Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  slenlt Structured version   Visualization version   GIF version

Theorem slenlt 32752
Description: Surreal less than or equal in terms of less than. (Contributed by Scott Fenton, 8-Dec-2021.)
Assertion
Ref Expression
slenlt ((𝐴 No 𝐵 No ) → (𝐴 ≤s 𝐵 ↔ ¬ 𝐵 <s 𝐴))

Proof of Theorem slenlt
StepHypRef Expression
1 df-sle 32745 . . . 4 ≤s = (( No × No ) ∖ <s )
21breqi 4936 . . 3 (𝐴 ≤s 𝐵𝐴(( No × No ) ∖ <s )𝐵)
3 brdif 4983 . . 3 (𝐴(( No × No ) ∖ <s )𝐵 ↔ (𝐴( No × No )𝐵 ∧ ¬ 𝐴 <s 𝐵))
4 brxp 5454 . . . 4 (𝐴( No × No )𝐵 ↔ (𝐴 No 𝐵 No ))
54anbi1i 614 . . 3 ((𝐴( No × No )𝐵 ∧ ¬ 𝐴 <s 𝐵) ↔ ((𝐴 No 𝐵 No ) ∧ ¬ 𝐴 <s 𝐵))
62, 3, 53bitri 289 . 2 (𝐴 ≤s 𝐵 ↔ ((𝐴 No 𝐵 No ) ∧ ¬ 𝐴 <s 𝐵))
7 ibar 521 . . 3 ((𝐴 No 𝐵 No ) → (¬ 𝐴 <s 𝐵 ↔ ((𝐴 No 𝐵 No ) ∧ ¬ 𝐴 <s 𝐵)))
8 brcnvg 5601 . . . 4 ((𝐴 No 𝐵 No ) → (𝐴 <s 𝐵𝐵 <s 𝐴))
98notbid 310 . . 3 ((𝐴 No 𝐵 No ) → (¬ 𝐴 <s 𝐵 ↔ ¬ 𝐵 <s 𝐴))
107, 9bitr3d 273 . 2 ((𝐴 No 𝐵 No ) → (((𝐴 No 𝐵 No ) ∧ ¬ 𝐴 <s 𝐵) ↔ ¬ 𝐵 <s 𝐴))
116, 10syl5bb 275 1 ((𝐴 No 𝐵 No ) → (𝐴 ≤s 𝐵 ↔ ¬ 𝐵 <s 𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 198  wa 387  wcel 2050  cdif 3828   class class class wbr 4930   × cxp 5406  ccnv 5407   No csur 32668   <s cslt 32669   ≤s csle 32744
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1965  ax-8 2052  ax-9 2059  ax-10 2079  ax-11 2093  ax-12 2106  ax-13 2301  ax-ext 2750  ax-sep 5061  ax-nul 5068  ax-pr 5187
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3an 1070  df-tru 1510  df-ex 1743  df-nf 1747  df-sb 2016  df-mo 2547  df-eu 2583  df-clab 2759  df-cleq 2771  df-clel 2846  df-nfc 2918  df-ral 3093  df-rex 3094  df-rab 3097  df-v 3417  df-dif 3834  df-un 3836  df-in 3838  df-ss 3845  df-nul 4181  df-if 4352  df-sn 4443  df-pr 4445  df-op 4449  df-br 4931  df-opab 4993  df-xp 5414  df-cnv 5416  df-sle 32745
This theorem is referenced by:  sltnle  32753  sleloe  32754  sletri3  32755  sltletr  32756  slelttr  32757  sletr  32758  sltrec  32799
  Copyright terms: Public domain W3C validator