝑤)𝑥))))) |
| 60 | 1, 59 | wceq 1540 |
1
wff sitg =
(𝑤 ∈ V, 𝑚 ∈ ∪ ran measures ↦ (𝑓 ∈ {𝑔 ∈ (dom 𝑚MblFnM(sigaGen‘(TopOpen‘𝑤))) ∣ (ran 𝑔 ∈ Fin ∧ ∀𝑥 ∈ (ran 𝑔 ∖ {(0g‘𝑤)})(𝑚‘(◡𝑔 “ {𝑥})) ∈ (0[,)+∞))} ↦ (𝑤 Σg
(𝑥 ∈ (ran 𝑓 ∖
{(0g‘𝑤)})
↦ (((ℝHom‘(Scalar‘𝑤))‘(𝑚‘(◡𝑓 “ {𝑥})))( ·𝑠
‘𝑤)𝑥))))) |