| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > slenlt | Structured version Visualization version GIF version | ||
| Description: Surreal less-than or equal in terms of less-than. (Contributed by Scott Fenton, 8-Dec-2021.) |
| Ref | Expression |
|---|---|
| slenlt | ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ) → (𝐴 ≤s 𝐵 ↔ ¬ 𝐵 <s 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-sle 27691 | . . . 4 ⊢ ≤s = (( No × No ) ∖ ◡ <s ) | |
| 2 | 1 | breqi 5108 | . . 3 ⊢ (𝐴 ≤s 𝐵 ↔ 𝐴(( No × No ) ∖ ◡ <s )𝐵) |
| 3 | brdif 5155 | . . 3 ⊢ (𝐴(( No × No ) ∖ ◡ <s )𝐵 ↔ (𝐴( No × No )𝐵 ∧ ¬ 𝐴◡ <s 𝐵)) | |
| 4 | brxp 5680 | . . . 4 ⊢ (𝐴( No × No )𝐵 ↔ (𝐴 ∈ No ∧ 𝐵 ∈ No )) | |
| 5 | 4 | anbi1i 624 | . . 3 ⊢ ((𝐴( No × No )𝐵 ∧ ¬ 𝐴◡ <s 𝐵) ↔ ((𝐴 ∈ No ∧ 𝐵 ∈ No ) ∧ ¬ 𝐴◡ <s 𝐵)) |
| 6 | 2, 3, 5 | 3bitri 297 | . 2 ⊢ (𝐴 ≤s 𝐵 ↔ ((𝐴 ∈ No ∧ 𝐵 ∈ No ) ∧ ¬ 𝐴◡ <s 𝐵)) |
| 7 | ibar 528 | . . 3 ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ) → (¬ 𝐴◡ <s 𝐵 ↔ ((𝐴 ∈ No ∧ 𝐵 ∈ No ) ∧ ¬ 𝐴◡ <s 𝐵))) | |
| 8 | brcnvg 5833 | . . . 4 ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ) → (𝐴◡ <s 𝐵 ↔ 𝐵 <s 𝐴)) | |
| 9 | 8 | notbid 318 | . . 3 ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ) → (¬ 𝐴◡ <s 𝐵 ↔ ¬ 𝐵 <s 𝐴)) |
| 10 | 7, 9 | bitr3d 281 | . 2 ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ) → (((𝐴 ∈ No ∧ 𝐵 ∈ No ) ∧ ¬ 𝐴◡ <s 𝐵) ↔ ¬ 𝐵 <s 𝐴)) |
| 11 | 6, 10 | bitrid 283 | 1 ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ) → (𝐴 ≤s 𝐵 ↔ ¬ 𝐵 <s 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2109 ∖ cdif 3908 class class class wbr 5102 × cxp 5629 ◡ccnv 5630 No csur 27585 <s cslt 27586 ≤s csle 27690 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-br 5103 df-opab 5165 df-xp 5637 df-cnv 5639 df-sle 27691 |
| This theorem is referenced by: sltnle 27699 sleloe 27700 sletri3 27701 sltletr 27702 slelttr 27703 sletr 27704 slerflex 27709 sletric 27710 sltled 27715 sltrec 27768 sltlpss 27858 cofcutr 27873 sleneg 27993 slesubsubbd 28031 slesubsub2bd 28032 slesubsub3bd 28033 slesubaddd 28038 slemul2d 28118 slemul1d 28119 sltonold 28203 onscutlt 28206 onnolt 28208 om2noseqlt2 28235 n0sfincut 28287 |
| Copyright terms: Public domain | W3C validator |