Detailed syntax breakdown of Definition df-slmd
| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | cslmd 33206 | . 2
class
SLMod | 
| 2 |  | vf | . . . . . . . . . . . . 13
setvar 𝑓 | 
| 3 | 2 | cv 1539 | . . . . . . . . . . . 12
class 𝑓 | 
| 4 |  | csrg 20183 | . . . . . . . . . . . 12
class
SRing | 
| 5 | 3, 4 | wcel 2108 | . . . . . . . . . . 11
wff 𝑓 ∈ SRing | 
| 6 |  | vr | . . . . . . . . . . . . . . . . . . . 20
setvar 𝑟 | 
| 7 | 6 | cv 1539 | . . . . . . . . . . . . . . . . . . 19
class 𝑟 | 
| 8 |  | vw | . . . . . . . . . . . . . . . . . . . 20
setvar 𝑤 | 
| 9 | 8 | cv 1539 | . . . . . . . . . . . . . . . . . . 19
class 𝑤 | 
| 10 |  | vs | . . . . . . . . . . . . . . . . . . . 20
setvar 𝑠 | 
| 11 | 10 | cv 1539 | . . . . . . . . . . . . . . . . . . 19
class 𝑠 | 
| 12 | 7, 9, 11 | co 7431 | . . . . . . . . . . . . . . . . . 18
class (𝑟𝑠𝑤) | 
| 13 |  | vv | . . . . . . . . . . . . . . . . . . 19
setvar 𝑣 | 
| 14 | 13 | cv 1539 | . . . . . . . . . . . . . . . . . 18
class 𝑣 | 
| 15 | 12, 14 | wcel 2108 | . . . . . . . . . . . . . . . . 17
wff (𝑟𝑠𝑤) ∈ 𝑣 | 
| 16 |  | vx | . . . . . . . . . . . . . . . . . . . . 21
setvar 𝑥 | 
| 17 | 16 | cv 1539 | . . . . . . . . . . . . . . . . . . . 20
class 𝑥 | 
| 18 |  | va | . . . . . . . . . . . . . . . . . . . . 21
setvar 𝑎 | 
| 19 | 18 | cv 1539 | . . . . . . . . . . . . . . . . . . . 20
class 𝑎 | 
| 20 | 9, 17, 19 | co 7431 | . . . . . . . . . . . . . . . . . . 19
class (𝑤𝑎𝑥) | 
| 21 | 7, 20, 11 | co 7431 | . . . . . . . . . . . . . . . . . 18
class (𝑟𝑠(𝑤𝑎𝑥)) | 
| 22 | 7, 17, 11 | co 7431 | . . . . . . . . . . . . . . . . . . 19
class (𝑟𝑠𝑥) | 
| 23 | 12, 22, 19 | co 7431 | . . . . . . . . . . . . . . . . . 18
class ((𝑟𝑠𝑤)𝑎(𝑟𝑠𝑥)) | 
| 24 | 21, 23 | wceq 1540 | . . . . . . . . . . . . . . . . 17
wff (𝑟𝑠(𝑤𝑎𝑥)) = ((𝑟𝑠𝑤)𝑎(𝑟𝑠𝑥)) | 
| 25 |  | vq | . . . . . . . . . . . . . . . . . . . . 21
setvar 𝑞 | 
| 26 | 25 | cv 1539 | . . . . . . . . . . . . . . . . . . . 20
class 𝑞 | 
| 27 |  | vp | . . . . . . . . . . . . . . . . . . . . 21
setvar 𝑝 | 
| 28 | 27 | cv 1539 | . . . . . . . . . . . . . . . . . . . 20
class 𝑝 | 
| 29 | 26, 7, 28 | co 7431 | . . . . . . . . . . . . . . . . . . 19
class (𝑞𝑝𝑟) | 
| 30 | 29, 9, 11 | co 7431 | . . . . . . . . . . . . . . . . . 18
class ((𝑞𝑝𝑟)𝑠𝑤) | 
| 31 | 26, 9, 11 | co 7431 | . . . . . . . . . . . . . . . . . . 19
class (𝑞𝑠𝑤) | 
| 32 | 31, 12, 19 | co 7431 | . . . . . . . . . . . . . . . . . 18
class ((𝑞𝑠𝑤)𝑎(𝑟𝑠𝑤)) | 
| 33 | 30, 32 | wceq 1540 | . . . . . . . . . . . . . . . . 17
wff ((𝑞𝑝𝑟)𝑠𝑤) = ((𝑞𝑠𝑤)𝑎(𝑟𝑠𝑤)) | 
| 34 | 15, 24, 33 | w3a 1087 | . . . . . . . . . . . . . . . 16
wff ((𝑟𝑠𝑤) ∈ 𝑣 ∧ (𝑟𝑠(𝑤𝑎𝑥)) = ((𝑟𝑠𝑤)𝑎(𝑟𝑠𝑥)) ∧ ((𝑞𝑝𝑟)𝑠𝑤) = ((𝑞𝑠𝑤)𝑎(𝑟𝑠𝑤))) | 
| 35 |  | vt | . . . . . . . . . . . . . . . . . . . . 21
setvar 𝑡 | 
| 36 | 35 | cv 1539 | . . . . . . . . . . . . . . . . . . . 20
class 𝑡 | 
| 37 | 26, 7, 36 | co 7431 | . . . . . . . . . . . . . . . . . . 19
class (𝑞𝑡𝑟) | 
| 38 | 37, 9, 11 | co 7431 | . . . . . . . . . . . . . . . . . 18
class ((𝑞𝑡𝑟)𝑠𝑤) | 
| 39 | 26, 12, 11 | co 7431 | . . . . . . . . . . . . . . . . . 18
class (𝑞𝑠(𝑟𝑠𝑤)) | 
| 40 | 38, 39 | wceq 1540 | . . . . . . . . . . . . . . . . 17
wff ((𝑞𝑡𝑟)𝑠𝑤) = (𝑞𝑠(𝑟𝑠𝑤)) | 
| 41 |  | cur 20178 | . . . . . . . . . . . . . . . . . . . 20
class
1r | 
| 42 | 3, 41 | cfv 6561 | . . . . . . . . . . . . . . . . . . 19
class
(1r‘𝑓) | 
| 43 | 42, 9, 11 | co 7431 | . . . . . . . . . . . . . . . . . 18
class
((1r‘𝑓)𝑠𝑤) | 
| 44 | 43, 9 | wceq 1540 | . . . . . . . . . . . . . . . . 17
wff
((1r‘𝑓)𝑠𝑤) = 𝑤 | 
| 45 |  | c0g 17484 | . . . . . . . . . . . . . . . . . . . 20
class
0g | 
| 46 | 3, 45 | cfv 6561 | . . . . . . . . . . . . . . . . . . 19
class
(0g‘𝑓) | 
| 47 | 46, 9, 11 | co 7431 | . . . . . . . . . . . . . . . . . 18
class
((0g‘𝑓)𝑠𝑤) | 
| 48 |  | vg | . . . . . . . . . . . . . . . . . . . 20
setvar 𝑔 | 
| 49 | 48 | cv 1539 | . . . . . . . . . . . . . . . . . . 19
class 𝑔 | 
| 50 | 49, 45 | cfv 6561 | . . . . . . . . . . . . . . . . . 18
class
(0g‘𝑔) | 
| 51 | 47, 50 | wceq 1540 | . . . . . . . . . . . . . . . . 17
wff
((0g‘𝑓)𝑠𝑤) = (0g‘𝑔) | 
| 52 | 40, 44, 51 | w3a 1087 | . . . . . . . . . . . . . . . 16
wff (((𝑞𝑡𝑟)𝑠𝑤) = (𝑞𝑠(𝑟𝑠𝑤)) ∧ ((1r‘𝑓)𝑠𝑤) = 𝑤 ∧ ((0g‘𝑓)𝑠𝑤) = (0g‘𝑔)) | 
| 53 | 34, 52 | wa 395 | . . . . . . . . . . . . . . 15
wff (((𝑟𝑠𝑤) ∈ 𝑣 ∧ (𝑟𝑠(𝑤𝑎𝑥)) = ((𝑟𝑠𝑤)𝑎(𝑟𝑠𝑥)) ∧ ((𝑞𝑝𝑟)𝑠𝑤) = ((𝑞𝑠𝑤)𝑎(𝑟𝑠𝑤))) ∧ (((𝑞𝑡𝑟)𝑠𝑤) = (𝑞𝑠(𝑟𝑠𝑤)) ∧ ((1r‘𝑓)𝑠𝑤) = 𝑤 ∧ ((0g‘𝑓)𝑠𝑤) = (0g‘𝑔))) | 
| 54 | 53, 8, 14 | wral 3061 | . . . . . . . . . . . . . 14
wff
∀𝑤 ∈
𝑣 (((𝑟𝑠𝑤) ∈ 𝑣 ∧ (𝑟𝑠(𝑤𝑎𝑥)) = ((𝑟𝑠𝑤)𝑎(𝑟𝑠𝑥)) ∧ ((𝑞𝑝𝑟)𝑠𝑤) = ((𝑞𝑠𝑤)𝑎(𝑟𝑠𝑤))) ∧ (((𝑞𝑡𝑟)𝑠𝑤) = (𝑞𝑠(𝑟𝑠𝑤)) ∧ ((1r‘𝑓)𝑠𝑤) = 𝑤 ∧ ((0g‘𝑓)𝑠𝑤) = (0g‘𝑔))) | 
| 55 | 54, 16, 14 | wral 3061 | . . . . . . . . . . . . 13
wff
∀𝑥 ∈
𝑣 ∀𝑤 ∈ 𝑣 (((𝑟𝑠𝑤) ∈ 𝑣 ∧ (𝑟𝑠(𝑤𝑎𝑥)) = ((𝑟𝑠𝑤)𝑎(𝑟𝑠𝑥)) ∧ ((𝑞𝑝𝑟)𝑠𝑤) = ((𝑞𝑠𝑤)𝑎(𝑟𝑠𝑤))) ∧ (((𝑞𝑡𝑟)𝑠𝑤) = (𝑞𝑠(𝑟𝑠𝑤)) ∧ ((1r‘𝑓)𝑠𝑤) = 𝑤 ∧ ((0g‘𝑓)𝑠𝑤) = (0g‘𝑔))) | 
| 56 |  | vk | . . . . . . . . . . . . . 14
setvar 𝑘 | 
| 57 | 56 | cv 1539 | . . . . . . . . . . . . 13
class 𝑘 | 
| 58 | 55, 6, 57 | wral 3061 | . . . . . . . . . . . 12
wff
∀𝑟 ∈
𝑘 ∀𝑥 ∈ 𝑣 ∀𝑤 ∈ 𝑣 (((𝑟𝑠𝑤) ∈ 𝑣 ∧ (𝑟𝑠(𝑤𝑎𝑥)) = ((𝑟𝑠𝑤)𝑎(𝑟𝑠𝑥)) ∧ ((𝑞𝑝𝑟)𝑠𝑤) = ((𝑞𝑠𝑤)𝑎(𝑟𝑠𝑤))) ∧ (((𝑞𝑡𝑟)𝑠𝑤) = (𝑞𝑠(𝑟𝑠𝑤)) ∧ ((1r‘𝑓)𝑠𝑤) = 𝑤 ∧ ((0g‘𝑓)𝑠𝑤) = (0g‘𝑔))) | 
| 59 | 58, 25, 57 | wral 3061 | . . . . . . . . . . 11
wff
∀𝑞 ∈
𝑘 ∀𝑟 ∈ 𝑘 ∀𝑥 ∈ 𝑣 ∀𝑤 ∈ 𝑣 (((𝑟𝑠𝑤) ∈ 𝑣 ∧ (𝑟𝑠(𝑤𝑎𝑥)) = ((𝑟𝑠𝑤)𝑎(𝑟𝑠𝑥)) ∧ ((𝑞𝑝𝑟)𝑠𝑤) = ((𝑞𝑠𝑤)𝑎(𝑟𝑠𝑤))) ∧ (((𝑞𝑡𝑟)𝑠𝑤) = (𝑞𝑠(𝑟𝑠𝑤)) ∧ ((1r‘𝑓)𝑠𝑤) = 𝑤 ∧ ((0g‘𝑓)𝑠𝑤) = (0g‘𝑔))) | 
| 60 | 5, 59 | wa 395 | . . . . . . . . . 10
wff (𝑓 ∈ SRing ∧
∀𝑞 ∈ 𝑘 ∀𝑟 ∈ 𝑘 ∀𝑥 ∈ 𝑣 ∀𝑤 ∈ 𝑣 (((𝑟𝑠𝑤) ∈ 𝑣 ∧ (𝑟𝑠(𝑤𝑎𝑥)) = ((𝑟𝑠𝑤)𝑎(𝑟𝑠𝑥)) ∧ ((𝑞𝑝𝑟)𝑠𝑤) = ((𝑞𝑠𝑤)𝑎(𝑟𝑠𝑤))) ∧ (((𝑞𝑡𝑟)𝑠𝑤) = (𝑞𝑠(𝑟𝑠𝑤)) ∧ ((1r‘𝑓)𝑠𝑤) = 𝑤 ∧ ((0g‘𝑓)𝑠𝑤) = (0g‘𝑔)))) | 
| 61 |  | cmulr 17298 | . . . . . . . . . . 11
class
.r | 
| 62 | 3, 61 | cfv 6561 | . . . . . . . . . 10
class
(.r‘𝑓) | 
| 63 | 60, 35, 62 | wsbc 3788 | . . . . . . . . 9
wff
[(.r‘𝑓) / 𝑡](𝑓 ∈ SRing ∧ ∀𝑞 ∈ 𝑘 ∀𝑟 ∈ 𝑘 ∀𝑥 ∈ 𝑣 ∀𝑤 ∈ 𝑣 (((𝑟𝑠𝑤) ∈ 𝑣 ∧ (𝑟𝑠(𝑤𝑎𝑥)) = ((𝑟𝑠𝑤)𝑎(𝑟𝑠𝑥)) ∧ ((𝑞𝑝𝑟)𝑠𝑤) = ((𝑞𝑠𝑤)𝑎(𝑟𝑠𝑤))) ∧ (((𝑞𝑡𝑟)𝑠𝑤) = (𝑞𝑠(𝑟𝑠𝑤)) ∧ ((1r‘𝑓)𝑠𝑤) = 𝑤 ∧ ((0g‘𝑓)𝑠𝑤) = (0g‘𝑔)))) | 
| 64 |  | cplusg 17297 | . . . . . . . . . 10
class
+g | 
| 65 | 3, 64 | cfv 6561 | . . . . . . . . 9
class
(+g‘𝑓) | 
| 66 | 63, 27, 65 | wsbc 3788 | . . . . . . . 8
wff
[(+g‘𝑓) / 𝑝][(.r‘𝑓) / 𝑡](𝑓 ∈ SRing ∧ ∀𝑞 ∈ 𝑘 ∀𝑟 ∈ 𝑘 ∀𝑥 ∈ 𝑣 ∀𝑤 ∈ 𝑣 (((𝑟𝑠𝑤) ∈ 𝑣 ∧ (𝑟𝑠(𝑤𝑎𝑥)) = ((𝑟𝑠𝑤)𝑎(𝑟𝑠𝑥)) ∧ ((𝑞𝑝𝑟)𝑠𝑤) = ((𝑞𝑠𝑤)𝑎(𝑟𝑠𝑤))) ∧ (((𝑞𝑡𝑟)𝑠𝑤) = (𝑞𝑠(𝑟𝑠𝑤)) ∧ ((1r‘𝑓)𝑠𝑤) = 𝑤 ∧ ((0g‘𝑓)𝑠𝑤) = (0g‘𝑔)))) | 
| 67 |  | cbs 17247 | . . . . . . . . 9
class
Base | 
| 68 | 3, 67 | cfv 6561 | . . . . . . . 8
class
(Base‘𝑓) | 
| 69 | 66, 56, 68 | wsbc 3788 | . . . . . . 7
wff
[(Base‘𝑓) / 𝑘][(+g‘𝑓) / 𝑝][(.r‘𝑓) / 𝑡](𝑓 ∈ SRing ∧ ∀𝑞 ∈ 𝑘 ∀𝑟 ∈ 𝑘 ∀𝑥 ∈ 𝑣 ∀𝑤 ∈ 𝑣 (((𝑟𝑠𝑤) ∈ 𝑣 ∧ (𝑟𝑠(𝑤𝑎𝑥)) = ((𝑟𝑠𝑤)𝑎(𝑟𝑠𝑥)) ∧ ((𝑞𝑝𝑟)𝑠𝑤) = ((𝑞𝑠𝑤)𝑎(𝑟𝑠𝑤))) ∧ (((𝑞𝑡𝑟)𝑠𝑤) = (𝑞𝑠(𝑟𝑠𝑤)) ∧ ((1r‘𝑓)𝑠𝑤) = 𝑤 ∧ ((0g‘𝑓)𝑠𝑤) = (0g‘𝑔)))) | 
| 70 |  | csca 17300 | . . . . . . . 8
class
Scalar | 
| 71 | 49, 70 | cfv 6561 | . . . . . . 7
class
(Scalar‘𝑔) | 
| 72 | 69, 2, 71 | wsbc 3788 | . . . . . 6
wff
[(Scalar‘𝑔) / 𝑓][(Base‘𝑓) / 𝑘][(+g‘𝑓) / 𝑝][(.r‘𝑓) / 𝑡](𝑓 ∈ SRing ∧ ∀𝑞 ∈ 𝑘 ∀𝑟 ∈ 𝑘 ∀𝑥 ∈ 𝑣 ∀𝑤 ∈ 𝑣 (((𝑟𝑠𝑤) ∈ 𝑣 ∧ (𝑟𝑠(𝑤𝑎𝑥)) = ((𝑟𝑠𝑤)𝑎(𝑟𝑠𝑥)) ∧ ((𝑞𝑝𝑟)𝑠𝑤) = ((𝑞𝑠𝑤)𝑎(𝑟𝑠𝑤))) ∧ (((𝑞𝑡𝑟)𝑠𝑤) = (𝑞𝑠(𝑟𝑠𝑤)) ∧ ((1r‘𝑓)𝑠𝑤) = 𝑤 ∧ ((0g‘𝑓)𝑠𝑤) = (0g‘𝑔)))) | 
| 73 |  | cvsca 17301 | . . . . . . 7
class 
·𝑠 | 
| 74 | 49, 73 | cfv 6561 | . . . . . 6
class (
·𝑠 ‘𝑔) | 
| 75 | 72, 10, 74 | wsbc 3788 | . . . . 5
wff [(
·𝑠 ‘𝑔) / 𝑠][(Scalar‘𝑔) / 𝑓][(Base‘𝑓) / 𝑘][(+g‘𝑓) / 𝑝][(.r‘𝑓) / 𝑡](𝑓 ∈ SRing ∧ ∀𝑞 ∈ 𝑘 ∀𝑟 ∈ 𝑘 ∀𝑥 ∈ 𝑣 ∀𝑤 ∈ 𝑣 (((𝑟𝑠𝑤) ∈ 𝑣 ∧ (𝑟𝑠(𝑤𝑎𝑥)) = ((𝑟𝑠𝑤)𝑎(𝑟𝑠𝑥)) ∧ ((𝑞𝑝𝑟)𝑠𝑤) = ((𝑞𝑠𝑤)𝑎(𝑟𝑠𝑤))) ∧ (((𝑞𝑡𝑟)𝑠𝑤) = (𝑞𝑠(𝑟𝑠𝑤)) ∧ ((1r‘𝑓)𝑠𝑤) = 𝑤 ∧ ((0g‘𝑓)𝑠𝑤) = (0g‘𝑔)))) | 
| 76 | 49, 64 | cfv 6561 | . . . . 5
class
(+g‘𝑔) | 
| 77 | 75, 18, 76 | wsbc 3788 | . . . 4
wff
[(+g‘𝑔) / 𝑎][(
·𝑠 ‘𝑔) / 𝑠][(Scalar‘𝑔) / 𝑓][(Base‘𝑓) / 𝑘][(+g‘𝑓) / 𝑝][(.r‘𝑓) / 𝑡](𝑓 ∈ SRing ∧ ∀𝑞 ∈ 𝑘 ∀𝑟 ∈ 𝑘 ∀𝑥 ∈ 𝑣 ∀𝑤 ∈ 𝑣 (((𝑟𝑠𝑤) ∈ 𝑣 ∧ (𝑟𝑠(𝑤𝑎𝑥)) = ((𝑟𝑠𝑤)𝑎(𝑟𝑠𝑥)) ∧ ((𝑞𝑝𝑟)𝑠𝑤) = ((𝑞𝑠𝑤)𝑎(𝑟𝑠𝑤))) ∧ (((𝑞𝑡𝑟)𝑠𝑤) = (𝑞𝑠(𝑟𝑠𝑤)) ∧ ((1r‘𝑓)𝑠𝑤) = 𝑤 ∧ ((0g‘𝑓)𝑠𝑤) = (0g‘𝑔)))) | 
| 78 | 49, 67 | cfv 6561 | . . . 4
class
(Base‘𝑔) | 
| 79 | 77, 13, 78 | wsbc 3788 | . . 3
wff
[(Base‘𝑔) / 𝑣][(+g‘𝑔) / 𝑎][(
·𝑠 ‘𝑔) / 𝑠][(Scalar‘𝑔) / 𝑓][(Base‘𝑓) / 𝑘][(+g‘𝑓) / 𝑝][(.r‘𝑓) / 𝑡](𝑓 ∈ SRing ∧ ∀𝑞 ∈ 𝑘 ∀𝑟 ∈ 𝑘 ∀𝑥 ∈ 𝑣 ∀𝑤 ∈ 𝑣 (((𝑟𝑠𝑤) ∈ 𝑣 ∧ (𝑟𝑠(𝑤𝑎𝑥)) = ((𝑟𝑠𝑤)𝑎(𝑟𝑠𝑥)) ∧ ((𝑞𝑝𝑟)𝑠𝑤) = ((𝑞𝑠𝑤)𝑎(𝑟𝑠𝑤))) ∧ (((𝑞𝑡𝑟)𝑠𝑤) = (𝑞𝑠(𝑟𝑠𝑤)) ∧ ((1r‘𝑓)𝑠𝑤) = 𝑤 ∧ ((0g‘𝑓)𝑠𝑤) = (0g‘𝑔)))) | 
| 80 |  | ccmn 19798 | . . 3
class
CMnd | 
| 81 | 79, 48, 80 | crab 3436 | . 2
class {𝑔 ∈ CMnd ∣
[(Base‘𝑔) /
𝑣][(+g‘𝑔) / 𝑎][(
·𝑠 ‘𝑔) / 𝑠][(Scalar‘𝑔) / 𝑓][(Base‘𝑓) / 𝑘][(+g‘𝑓) / 𝑝][(.r‘𝑓) / 𝑡](𝑓 ∈ SRing ∧ ∀𝑞 ∈ 𝑘 ∀𝑟 ∈ 𝑘 ∀𝑥 ∈ 𝑣 ∀𝑤 ∈ 𝑣 (((𝑟𝑠𝑤) ∈ 𝑣 ∧ (𝑟𝑠(𝑤𝑎𝑥)) = ((𝑟𝑠𝑤)𝑎(𝑟𝑠𝑥)) ∧ ((𝑞𝑝𝑟)𝑠𝑤) = ((𝑞𝑠𝑤)𝑎(𝑟𝑠𝑤))) ∧ (((𝑞𝑡𝑟)𝑠𝑤) = (𝑞𝑠(𝑟𝑠𝑤)) ∧ ((1r‘𝑓)𝑠𝑤) = 𝑤 ∧ ((0g‘𝑓)𝑠𝑤) = (0g‘𝑔))))} | 
| 82 | 1, 81 | wceq 1540 | 1
wff SLMod =
{𝑔 ∈ CMnd ∣
[(Base‘𝑔) /
𝑣][(+g‘𝑔) / 𝑎][(
·𝑠 ‘𝑔) / 𝑠][(Scalar‘𝑔) / 𝑓][(Base‘𝑓) / 𝑘][(+g‘𝑓) / 𝑝][(.r‘𝑓) / 𝑡](𝑓 ∈ SRing ∧ ∀𝑞 ∈ 𝑘 ∀𝑟 ∈ 𝑘 ∀𝑥 ∈ 𝑣 ∀𝑤 ∈ 𝑣 (((𝑟𝑠𝑤) ∈ 𝑣 ∧ (𝑟𝑠(𝑤𝑎𝑥)) = ((𝑟𝑠𝑤)𝑎(𝑟𝑠𝑥)) ∧ ((𝑞𝑝𝑟)𝑠𝑤) = ((𝑞𝑠𝑤)𝑎(𝑟𝑠𝑤))) ∧ (((𝑞𝑡𝑟)𝑠𝑤) = (𝑞𝑠(𝑟𝑠𝑤)) ∧ ((1r‘𝑓)𝑠𝑤) = 𝑤 ∧ ((0g‘𝑓)𝑠𝑤) = (0g‘𝑔))))} |