![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > slenlt | Structured version Visualization version GIF version |
Description: Surreal less-than or equal in terms of less-than. (Contributed by Scott Fenton, 8-Dec-2021.) |
Ref | Expression |
---|---|
slenlt | ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ) → (𝐴 ≤s 𝐵 ↔ ¬ 𝐵 <s 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-sle 27808 | . . . 4 ⊢ ≤s = (( No × No ) ∖ ◡ <s ) | |
2 | 1 | breqi 5172 | . . 3 ⊢ (𝐴 ≤s 𝐵 ↔ 𝐴(( No × No ) ∖ ◡ <s )𝐵) |
3 | brdif 5219 | . . 3 ⊢ (𝐴(( No × No ) ∖ ◡ <s )𝐵 ↔ (𝐴( No × No )𝐵 ∧ ¬ 𝐴◡ <s 𝐵)) | |
4 | brxp 5749 | . . . 4 ⊢ (𝐴( No × No )𝐵 ↔ (𝐴 ∈ No ∧ 𝐵 ∈ No )) | |
5 | 4 | anbi1i 623 | . . 3 ⊢ ((𝐴( No × No )𝐵 ∧ ¬ 𝐴◡ <s 𝐵) ↔ ((𝐴 ∈ No ∧ 𝐵 ∈ No ) ∧ ¬ 𝐴◡ <s 𝐵)) |
6 | 2, 3, 5 | 3bitri 297 | . 2 ⊢ (𝐴 ≤s 𝐵 ↔ ((𝐴 ∈ No ∧ 𝐵 ∈ No ) ∧ ¬ 𝐴◡ <s 𝐵)) |
7 | ibar 528 | . . 3 ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ) → (¬ 𝐴◡ <s 𝐵 ↔ ((𝐴 ∈ No ∧ 𝐵 ∈ No ) ∧ ¬ 𝐴◡ <s 𝐵))) | |
8 | brcnvg 5904 | . . . 4 ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ) → (𝐴◡ <s 𝐵 ↔ 𝐵 <s 𝐴)) | |
9 | 8 | notbid 318 | . . 3 ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ) → (¬ 𝐴◡ <s 𝐵 ↔ ¬ 𝐵 <s 𝐴)) |
10 | 7, 9 | bitr3d 281 | . 2 ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ) → (((𝐴 ∈ No ∧ 𝐵 ∈ No ) ∧ ¬ 𝐴◡ <s 𝐵) ↔ ¬ 𝐵 <s 𝐴)) |
11 | 6, 10 | bitrid 283 | 1 ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ) → (𝐴 ≤s 𝐵 ↔ ¬ 𝐵 <s 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2108 ∖ cdif 3973 class class class wbr 5166 × cxp 5698 ◡ccnv 5699 No csur 27702 <s cslt 27703 ≤s csle 27807 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-br 5167 df-opab 5229 df-xp 5706 df-cnv 5708 df-sle 27808 |
This theorem is referenced by: sltnle 27816 sleloe 27817 sletri3 27818 sltletr 27819 slelttr 27820 sletr 27821 slerflex 27826 sletric 27827 sltled 27832 sltrec 27883 sltlpss 27963 cofcutr 27976 sleneg 28096 slesubsubbd 28134 slesubsub2bd 28135 slesubsub3bd 28136 slesubaddd 28141 slemul2d 28218 slemul1d 28219 sltonold 28301 om2noseqlt2 28324 |
Copyright terms: Public domain | W3C validator |