| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sltirr | Structured version Visualization version GIF version | ||
| Description: Surreal less-than is irreflexive. (Contributed by Scott Fenton, 16-Jun-2011.) |
| Ref | Expression |
|---|---|
| sltirr | ⊢ (𝐴 ∈ No → ¬ 𝐴 <s 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sltso 27604 | . 2 ⊢ <s Or No | |
| 2 | sonr 5555 | . 2 ⊢ (( <s Or No ∧ 𝐴 ∈ No ) → ¬ 𝐴 <s 𝐴) | |
| 3 | 1, 2 | mpan 690 | 1 ⊢ (𝐴 ∈ No → ¬ 𝐴 <s 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∈ wcel 2109 class class class wbr 5095 Or wor 5530 No csur 27567 <s cslt 27568 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-tp 4584 df-op 4586 df-uni 4862 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-ord 6314 df-on 6315 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-fv 6494 df-1o 8395 df-2o 8396 df-no 27570 df-slt 27571 |
| This theorem is referenced by: slerflex 27691 sltne 27698 slerec 27748 ssltdisj 27752 bday1s 27763 cuteq1 27766 madebdaylemlrcut 27831 sltlpss 27840 sltmul2 28097 onsiso 28192 |
| Copyright terms: Public domain | W3C validator |