| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > slenlt | Structured version Visualization version GIF version | ||
| Description: Surreal less-than or equal in terms of less-than. (Contributed by Scott Fenton, 8-Dec-2021.) |
| Ref | Expression |
|---|---|
| slenlt | ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ) → (𝐴 ≤s 𝐵 ↔ ¬ 𝐵 <s 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-sle 27709 | . . . 4 ⊢ ≤s = (( No × No ) ∖ ◡ <s ) | |
| 2 | 1 | breqi 5125 | . . 3 ⊢ (𝐴 ≤s 𝐵 ↔ 𝐴(( No × No ) ∖ ◡ <s )𝐵) |
| 3 | brdif 5172 | . . 3 ⊢ (𝐴(( No × No ) ∖ ◡ <s )𝐵 ↔ (𝐴( No × No )𝐵 ∧ ¬ 𝐴◡ <s 𝐵)) | |
| 4 | brxp 5703 | . . . 4 ⊢ (𝐴( No × No )𝐵 ↔ (𝐴 ∈ No ∧ 𝐵 ∈ No )) | |
| 5 | 4 | anbi1i 624 | . . 3 ⊢ ((𝐴( No × No )𝐵 ∧ ¬ 𝐴◡ <s 𝐵) ↔ ((𝐴 ∈ No ∧ 𝐵 ∈ No ) ∧ ¬ 𝐴◡ <s 𝐵)) |
| 6 | 2, 3, 5 | 3bitri 297 | . 2 ⊢ (𝐴 ≤s 𝐵 ↔ ((𝐴 ∈ No ∧ 𝐵 ∈ No ) ∧ ¬ 𝐴◡ <s 𝐵)) |
| 7 | ibar 528 | . . 3 ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ) → (¬ 𝐴◡ <s 𝐵 ↔ ((𝐴 ∈ No ∧ 𝐵 ∈ No ) ∧ ¬ 𝐴◡ <s 𝐵))) | |
| 8 | brcnvg 5859 | . . . 4 ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ) → (𝐴◡ <s 𝐵 ↔ 𝐵 <s 𝐴)) | |
| 9 | 8 | notbid 318 | . . 3 ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ) → (¬ 𝐴◡ <s 𝐵 ↔ ¬ 𝐵 <s 𝐴)) |
| 10 | 7, 9 | bitr3d 281 | . 2 ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ) → (((𝐴 ∈ No ∧ 𝐵 ∈ No ) ∧ ¬ 𝐴◡ <s 𝐵) ↔ ¬ 𝐵 <s 𝐴)) |
| 11 | 6, 10 | bitrid 283 | 1 ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ) → (𝐴 ≤s 𝐵 ↔ ¬ 𝐵 <s 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2108 ∖ cdif 3923 class class class wbr 5119 × cxp 5652 ◡ccnv 5653 No csur 27603 <s cslt 27604 ≤s csle 27708 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-br 5120 df-opab 5182 df-xp 5660 df-cnv 5662 df-sle 27709 |
| This theorem is referenced by: sltnle 27717 sleloe 27718 sletri3 27719 sltletr 27720 slelttr 27721 sletr 27722 slerflex 27727 sletric 27728 sltled 27733 sltrec 27784 sltlpss 27871 cofcutr 27884 sleneg 28004 slesubsubbd 28042 slesubsub2bd 28043 slesubsub3bd 28044 slesubaddd 28049 slemul2d 28129 slemul1d 28130 sltonold 28214 onscutlt 28217 onnolt 28219 om2noseqlt2 28246 n0sfincut 28298 |
| Copyright terms: Public domain | W3C validator |