MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  slenlt Structured version   Visualization version   GIF version

Theorem slenlt 27812
Description: Surreal less-than or equal in terms of less-than. (Contributed by Scott Fenton, 8-Dec-2021.)
Assertion
Ref Expression
slenlt ((𝐴 No 𝐵 No ) → (𝐴 ≤s 𝐵 ↔ ¬ 𝐵 <s 𝐴))

Proof of Theorem slenlt
StepHypRef Expression
1 df-sle 27805 . . . 4 ≤s = (( No × No ) ∖ <s )
21breqi 5154 . . 3 (𝐴 ≤s 𝐵𝐴(( No × No ) ∖ <s )𝐵)
3 brdif 5201 . . 3 (𝐴(( No × No ) ∖ <s )𝐵 ↔ (𝐴( No × No )𝐵 ∧ ¬ 𝐴 <s 𝐵))
4 brxp 5738 . . . 4 (𝐴( No × No )𝐵 ↔ (𝐴 No 𝐵 No ))
54anbi1i 624 . . 3 ((𝐴( No × No )𝐵 ∧ ¬ 𝐴 <s 𝐵) ↔ ((𝐴 No 𝐵 No ) ∧ ¬ 𝐴 <s 𝐵))
62, 3, 53bitri 297 . 2 (𝐴 ≤s 𝐵 ↔ ((𝐴 No 𝐵 No ) ∧ ¬ 𝐴 <s 𝐵))
7 ibar 528 . . 3 ((𝐴 No 𝐵 No ) → (¬ 𝐴 <s 𝐵 ↔ ((𝐴 No 𝐵 No ) ∧ ¬ 𝐴 <s 𝐵)))
8 brcnvg 5893 . . . 4 ((𝐴 No 𝐵 No ) → (𝐴 <s 𝐵𝐵 <s 𝐴))
98notbid 318 . . 3 ((𝐴 No 𝐵 No ) → (¬ 𝐴 <s 𝐵 ↔ ¬ 𝐵 <s 𝐴))
107, 9bitr3d 281 . 2 ((𝐴 No 𝐵 No ) → (((𝐴 No 𝐵 No ) ∧ ¬ 𝐴 <s 𝐵) ↔ ¬ 𝐵 <s 𝐴))
116, 10bitrid 283 1 ((𝐴 No 𝐵 No ) → (𝐴 ≤s 𝐵 ↔ ¬ 𝐵 <s 𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wcel 2106  cdif 3960   class class class wbr 5148   × cxp 5687  ccnv 5688   No csur 27699   <s cslt 27700   ≤s csle 27804
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pr 5438
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-sb 2063  df-clab 2713  df-cleq 2727  df-clel 2814  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-dif 3966  df-un 3968  df-ss 3980  df-nul 4340  df-if 4532  df-sn 4632  df-pr 4634  df-op 4638  df-br 5149  df-opab 5211  df-xp 5695  df-cnv 5697  df-sle 27805
This theorem is referenced by:  sltnle  27813  sleloe  27814  sletri3  27815  sltletr  27816  slelttr  27817  sletr  27818  slerflex  27823  sletric  27824  sltled  27829  sltrec  27880  sltlpss  27960  cofcutr  27973  sleneg  28093  slesubsubbd  28131  slesubsub2bd  28132  slesubsub3bd  28133  slesubaddd  28138  slemul2d  28215  slemul1d  28216  sltonold  28298  om2noseqlt2  28321
  Copyright terms: Public domain W3C validator