Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > df-le | Structured version Visualization version GIF version |
Description: Define 'less than or equal to' on the extended real subset of complex numbers. Theorem leloe 10967 relates it to 'less than' for reals. (Contributed by NM, 13-Oct-2005.) |
Ref | Expression |
---|---|
df-le | ⊢ ≤ = ((ℝ* × ℝ*) ∖ ◡ < ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cle 10916 | . 2 class ≤ | |
2 | cxr 10914 | . . . 4 class ℝ* | |
3 | 2, 2 | cxp 5577 | . . 3 class (ℝ* × ℝ*) |
4 | clt 10915 | . . . 4 class < | |
5 | 4 | ccnv 5578 | . . 3 class ◡ < |
6 | 3, 5 | cdif 3881 | . 2 class ((ℝ* × ℝ*) ∖ ◡ < ) |
7 | 1, 6 | wceq 1543 | 1 wff ≤ = ((ℝ* × ℝ*) ∖ ◡ < ) |
Colors of variables: wff setvar class |
This definition is referenced by: lerelxr 10944 xrlenlt 10946 leiso 14076 gtiso 30910 |
Copyright terms: Public domain | W3C validator |