MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-le Structured version   Visualization version   GIF version

Definition df-le 11285
Description: Define 'less than or equal to' on the extended real subset of complex numbers. Theorem leloe 11331 relates it to 'less than' for reals. (Contributed by NM, 13-Oct-2005.)
Assertion
Ref Expression
df-le ≤ = ((ℝ* × ℝ*) ∖ < )

Detailed syntax breakdown of Definition df-le
StepHypRef Expression
1 cle 11280 . 2 class
2 cxr 11278 . . . 4 class *
32, 2cxp 5676 . . 3 class (ℝ* × ℝ*)
4 clt 11279 . . . 4 class <
54ccnv 5677 . . 3 class <
63, 5cdif 3944 . 2 class ((ℝ* × ℝ*) ∖ < )
71, 6wceq 1534 1 wff ≤ = ((ℝ* × ℝ*) ∖ < )
Colors of variables: wff setvar class
This definition is referenced by:  lerelxr  11308  xrlenlt  11310  leiso  14453  gtiso  32493
  Copyright terms: Public domain W3C validator