| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-sle | Structured version Visualization version GIF version | ||
| Description: Define the surreal less-than or equal predicate. Compare df-le 11284. (Contributed by Scott Fenton, 8-Dec-2021.) |
| Ref | Expression |
|---|---|
| df-sle | ⊢ ≤s = (( No × No ) ∖ ◡ <s ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | csle 27744 | . 2 class ≤s | |
| 2 | csur 27639 | . . . 4 class No | |
| 3 | 2, 2 | cxp 5665 | . . 3 class ( No × No ) |
| 4 | cslt 27640 | . . . 4 class <s | |
| 5 | 4 | ccnv 5666 | . . 3 class ◡ <s |
| 6 | 3, 5 | cdif 3930 | . 2 class (( No × No ) ∖ ◡ <s ) |
| 7 | 1, 6 | wceq 1539 | 1 wff ≤s = (( No × No ) ∖ ◡ <s ) |
| Colors of variables: wff setvar class |
| This definition is referenced by: slenlt 27752 |
| Copyright terms: Public domain | W3C validator |