MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  slenlt Structured version   Visualization version   GIF version

Theorem slenlt 27671
Description: Surreal less-than or equal in terms of less-than. (Contributed by Scott Fenton, 8-Dec-2021.)
Assertion
Ref Expression
slenlt ((𝐴 No 𝐵 No ) → (𝐴 ≤s 𝐵 ↔ ¬ 𝐵 <s 𝐴))

Proof of Theorem slenlt
StepHypRef Expression
1 df-sle 27664 . . . 4 ≤s = (( No × No ) ∖ <s )
21breqi 5116 . . 3 (𝐴 ≤s 𝐵𝐴(( No × No ) ∖ <s )𝐵)
3 brdif 5163 . . 3 (𝐴(( No × No ) ∖ <s )𝐵 ↔ (𝐴( No × No )𝐵 ∧ ¬ 𝐴 <s 𝐵))
4 brxp 5690 . . . 4 (𝐴( No × No )𝐵 ↔ (𝐴 No 𝐵 No ))
54anbi1i 624 . . 3 ((𝐴( No × No )𝐵 ∧ ¬ 𝐴 <s 𝐵) ↔ ((𝐴 No 𝐵 No ) ∧ ¬ 𝐴 <s 𝐵))
62, 3, 53bitri 297 . 2 (𝐴 ≤s 𝐵 ↔ ((𝐴 No 𝐵 No ) ∧ ¬ 𝐴 <s 𝐵))
7 ibar 528 . . 3 ((𝐴 No 𝐵 No ) → (¬ 𝐴 <s 𝐵 ↔ ((𝐴 No 𝐵 No ) ∧ ¬ 𝐴 <s 𝐵)))
8 brcnvg 5846 . . . 4 ((𝐴 No 𝐵 No ) → (𝐴 <s 𝐵𝐵 <s 𝐴))
98notbid 318 . . 3 ((𝐴 No 𝐵 No ) → (¬ 𝐴 <s 𝐵 ↔ ¬ 𝐵 <s 𝐴))
107, 9bitr3d 281 . 2 ((𝐴 No 𝐵 No ) → (((𝐴 No 𝐵 No ) ∧ ¬ 𝐴 <s 𝐵) ↔ ¬ 𝐵 <s 𝐴))
116, 10bitrid 283 1 ((𝐴 No 𝐵 No ) → (𝐴 ≤s 𝐵 ↔ ¬ 𝐵 <s 𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wcel 2109  cdif 3914   class class class wbr 5110   × cxp 5639  ccnv 5640   No csur 27558   <s cslt 27559   ≤s csle 27663
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-br 5111  df-opab 5173  df-xp 5647  df-cnv 5649  df-sle 27664
This theorem is referenced by:  sltnle  27672  sleloe  27673  sletri3  27674  sltletr  27675  slelttr  27676  sletr  27677  slerflex  27682  sletric  27683  sltled  27688  sltrec  27739  sltlpss  27826  cofcutr  27839  sleneg  27959  slesubsubbd  27997  slesubsub2bd  27998  slesubsub3bd  27999  slesubaddd  28004  slemul2d  28084  slemul1d  28085  sltonold  28169  onscutlt  28172  onnolt  28174  om2noseqlt2  28201  n0sfincut  28253
  Copyright terms: Public domain W3C validator