Step | Hyp | Ref
| Expression |
1 | | fvex 6901 |
. . . . 5
β’
(Baseβπ)
β V |
2 | | fvex 6901 |
. . . . 5
β’
(+gβπ) β V |
3 | | fvex 6901 |
. . . . . . 7
β’ (
Β·π βπ) β V |
4 | | fvex 6901 |
. . . . . . 7
β’
(Scalarβπ)
β V |
5 | | fvex 6901 |
. . . . . . . . 9
β’
(Baseβπ)
β V |
6 | | fvex 6901 |
. . . . . . . . 9
β’
(+gβπ) β V |
7 | | fvex 6901 |
. . . . . . . . 9
β’
(.rβπ) β V |
8 | | simp1 1136 |
. . . . . . . . . . 11
β’ ((π = (Baseβπ) β§ π = (+gβπ) β§ π‘ = (.rβπ)) β π = (Baseβπ)) |
9 | | simp2 1137 |
. . . . . . . . . . . . . . . . . 18
β’ ((π = (Baseβπ) β§ π = (+gβπ) β§ π‘ = (.rβπ)) β π = (+gβπ)) |
10 | 9 | oveqd 7422 |
. . . . . . . . . . . . . . . . 17
β’ ((π = (Baseβπ) β§ π = (+gβπ) β§ π‘ = (.rβπ)) β (πππ) = (π(+gβπ)π)) |
11 | 10 | oveq1d 7420 |
. . . . . . . . . . . . . . . 16
β’ ((π = (Baseβπ) β§ π = (+gβπ) β§ π‘ = (.rβπ)) β ((πππ)π π€) = ((π(+gβπ)π)π π€)) |
12 | 11 | eqeq1d 2734 |
. . . . . . . . . . . . . . 15
β’ ((π = (Baseβπ) β§ π = (+gβπ) β§ π‘ = (.rβπ)) β (((πππ)π π€) = ((ππ π€)π(ππ π€)) β ((π(+gβπ)π)π π€) = ((ππ π€)π(ππ π€)))) |
13 | 12 | 3anbi3d 1442 |
. . . . . . . . . . . . . 14
β’ ((π = (Baseβπ) β§ π = (+gβπ) β§ π‘ = (.rβπ)) β (((ππ π€) β π£ β§ (ππ (π€ππ₯)) = ((ππ π€)π(ππ π₯)) β§ ((πππ)π π€) = ((ππ π€)π(ππ π€))) β ((ππ π€) β π£ β§ (ππ (π€ππ₯)) = ((ππ π€)π(ππ π₯)) β§ ((π(+gβπ)π)π π€) = ((ππ π€)π(ππ π€))))) |
14 | | simp3 1138 |
. . . . . . . . . . . . . . . . . 18
β’ ((π = (Baseβπ) β§ π = (+gβπ) β§ π‘ = (.rβπ)) β π‘ = (.rβπ)) |
15 | 14 | oveqd 7422 |
. . . . . . . . . . . . . . . . 17
β’ ((π = (Baseβπ) β§ π = (+gβπ) β§ π‘ = (.rβπ)) β (ππ‘π) = (π(.rβπ)π)) |
16 | 15 | oveq1d 7420 |
. . . . . . . . . . . . . . . 16
β’ ((π = (Baseβπ) β§ π = (+gβπ) β§ π‘ = (.rβπ)) β ((ππ‘π)π π€) = ((π(.rβπ)π)π π€)) |
17 | 16 | eqeq1d 2734 |
. . . . . . . . . . . . . . 15
β’ ((π = (Baseβπ) β§ π = (+gβπ) β§ π‘ = (.rβπ)) β (((ππ‘π)π π€) = (ππ (ππ π€)) β ((π(.rβπ)π)π π€) = (ππ (ππ π€)))) |
18 | 17 | 3anbi1d 1440 |
. . . . . . . . . . . . . 14
β’ ((π = (Baseβπ) β§ π = (+gβπ) β§ π‘ = (.rβπ)) β ((((ππ‘π)π π€) = (ππ (ππ π€)) β§ ((1rβπ)π π€) = π€ β§ ((0gβπ)π π€) = (0gβπ)) β (((π(.rβπ)π)π π€) = (ππ (ππ π€)) β§ ((1rβπ)π π€) = π€ β§ ((0gβπ)π π€) = (0gβπ)))) |
19 | 13, 18 | anbi12d 631 |
. . . . . . . . . . . . 13
β’ ((π = (Baseβπ) β§ π = (+gβπ) β§ π‘ = (.rβπ)) β ((((ππ π€) β π£ β§ (ππ (π€ππ₯)) = ((ππ π€)π(ππ π₯)) β§ ((πππ)π π€) = ((ππ π€)π(ππ π€))) β§ (((ππ‘π)π π€) = (ππ (ππ π€)) β§ ((1rβπ)π π€) = π€ β§ ((0gβπ)π π€) = (0gβπ))) β (((ππ π€) β π£ β§ (ππ (π€ππ₯)) = ((ππ π€)π(ππ π₯)) β§ ((π(+gβπ)π)π π€) = ((ππ π€)π(ππ π€))) β§ (((π(.rβπ)π)π π€) = (ππ (ππ π€)) β§ ((1rβπ)π π€) = π€ β§ ((0gβπ)π π€) = (0gβπ))))) |
20 | 19 | 2ralbidv 3218 |
. . . . . . . . . . . 12
β’ ((π = (Baseβπ) β§ π = (+gβπ) β§ π‘ = (.rβπ)) β (βπ₯ β π£ βπ€ β π£ (((ππ π€) β π£ β§ (ππ (π€ππ₯)) = ((ππ π€)π(ππ π₯)) β§ ((πππ)π π€) = ((ππ π€)π(ππ π€))) β§ (((ππ‘π)π π€) = (ππ (ππ π€)) β§ ((1rβπ)π π€) = π€ β§ ((0gβπ)π π€) = (0gβπ))) β βπ₯ β π£ βπ€ β π£ (((ππ π€) β π£ β§ (ππ (π€ππ₯)) = ((ππ π€)π(ππ π₯)) β§ ((π(+gβπ)π)π π€) = ((ππ π€)π(ππ π€))) β§ (((π(.rβπ)π)π π€) = (ππ (ππ π€)) β§ ((1rβπ)π π€) = π€ β§ ((0gβπ)π π€) = (0gβπ))))) |
21 | 8, 20 | raleqbidv 3342 |
. . . . . . . . . . 11
β’ ((π = (Baseβπ) β§ π = (+gβπ) β§ π‘ = (.rβπ)) β (βπ β π βπ₯ β π£ βπ€ β π£ (((ππ π€) β π£ β§ (ππ (π€ππ₯)) = ((ππ π€)π(ππ π₯)) β§ ((πππ)π π€) = ((ππ π€)π(ππ π€))) β§ (((ππ‘π)π π€) = (ππ (ππ π€)) β§ ((1rβπ)π π€) = π€ β§ ((0gβπ)π π€) = (0gβπ))) β βπ β (Baseβπ)βπ₯ β π£ βπ€ β π£ (((ππ π€) β π£ β§ (ππ (π€ππ₯)) = ((ππ π€)π(ππ π₯)) β§ ((π(+gβπ)π)π π€) = ((ππ π€)π(ππ π€))) β§ (((π(.rβπ)π)π π€) = (ππ (ππ π€)) β§ ((1rβπ)π π€) = π€ β§ ((0gβπ)π π€) = (0gβπ))))) |
22 | 8, 21 | raleqbidv 3342 |
. . . . . . . . . 10
β’ ((π = (Baseβπ) β§ π = (+gβπ) β§ π‘ = (.rβπ)) β (βπ β π βπ β π βπ₯ β π£ βπ€ β π£ (((ππ π€) β π£ β§ (ππ (π€ππ₯)) = ((ππ π€)π(ππ π₯)) β§ ((πππ)π π€) = ((ππ π€)π(ππ π€))) β§ (((ππ‘π)π π€) = (ππ (ππ π€)) β§ ((1rβπ)π π€) = π€ β§ ((0gβπ)π π€) = (0gβπ))) β βπ β (Baseβπ)βπ β (Baseβπ)βπ₯ β π£ βπ€ β π£ (((ππ π€) β π£ β§ (ππ (π€ππ₯)) = ((ππ π€)π(ππ π₯)) β§ ((π(+gβπ)π)π π€) = ((ππ π€)π(ππ π€))) β§ (((π(.rβπ)π)π π€) = (ππ (ππ π€)) β§ ((1rβπ)π π€) = π€ β§ ((0gβπ)π π€) = (0gβπ))))) |
23 | 22 | anbi2d 629 |
. . . . . . . . 9
β’ ((π = (Baseβπ) β§ π = (+gβπ) β§ π‘ = (.rβπ)) β ((π β SRing β§ βπ β π βπ β π βπ₯ β π£ βπ€ β π£ (((ππ π€) β π£ β§ (ππ (π€ππ₯)) = ((ππ π€)π(ππ π₯)) β§ ((πππ)π π€) = ((ππ π€)π(ππ π€))) β§ (((ππ‘π)π π€) = (ππ (ππ π€)) β§ ((1rβπ)π π€) = π€ β§ ((0gβπ)π π€) = (0gβπ)))) β (π β SRing β§ βπ β (Baseβπ)βπ β (Baseβπ)βπ₯ β π£ βπ€ β π£ (((ππ π€) β π£ β§ (ππ (π€ππ₯)) = ((ππ π€)π(ππ π₯)) β§ ((π(+gβπ)π)π π€) = ((ππ π€)π(ππ π€))) β§ (((π(.rβπ)π)π π€) = (ππ (ππ π€)) β§ ((1rβπ)π π€) = π€ β§ ((0gβπ)π π€) = (0gβπ)))))) |
24 | 5, 6, 7, 23 | sbc3ie 3862 |
. . . . . . . 8
β’
([(Baseβπ) / π][(+gβπ) / π][(.rβπ) / π‘](π β SRing β§ βπ β π βπ β π βπ₯ β π£ βπ€ β π£ (((ππ π€) β π£ β§ (ππ (π€ππ₯)) = ((ππ π€)π(ππ π₯)) β§ ((πππ)π π€) = ((ππ π€)π(ππ π€))) β§ (((ππ‘π)π π€) = (ππ (ππ π€)) β§ ((1rβπ)π π€) = π€ β§ ((0gβπ)π π€) = (0gβπ)))) β (π β SRing β§ βπ β (Baseβπ)βπ β (Baseβπ)βπ₯ β π£ βπ€ β π£ (((ππ π€) β π£ β§ (ππ (π€ππ₯)) = ((ππ π€)π(ππ π₯)) β§ ((π(+gβπ)π)π π€) = ((ππ π€)π(ππ π€))) β§ (((π(.rβπ)π)π π€) = (ππ (ππ π€)) β§ ((1rβπ)π π€) = π€ β§ ((0gβπ)π π€) = (0gβπ))))) |
25 | | simpr 485 |
. . . . . . . . . 10
β’ ((π = (
Β·π βπ) β§ π = (Scalarβπ)) β π = (Scalarβπ)) |
26 | 25 | eleq1d 2818 |
. . . . . . . . 9
β’ ((π = (
Β·π βπ) β§ π = (Scalarβπ)) β (π β SRing β (Scalarβπ) β
SRing)) |
27 | 25 | fveq2d 6892 |
. . . . . . . . . 10
β’ ((π = (
Β·π βπ) β§ π = (Scalarβπ)) β (Baseβπ) = (Baseβ(Scalarβπ))) |
28 | | simpl 483 |
. . . . . . . . . . . . . . . 16
β’ ((π = (
Β·π βπ) β§ π = (Scalarβπ)) β π = ( Β·π
βπ)) |
29 | 28 | oveqd 7422 |
. . . . . . . . . . . . . . 15
β’ ((π = (
Β·π βπ) β§ π = (Scalarβπ)) β (ππ π€) = (π( Β·π
βπ)π€)) |
30 | 29 | eleq1d 2818 |
. . . . . . . . . . . . . 14
β’ ((π = (
Β·π βπ) β§ π = (Scalarβπ)) β ((ππ π€) β π£ β (π( Β·π
βπ)π€) β π£)) |
31 | 28 | oveqd 7422 |
. . . . . . . . . . . . . . 15
β’ ((π = (
Β·π βπ) β§ π = (Scalarβπ)) β (ππ (π€ππ₯)) = (π( Β·π
βπ)(π€ππ₯))) |
32 | 28 | oveqd 7422 |
. . . . . . . . . . . . . . . 16
β’ ((π = (
Β·π βπ) β§ π = (Scalarβπ)) β (ππ π₯) = (π( Β·π
βπ)π₯)) |
33 | 29, 32 | oveq12d 7423 |
. . . . . . . . . . . . . . 15
β’ ((π = (
Β·π βπ) β§ π = (Scalarβπ)) β ((ππ π€)π(ππ π₯)) = ((π( Β·π
βπ)π€)π(π( Β·π
βπ)π₯))) |
34 | 31, 33 | eqeq12d 2748 |
. . . . . . . . . . . . . 14
β’ ((π = (
Β·π βπ) β§ π = (Scalarβπ)) β ((ππ (π€ππ₯)) = ((ππ π€)π(ππ π₯)) β (π( Β·π
βπ)(π€ππ₯)) = ((π( Β·π
βπ)π€)π(π( Β·π
βπ)π₯)))) |
35 | 25 | fveq2d 6892 |
. . . . . . . . . . . . . . . . 17
β’ ((π = (
Β·π βπ) β§ π = (Scalarβπ)) β (+gβπ) =
(+gβ(Scalarβπ))) |
36 | 35 | oveqd 7422 |
. . . . . . . . . . . . . . . 16
β’ ((π = (
Β·π βπ) β§ π = (Scalarβπ)) β (π(+gβπ)π) = (π(+gβ(Scalarβπ))π)) |
37 | | eqidd 2733 |
. . . . . . . . . . . . . . . 16
β’ ((π = (
Β·π βπ) β§ π = (Scalarβπ)) β π€ = π€) |
38 | 28, 36, 37 | oveq123d 7426 |
. . . . . . . . . . . . . . 15
β’ ((π = (
Β·π βπ) β§ π = (Scalarβπ)) β ((π(+gβπ)π)π π€) = ((π(+gβ(Scalarβπ))π)( Β·π
βπ)π€)) |
39 | 28 | oveqd 7422 |
. . . . . . . . . . . . . . . 16
β’ ((π = (
Β·π βπ) β§ π = (Scalarβπ)) β (ππ π€) = (π( Β·π
βπ)π€)) |
40 | 39, 29 | oveq12d 7423 |
. . . . . . . . . . . . . . 15
β’ ((π = (
Β·π βπ) β§ π = (Scalarβπ)) β ((ππ π€)π(ππ π€)) = ((π( Β·π
βπ)π€)π(π( Β·π
βπ)π€))) |
41 | 38, 40 | eqeq12d 2748 |
. . . . . . . . . . . . . 14
β’ ((π = (
Β·π βπ) β§ π = (Scalarβπ)) β (((π(+gβπ)π)π π€) = ((ππ π€)π(ππ π€)) β ((π(+gβ(Scalarβπ))π)( Β·π
βπ)π€) = ((π( Β·π
βπ)π€)π(π( Β·π
βπ)π€)))) |
42 | 30, 34, 41 | 3anbi123d 1436 |
. . . . . . . . . . . . 13
β’ ((π = (
Β·π βπ) β§ π = (Scalarβπ)) β (((ππ π€) β π£ β§ (ππ (π€ππ₯)) = ((ππ π€)π(ππ π₯)) β§ ((π(+gβπ)π)π π€) = ((ππ π€)π(ππ π€))) β ((π( Β·π
βπ)π€) β π£ β§ (π( Β·π
βπ)(π€ππ₯)) = ((π( Β·π
βπ)π€)π(π( Β·π
βπ)π₯)) β§ ((π(+gβ(Scalarβπ))π)( Β·π
βπ)π€) = ((π( Β·π
βπ)π€)π(π( Β·π
βπ)π€))))) |
43 | 25 | fveq2d 6892 |
. . . . . . . . . . . . . . . . 17
β’ ((π = (
Β·π βπ) β§ π = (Scalarβπ)) β (.rβπ) =
(.rβ(Scalarβπ))) |
44 | 43 | oveqd 7422 |
. . . . . . . . . . . . . . . 16
β’ ((π = (
Β·π βπ) β§ π = (Scalarβπ)) β (π(.rβπ)π) = (π(.rβ(Scalarβπ))π)) |
45 | 28, 44, 37 | oveq123d 7426 |
. . . . . . . . . . . . . . 15
β’ ((π = (
Β·π βπ) β§ π = (Scalarβπ)) β ((π(.rβπ)π)π π€) = ((π(.rβ(Scalarβπ))π)( Β·π
βπ)π€)) |
46 | | eqidd 2733 |
. . . . . . . . . . . . . . . 16
β’ ((π = (
Β·π βπ) β§ π = (Scalarβπ)) β π = π) |
47 | 28, 46, 29 | oveq123d 7426 |
. . . . . . . . . . . . . . 15
β’ ((π = (
Β·π βπ) β§ π = (Scalarβπ)) β (ππ (ππ π€)) = (π( Β·π
βπ)(π(
Β·π βπ)π€))) |
48 | 45, 47 | eqeq12d 2748 |
. . . . . . . . . . . . . 14
β’ ((π = (
Β·π βπ) β§ π = (Scalarβπ)) β (((π(.rβπ)π)π π€) = (ππ (ππ π€)) β ((π(.rβ(Scalarβπ))π)( Β·π
βπ)π€) = (π( Β·π
βπ)(π(
Β·π βπ)π€)))) |
49 | 25 | fveq2d 6892 |
. . . . . . . . . . . . . . . 16
β’ ((π = (
Β·π βπ) β§ π = (Scalarβπ)) β (1rβπ) =
(1rβ(Scalarβπ))) |
50 | 28, 49, 37 | oveq123d 7426 |
. . . . . . . . . . . . . . 15
β’ ((π = (
Β·π βπ) β§ π = (Scalarβπ)) β ((1rβπ)π π€) = ((1rβ(Scalarβπ))(
Β·π βπ)π€)) |
51 | 50 | eqeq1d 2734 |
. . . . . . . . . . . . . 14
β’ ((π = (
Β·π βπ) β§ π = (Scalarβπ)) β (((1rβπ)π π€) = π€ β
((1rβ(Scalarβπ))( Β·π
βπ)π€) = π€)) |
52 | 25 | fveq2d 6892 |
. . . . . . . . . . . . . . . 16
β’ ((π = (
Β·π βπ) β§ π = (Scalarβπ)) β (0gβπ) =
(0gβ(Scalarβπ))) |
53 | 28, 52, 37 | oveq123d 7426 |
. . . . . . . . . . . . . . 15
β’ ((π = (
Β·π βπ) β§ π = (Scalarβπ)) β ((0gβπ)π π€) = ((0gβ(Scalarβπ))(
Β·π βπ)π€)) |
54 | 53 | eqeq1d 2734 |
. . . . . . . . . . . . . 14
β’ ((π = (
Β·π βπ) β§ π = (Scalarβπ)) β (((0gβπ)π π€) = (0gβπ) β
((0gβ(Scalarβπ))( Β·π
βπ)π€) = (0gβπ))) |
55 | 48, 51, 54 | 3anbi123d 1436 |
. . . . . . . . . . . . 13
β’ ((π = (
Β·π βπ) β§ π = (Scalarβπ)) β ((((π(.rβπ)π)π π€) = (ππ (ππ π€)) β§ ((1rβπ)π π€) = π€ β§ ((0gβπ)π π€) = (0gβπ)) β (((π(.rβ(Scalarβπ))π)( Β·π
βπ)π€) = (π( Β·π
βπ)(π(
Β·π βπ)π€)) β§
((1rβ(Scalarβπ))( Β·π
βπ)π€) = π€ β§
((0gβ(Scalarβπ))( Β·π
βπ)π€) = (0gβπ)))) |
56 | 42, 55 | anbi12d 631 |
. . . . . . . . . . . 12
β’ ((π = (
Β·π βπ) β§ π = (Scalarβπ)) β ((((ππ π€) β π£ β§ (ππ (π€ππ₯)) = ((ππ π€)π(ππ π₯)) β§ ((π(+gβπ)π)π π€) = ((ππ π€)π(ππ π€))) β§ (((π(.rβπ)π)π π€) = (ππ (ππ π€)) β§ ((1rβπ)π π€) = π€ β§ ((0gβπ)π π€) = (0gβπ))) β (((π( Β·π
βπ)π€) β π£ β§ (π( Β·π
βπ)(π€ππ₯)) = ((π( Β·π
βπ)π€)π(π( Β·π
βπ)π₯)) β§ ((π(+gβ(Scalarβπ))π)( Β·π
βπ)π€) = ((π( Β·π
βπ)π€)π(π( Β·π
βπ)π€))) β§ (((π(.rβ(Scalarβπ))π)( Β·π
βπ)π€) = (π( Β·π
βπ)(π(
Β·π βπ)π€)) β§
((1rβ(Scalarβπ))( Β·π
βπ)π€) = π€ β§
((0gβ(Scalarβπ))( Β·π
βπ)π€) = (0gβπ))))) |
57 | 56 | 2ralbidv 3218 |
. . . . . . . . . . 11
β’ ((π = (
Β·π βπ) β§ π = (Scalarβπ)) β (βπ₯ β π£ βπ€ β π£ (((ππ π€) β π£ β§ (ππ (π€ππ₯)) = ((ππ π€)π(ππ π₯)) β§ ((π(+gβπ)π)π π€) = ((ππ π€)π(ππ π€))) β§ (((π(.rβπ)π)π π€) = (ππ (ππ π€)) β§ ((1rβπ)π π€) = π€ β§ ((0gβπ)π π€) = (0gβπ))) β βπ₯ β π£ βπ€ β π£ (((π( Β·π
βπ)π€) β π£ β§ (π( Β·π
βπ)(π€ππ₯)) = ((π( Β·π
βπ)π€)π(π( Β·π
βπ)π₯)) β§ ((π(+gβ(Scalarβπ))π)( Β·π
βπ)π€) = ((π( Β·π
βπ)π€)π(π( Β·π
βπ)π€))) β§ (((π(.rβ(Scalarβπ))π)( Β·π
βπ)π€) = (π( Β·π
βπ)(π(
Β·π βπ)π€)) β§
((1rβ(Scalarβπ))( Β·π
βπ)π€) = π€ β§
((0gβ(Scalarβπ))( Β·π
βπ)π€) = (0gβπ))))) |
58 | 27, 57 | raleqbidv 3342 |
. . . . . . . . . 10
β’ ((π = (
Β·π βπ) β§ π = (Scalarβπ)) β (βπ β (Baseβπ)βπ₯ β π£ βπ€ β π£ (((ππ π€) β π£ β§ (ππ (π€ππ₯)) = ((ππ π€)π(ππ π₯)) β§ ((π(+gβπ)π)π π€) = ((ππ π€)π(ππ π€))) β§ (((π(.rβπ)π)π π€) = (ππ (ππ π€)) β§ ((1rβπ)π π€) = π€ β§ ((0gβπ)π π€) = (0gβπ))) β βπ β (Baseβ(Scalarβπ))βπ₯ β π£ βπ€ β π£ (((π( Β·π
βπ)π€) β π£ β§ (π( Β·π
βπ)(π€ππ₯)) = ((π( Β·π
βπ)π€)π(π( Β·π
βπ)π₯)) β§ ((π(+gβ(Scalarβπ))π)( Β·π
βπ)π€) = ((π( Β·π
βπ)π€)π(π( Β·π
βπ)π€))) β§ (((π(.rβ(Scalarβπ))π)( Β·π
βπ)π€) = (π( Β·π
βπ)(π(
Β·π βπ)π€)) β§
((1rβ(Scalarβπ))( Β·π
βπ)π€) = π€ β§
((0gβ(Scalarβπ))( Β·π
βπ)π€) = (0gβπ))))) |
59 | 27, 58 | raleqbidv 3342 |
. . . . . . . . 9
β’ ((π = (
Β·π βπ) β§ π = (Scalarβπ)) β (βπ β (Baseβπ)βπ β (Baseβπ)βπ₯ β π£ βπ€ β π£ (((ππ π€) β π£ β§ (ππ (π€ππ₯)) = ((ππ π€)π(ππ π₯)) β§ ((π(+gβπ)π)π π€) = ((ππ π€)π(ππ π€))) β§ (((π(.rβπ)π)π π€) = (ππ (ππ π€)) β§ ((1rβπ)π π€) = π€ β§ ((0gβπ)π π€) = (0gβπ))) β βπ β (Baseβ(Scalarβπ))βπ β (Baseβ(Scalarβπ))βπ₯ β π£ βπ€ β π£ (((π( Β·π
βπ)π€) β π£ β§ (π( Β·π
βπ)(π€ππ₯)) = ((π( Β·π
βπ)π€)π(π( Β·π
βπ)π₯)) β§ ((π(+gβ(Scalarβπ))π)( Β·π
βπ)π€) = ((π( Β·π
βπ)π€)π(π( Β·π
βπ)π€))) β§ (((π(.rβ(Scalarβπ))π)( Β·π
βπ)π€) = (π( Β·π
βπ)(π(
Β·π βπ)π€)) β§
((1rβ(Scalarβπ))( Β·π
βπ)π€) = π€ β§
((0gβ(Scalarβπ))( Β·π
βπ)π€) = (0gβπ))))) |
60 | 26, 59 | anbi12d 631 |
. . . . . . . 8
β’ ((π = (
Β·π βπ) β§ π = (Scalarβπ)) β ((π β SRing β§ βπ β (Baseβπ)βπ β (Baseβπ)βπ₯ β π£ βπ€ β π£ (((ππ π€) β π£ β§ (ππ (π€ππ₯)) = ((ππ π€)π(ππ π₯)) β§ ((π(+gβπ)π)π π€) = ((ππ π€)π(ππ π€))) β§ (((π(.rβπ)π)π π€) = (ππ (ππ π€)) β§ ((1rβπ)π π€) = π€ β§ ((0gβπ)π π€) = (0gβπ)))) β ((Scalarβπ) β SRing β§ βπ β
(Baseβ(Scalarβπ))βπ β (Baseβ(Scalarβπ))βπ₯ β π£ βπ€ β π£ (((π( Β·π
βπ)π€) β π£ β§ (π( Β·π
βπ)(π€ππ₯)) = ((π( Β·π
βπ)π€)π(π( Β·π
βπ)π₯)) β§ ((π(+gβ(Scalarβπ))π)( Β·π
βπ)π€) = ((π( Β·π
βπ)π€)π(π( Β·π
βπ)π€))) β§ (((π(.rβ(Scalarβπ))π)( Β·π
βπ)π€) = (π( Β·π
βπ)(π(
Β·π βπ)π€)) β§
((1rβ(Scalarβπ))( Β·π
βπ)π€) = π€ β§
((0gβ(Scalarβπ))( Β·π
βπ)π€) = (0gβπ)))))) |
61 | 24, 60 | bitrid 282 |
. . . . . . 7
β’ ((π = (
Β·π βπ) β§ π = (Scalarβπ)) β ([(Baseβπ) / π][(+gβπ) / π][(.rβπ) / π‘](π β SRing β§ βπ β π βπ β π βπ₯ β π£ βπ€ β π£ (((ππ π€) β π£ β§ (ππ (π€ππ₯)) = ((ππ π€)π(ππ π₯)) β§ ((πππ)π π€) = ((ππ π€)π(ππ π€))) β§ (((ππ‘π)π π€) = (ππ (ππ π€)) β§ ((1rβπ)π π€) = π€ β§ ((0gβπ)π π€) = (0gβπ)))) β ((Scalarβπ) β SRing β§ βπ β
(Baseβ(Scalarβπ))βπ β (Baseβ(Scalarβπ))βπ₯ β π£ βπ€ β π£ (((π( Β·π
βπ)π€) β π£ β§ (π( Β·π
βπ)(π€ππ₯)) = ((π( Β·π
βπ)π€)π(π( Β·π
βπ)π₯)) β§ ((π(+gβ(Scalarβπ))π)( Β·π
βπ)π€) = ((π( Β·π
βπ)π€)π(π( Β·π
βπ)π€))) β§ (((π(.rβ(Scalarβπ))π)( Β·π
βπ)π€) = (π( Β·π
βπ)(π(
Β·π βπ)π€)) β§
((1rβ(Scalarβπ))( Β·π
βπ)π€) = π€ β§
((0gβ(Scalarβπ))( Β·π
βπ)π€) = (0gβπ)))))) |
62 | 3, 4, 61 | sbc2ie 3859 |
. . . . . 6
β’
([( Β·π βπ) / π ][(Scalarβπ) / π][(Baseβπ) / π][(+gβπ) / π][(.rβπ) / π‘](π β SRing β§ βπ β π βπ β π βπ₯ β π£ βπ€ β π£ (((ππ π€) β π£ β§ (ππ (π€ππ₯)) = ((ππ π€)π(ππ π₯)) β§ ((πππ)π π€) = ((ππ π€)π(ππ π€))) β§ (((ππ‘π)π π€) = (ππ (ππ π€)) β§ ((1rβπ)π π€) = π€ β§ ((0gβπ)π π€) = (0gβπ)))) β ((Scalarβπ) β SRing β§ βπ β
(Baseβ(Scalarβπ))βπ β (Baseβ(Scalarβπ))βπ₯ β π£ βπ€ β π£ (((π( Β·π
βπ)π€) β π£ β§ (π( Β·π
βπ)(π€ππ₯)) = ((π( Β·π
βπ)π€)π(π( Β·π
βπ)π₯)) β§ ((π(+gβ(Scalarβπ))π)( Β·π
βπ)π€) = ((π( Β·π
βπ)π€)π(π( Β·π
βπ)π€))) β§ (((π(.rβ(Scalarβπ))π)( Β·π
βπ)π€) = (π( Β·π
βπ)(π(
Β·π βπ)π€)) β§
((1rβ(Scalarβπ))( Β·π
βπ)π€) = π€ β§
((0gβ(Scalarβπ))( Β·π
βπ)π€) = (0gβπ))))) |
63 | | simpl 483 |
. . . . . . . . 9
β’ ((π£ = (Baseβπ) β§ π = (+gβπ)) β π£ = (Baseβπ)) |
64 | 63 | eleq2d 2819 |
. . . . . . . . . . . 12
β’ ((π£ = (Baseβπ) β§ π = (+gβπ)) β ((π( Β·π
βπ)π€) β π£ β (π( Β·π
βπ)π€) β (Baseβπ))) |
65 | | simpr 485 |
. . . . . . . . . . . . . . 15
β’ ((π£ = (Baseβπ) β§ π = (+gβπ)) β π = (+gβπ)) |
66 | 65 | oveqd 7422 |
. . . . . . . . . . . . . 14
β’ ((π£ = (Baseβπ) β§ π = (+gβπ)) β (π€ππ₯) = (π€(+gβπ)π₯)) |
67 | 66 | oveq2d 7421 |
. . . . . . . . . . . . 13
β’ ((π£ = (Baseβπ) β§ π = (+gβπ)) β (π( Β·π
βπ)(π€ππ₯)) = (π( Β·π
βπ)(π€(+gβπ)π₯))) |
68 | 65 | oveqd 7422 |
. . . . . . . . . . . . 13
β’ ((π£ = (Baseβπ) β§ π = (+gβπ)) β ((π( Β·π
βπ)π€)π(π( Β·π
βπ)π₯)) = ((π( Β·π
βπ)π€)(+gβπ)(π( Β·π
βπ)π₯))) |
69 | 67, 68 | eqeq12d 2748 |
. . . . . . . . . . . 12
β’ ((π£ = (Baseβπ) β§ π = (+gβπ)) β ((π( Β·π
βπ)(π€ππ₯)) = ((π( Β·π
βπ)π€)π(π( Β·π
βπ)π₯)) β (π( Β·π
βπ)(π€(+gβπ)π₯)) = ((π( Β·π
βπ)π€)(+gβπ)(π( Β·π
βπ)π₯)))) |
70 | 65 | oveqd 7422 |
. . . . . . . . . . . . 13
β’ ((π£ = (Baseβπ) β§ π = (+gβπ)) β ((π( Β·π
βπ)π€)π(π( Β·π
βπ)π€)) = ((π( Β·π
βπ)π€)(+gβπ)(π( Β·π
βπ)π€))) |
71 | 70 | eqeq2d 2743 |
. . . . . . . . . . . 12
β’ ((π£ = (Baseβπ) β§ π = (+gβπ)) β (((π(+gβ(Scalarβπ))π)( Β·π
βπ)π€) = ((π( Β·π
βπ)π€)π(π( Β·π
βπ)π€)) β ((π(+gβ(Scalarβπ))π)( Β·π
βπ)π€) = ((π( Β·π
βπ)π€)(+gβπ)(π( Β·π
βπ)π€)))) |
72 | 64, 69, 71 | 3anbi123d 1436 |
. . . . . . . . . . 11
β’ ((π£ = (Baseβπ) β§ π = (+gβπ)) β (((π( Β·π
βπ)π€) β π£ β§ (π( Β·π
βπ)(π€ππ₯)) = ((π( Β·π
βπ)π€)π(π( Β·π
βπ)π₯)) β§ ((π(+gβ(Scalarβπ))π)( Β·π
βπ)π€) = ((π( Β·π
βπ)π€)π(π( Β·π
βπ)π€))) β ((π( Β·π
βπ)π€) β (Baseβπ) β§ (π( Β·π
βπ)(π€(+gβπ)π₯)) = ((π( Β·π
βπ)π€)(+gβπ)(π( Β·π
βπ)π₯)) β§ ((π(+gβ(Scalarβπ))π)( Β·π
βπ)π€) = ((π( Β·π
βπ)π€)(+gβπ)(π( Β·π
βπ)π€))))) |
73 | 72 | anbi1d 630 |
. . . . . . . . . 10
β’ ((π£ = (Baseβπ) β§ π = (+gβπ)) β ((((π( Β·π
βπ)π€) β π£ β§ (π( Β·π
βπ)(π€ππ₯)) = ((π( Β·π
βπ)π€)π(π( Β·π
βπ)π₯)) β§ ((π(+gβ(Scalarβπ))π)( Β·π
βπ)π€) = ((π( Β·π
βπ)π€)π(π( Β·π
βπ)π€))) β§ (((π(.rβ(Scalarβπ))π)( Β·π
βπ)π€) = (π( Β·π
βπ)(π(
Β·π βπ)π€)) β§
((1rβ(Scalarβπ))( Β·π
βπ)π€) = π€ β§
((0gβ(Scalarβπ))( Β·π
βπ)π€) = (0gβπ))) β (((π( Β·π
βπ)π€) β (Baseβπ) β§ (π( Β·π
βπ)(π€(+gβπ)π₯)) = ((π( Β·π
βπ)π€)(+gβπ)(π( Β·π
βπ)π₯)) β§ ((π(+gβ(Scalarβπ))π)( Β·π
βπ)π€) = ((π( Β·π
βπ)π€)(+gβπ)(π( Β·π
βπ)π€))) β§ (((π(.rβ(Scalarβπ))π)( Β·π
βπ)π€) = (π( Β·π
βπ)(π(
Β·π βπ)π€)) β§
((1rβ(Scalarβπ))( Β·π
βπ)π€) = π€ β§
((0gβ(Scalarβπ))( Β·π
βπ)π€) = (0gβπ))))) |
74 | 63, 73 | raleqbidv 3342 |
. . . . . . . . 9
β’ ((π£ = (Baseβπ) β§ π = (+gβπ)) β (βπ€ β π£ (((π( Β·π
βπ)π€) β π£ β§ (π( Β·π
βπ)(π€ππ₯)) = ((π( Β·π
βπ)π€)π(π( Β·π
βπ)π₯)) β§ ((π(+gβ(Scalarβπ))π)( Β·π
βπ)π€) = ((π( Β·π
βπ)π€)π(π( Β·π
βπ)π€))) β§ (((π(.rβ(Scalarβπ))π)( Β·π
βπ)π€) = (π( Β·π
βπ)(π(
Β·π βπ)π€)) β§
((1rβ(Scalarβπ))( Β·π
βπ)π€) = π€ β§
((0gβ(Scalarβπ))( Β·π
βπ)π€) = (0gβπ))) β βπ€ β (Baseβπ)(((π( Β·π
βπ)π€) β (Baseβπ) β§ (π( Β·π
βπ)(π€(+gβπ)π₯)) = ((π( Β·π
βπ)π€)(+gβπ)(π( Β·π
βπ)π₯)) β§ ((π(+gβ(Scalarβπ))π)( Β·π
βπ)π€) = ((π( Β·π
βπ)π€)(+gβπ)(π( Β·π
βπ)π€))) β§ (((π(.rβ(Scalarβπ))π)( Β·π
βπ)π€) = (π( Β·π
βπ)(π(
Β·π βπ)π€)) β§
((1rβ(Scalarβπ))( Β·π
βπ)π€) = π€ β§
((0gβ(Scalarβπ))( Β·π
βπ)π€) = (0gβπ))))) |
75 | 63, 74 | raleqbidv 3342 |
. . . . . . . 8
β’ ((π£ = (Baseβπ) β§ π = (+gβπ)) β (βπ₯ β π£ βπ€ β π£ (((π( Β·π
βπ)π€) β π£ β§ (π( Β·π
βπ)(π€ππ₯)) = ((π( Β·π
βπ)π€)π(π( Β·π
βπ)π₯)) β§ ((π(+gβ(Scalarβπ))π)( Β·π
βπ)π€) = ((π( Β·π
βπ)π€)π(π( Β·π
βπ)π€))) β§ (((π(.rβ(Scalarβπ))π)( Β·π
βπ)π€) = (π( Β·π
βπ)(π(
Β·π βπ)π€)) β§
((1rβ(Scalarβπ))( Β·π
βπ)π€) = π€ β§
((0gβ(Scalarβπ))( Β·π
βπ)π€) = (0gβπ))) β βπ₯ β (Baseβπ)βπ€ β (Baseβπ)(((π( Β·π
βπ)π€) β (Baseβπ) β§ (π( Β·π
βπ)(π€(+gβπ)π₯)) = ((π( Β·π
βπ)π€)(+gβπ)(π( Β·π
βπ)π₯)) β§ ((π(+gβ(Scalarβπ))π)( Β·π
βπ)π€) = ((π( Β·π
βπ)π€)(+gβπ)(π( Β·π
βπ)π€))) β§ (((π(.rβ(Scalarβπ))π)( Β·π
βπ)π€) = (π( Β·π
βπ)(π(
Β·π βπ)π€)) β§
((1rβ(Scalarβπ))( Β·π
βπ)π€) = π€ β§
((0gβ(Scalarβπ))( Β·π
βπ)π€) = (0gβπ))))) |
76 | 75 | 2ralbidv 3218 |
. . . . . . 7
β’ ((π£ = (Baseβπ) β§ π = (+gβπ)) β (βπ β (Baseβ(Scalarβπ))βπ β (Baseβ(Scalarβπ))βπ₯ β π£ βπ€ β π£ (((π( Β·π
βπ)π€) β π£ β§ (π( Β·π
βπ)(π€ππ₯)) = ((π( Β·π
βπ)π€)π(π( Β·π
βπ)π₯)) β§ ((π(+gβ(Scalarβπ))π)( Β·π
βπ)π€) = ((π( Β·π
βπ)π€)π(π( Β·π
βπ)π€))) β§ (((π(.rβ(Scalarβπ))π)( Β·π
βπ)π€) = (π( Β·π
βπ)(π(
Β·π βπ)π€)) β§
((1rβ(Scalarβπ))( Β·π
βπ)π€) = π€ β§
((0gβ(Scalarβπ))( Β·π
βπ)π€) = (0gβπ))) β βπ β (Baseβ(Scalarβπ))βπ β (Baseβ(Scalarβπ))βπ₯ β (Baseβπ)βπ€ β (Baseβπ)(((π( Β·π
βπ)π€) β (Baseβπ) β§ (π( Β·π
βπ)(π€(+gβπ)π₯)) = ((π( Β·π
βπ)π€)(+gβπ)(π( Β·π
βπ)π₯)) β§ ((π(+gβ(Scalarβπ))π)( Β·π
βπ)π€) = ((π( Β·π
βπ)π€)(+gβπ)(π( Β·π
βπ)π€))) β§ (((π(.rβ(Scalarβπ))π)( Β·π
βπ)π€) = (π( Β·π
βπ)(π(
Β·π βπ)π€)) β§
((1rβ(Scalarβπ))( Β·π
βπ)π€) = π€ β§
((0gβ(Scalarβπ))( Β·π
βπ)π€) = (0gβπ))))) |
77 | 76 | anbi2d 629 |
. . . . . 6
β’ ((π£ = (Baseβπ) β§ π = (+gβπ)) β (((Scalarβπ) β SRing β§ βπ β
(Baseβ(Scalarβπ))βπ β (Baseβ(Scalarβπ))βπ₯ β π£ βπ€ β π£ (((π( Β·π
βπ)π€) β π£ β§ (π( Β·π
βπ)(π€ππ₯)) = ((π( Β·π
βπ)π€)π(π( Β·π
βπ)π₯)) β§ ((π(+gβ(Scalarβπ))π)( Β·π
βπ)π€) = ((π( Β·π
βπ)π€)π(π( Β·π
βπ)π€))) β§ (((π(.rβ(Scalarβπ))π)( Β·π
βπ)π€) = (π( Β·π
βπ)(π(
Β·π βπ)π€)) β§
((1rβ(Scalarβπ))( Β·π
βπ)π€) = π€ β§
((0gβ(Scalarβπ))( Β·π
βπ)π€) = (0gβπ)))) β ((Scalarβπ) β SRing β§ βπ β
(Baseβ(Scalarβπ))βπ β (Baseβ(Scalarβπ))βπ₯ β (Baseβπ)βπ€ β (Baseβπ)(((π( Β·π
βπ)π€) β (Baseβπ) β§ (π( Β·π
βπ)(π€(+gβπ)π₯)) = ((π( Β·π
βπ)π€)(+gβπ)(π( Β·π
βπ)π₯)) β§ ((π(+gβ(Scalarβπ))π)( Β·π
βπ)π€) = ((π( Β·π
βπ)π€)(+gβπ)(π( Β·π
βπ)π€))) β§ (((π(.rβ(Scalarβπ))π)( Β·π
βπ)π€) = (π( Β·π
βπ)(π(
Β·π βπ)π€)) β§
((1rβ(Scalarβπ))( Β·π
βπ)π€) = π€ β§
((0gβ(Scalarβπ))( Β·π
βπ)π€) = (0gβπ)))))) |
78 | 62, 77 | bitrid 282 |
. . . . 5
β’ ((π£ = (Baseβπ) β§ π = (+gβπ)) β ([(
Β·π βπ) / π ][(Scalarβπ) / π][(Baseβπ) / π][(+gβπ) / π][(.rβπ) / π‘](π β SRing β§ βπ β π βπ β π βπ₯ β π£ βπ€ β π£ (((ππ π€) β π£ β§ (ππ (π€ππ₯)) = ((ππ π€)π(ππ π₯)) β§ ((πππ)π π€) = ((ππ π€)π(ππ π€))) β§ (((ππ‘π)π π€) = (ππ (ππ π€)) β§ ((1rβπ)π π€) = π€ β§ ((0gβπ)π π€) = (0gβπ)))) β ((Scalarβπ) β SRing β§ βπ β
(Baseβ(Scalarβπ))βπ β (Baseβ(Scalarβπ))βπ₯ β (Baseβπ)βπ€ β (Baseβπ)(((π( Β·π
βπ)π€) β (Baseβπ) β§ (π( Β·π
βπ)(π€(+gβπ)π₯)) = ((π( Β·π
βπ)π€)(+gβπ)(π( Β·π
βπ)π₯)) β§ ((π(+gβ(Scalarβπ))π)( Β·π
βπ)π€) = ((π( Β·π
βπ)π€)(+gβπ)(π( Β·π
βπ)π€))) β§ (((π(.rβ(Scalarβπ))π)( Β·π
βπ)π€) = (π( Β·π
βπ)(π(
Β·π βπ)π€)) β§
((1rβ(Scalarβπ))( Β·π
βπ)π€) = π€ β§
((0gβ(Scalarβπ))( Β·π
βπ)π€) = (0gβπ)))))) |
79 | 1, 2, 78 | sbc2ie 3859 |
. . . 4
β’
([(Baseβπ) / π£][(+gβπ) / π][(
Β·π βπ) / π ][(Scalarβπ) / π][(Baseβπ) / π][(+gβπ) / π][(.rβπ) / π‘](π β SRing β§ βπ β π βπ β π βπ₯ β π£ βπ€ β π£ (((ππ π€) β π£ β§ (ππ (π€ππ₯)) = ((ππ π€)π(ππ π₯)) β§ ((πππ)π π€) = ((ππ π€)π(ππ π€))) β§ (((ππ‘π)π π€) = (ππ (ππ π€)) β§ ((1rβπ)π π€) = π€ β§ ((0gβπ)π π€) = (0gβπ)))) β ((Scalarβπ) β SRing β§ βπ β
(Baseβ(Scalarβπ))βπ β (Baseβ(Scalarβπ))βπ₯ β (Baseβπ)βπ€ β (Baseβπ)(((π( Β·π
βπ)π€) β (Baseβπ) β§ (π( Β·π
βπ)(π€(+gβπ)π₯)) = ((π( Β·π
βπ)π€)(+gβπ)(π( Β·π
βπ)π₯)) β§ ((π(+gβ(Scalarβπ))π)( Β·π
βπ)π€) = ((π( Β·π
βπ)π€)(+gβπ)(π( Β·π
βπ)π€))) β§ (((π(.rβ(Scalarβπ))π)( Β·π
βπ)π€) = (π( Β·π
βπ)(π(
Β·π βπ)π€)) β§
((1rβ(Scalarβπ))( Β·π
βπ)π€) = π€ β§
((0gβ(Scalarβπ))( Β·π
βπ)π€) = (0gβπ))))) |
80 | | fveq2 6888 |
. . . . . . 7
β’ (π = π β (Scalarβπ) = (Scalarβπ)) |
81 | | isslmd.f |
. . . . . . 7
β’ πΉ = (Scalarβπ) |
82 | 80, 81 | eqtr4di 2790 |
. . . . . 6
β’ (π = π β (Scalarβπ) = πΉ) |
83 | 82 | eleq1d 2818 |
. . . . 5
β’ (π = π β ((Scalarβπ) β SRing β πΉ β SRing)) |
84 | 82 | fveq2d 6892 |
. . . . . . 7
β’ (π = π β (Baseβ(Scalarβπ)) = (BaseβπΉ)) |
85 | | isslmd.k |
. . . . . . 7
β’ πΎ = (BaseβπΉ) |
86 | 84, 85 | eqtr4di 2790 |
. . . . . 6
β’ (π = π β (Baseβ(Scalarβπ)) = πΎ) |
87 | | fveq2 6888 |
. . . . . . . . 9
β’ (π = π β (Baseβπ) = (Baseβπ)) |
88 | | isslmd.v |
. . . . . . . . 9
β’ π = (Baseβπ) |
89 | 87, 88 | eqtr4di 2790 |
. . . . . . . 8
β’ (π = π β (Baseβπ) = π) |
90 | | fveq2 6888 |
. . . . . . . . . . . . . 14
β’ (π = π β (
Β·π βπ) = ( Β·π
βπ)) |
91 | | isslmd.s |
. . . . . . . . . . . . . 14
β’ Β· = (
Β·π βπ) |
92 | 90, 91 | eqtr4di 2790 |
. . . . . . . . . . . . 13
β’ (π = π β (
Β·π βπ) = Β· ) |
93 | 92 | oveqd 7422 |
. . . . . . . . . . . 12
β’ (π = π β (π( Β·π
βπ)π€) = (π Β· π€)) |
94 | 93, 89 | eleq12d 2827 |
. . . . . . . . . . 11
β’ (π = π β ((π( Β·π
βπ)π€) β (Baseβπ) β (π Β· π€) β π)) |
95 | | eqidd 2733 |
. . . . . . . . . . . . 13
β’ (π = π β π = π) |
96 | | fveq2 6888 |
. . . . . . . . . . . . . . 15
β’ (π = π β (+gβπ) = (+gβπ)) |
97 | | isslmd.a |
. . . . . . . . . . . . . . 15
β’ + =
(+gβπ) |
98 | 96, 97 | eqtr4di 2790 |
. . . . . . . . . . . . . 14
β’ (π = π β (+gβπ) = + ) |
99 | 98 | oveqd 7422 |
. . . . . . . . . . . . 13
β’ (π = π β (π€(+gβπ)π₯) = (π€ + π₯)) |
100 | 92, 95, 99 | oveq123d 7426 |
. . . . . . . . . . . 12
β’ (π = π β (π( Β·π
βπ)(π€(+gβπ)π₯)) = (π Β· (π€ + π₯))) |
101 | 92 | oveqd 7422 |
. . . . . . . . . . . . 13
β’ (π = π β (π( Β·π
βπ)π₯) = (π Β· π₯)) |
102 | 98, 93, 101 | oveq123d 7426 |
. . . . . . . . . . . 12
β’ (π = π β ((π( Β·π
βπ)π€)(+gβπ)(π( Β·π
βπ)π₯)) = ((π Β· π€) + (π Β· π₯))) |
103 | 100, 102 | eqeq12d 2748 |
. . . . . . . . . . 11
β’ (π = π β ((π( Β·π
βπ)(π€(+gβπ)π₯)) = ((π( Β·π
βπ)π€)(+gβπ)(π( Β·π
βπ)π₯)) β (π Β· (π€ + π₯)) = ((π Β· π€) + (π Β· π₯)))) |
104 | 82 | fveq2d 6892 |
. . . . . . . . . . . . . . 15
β’ (π = π β
(+gβ(Scalarβπ)) = (+gβπΉ)) |
105 | | isslmd.p |
. . . . . . . . . . . . . . 15
⒠⨣ =
(+gβπΉ) |
106 | 104, 105 | eqtr4di 2790 |
. . . . . . . . . . . . . 14
β’ (π = π β
(+gβ(Scalarβπ)) = ⨣ ) |
107 | 106 | oveqd 7422 |
. . . . . . . . . . . . 13
β’ (π = π β (π(+gβ(Scalarβπ))π) = (π ⨣ π)) |
108 | | eqidd 2733 |
. . . . . . . . . . . . 13
β’ (π = π β π€ = π€) |
109 | 92, 107, 108 | oveq123d 7426 |
. . . . . . . . . . . 12
β’ (π = π β ((π(+gβ(Scalarβπ))π)( Β·π
βπ)π€) = ((π ⨣ π) Β· π€)) |
110 | 92 | oveqd 7422 |
. . . . . . . . . . . . 13
β’ (π = π β (π( Β·π
βπ)π€) = (π Β· π€)) |
111 | 98, 110, 93 | oveq123d 7426 |
. . . . . . . . . . . 12
β’ (π = π β ((π( Β·π
βπ)π€)(+gβπ)(π( Β·π
βπ)π€)) = ((π Β· π€) + (π Β· π€))) |
112 | 109, 111 | eqeq12d 2748 |
. . . . . . . . . . 11
β’ (π = π β (((π(+gβ(Scalarβπ))π)( Β·π
βπ)π€) = ((π( Β·π
βπ)π€)(+gβπ)(π( Β·π
βπ)π€)) β ((π ⨣ π) Β· π€) = ((π Β· π€) + (π Β· π€)))) |
113 | 94, 103, 112 | 3anbi123d 1436 |
. . . . . . . . . 10
β’ (π = π β (((π( Β·π
βπ)π€) β (Baseβπ) β§ (π( Β·π
βπ)(π€(+gβπ)π₯)) = ((π( Β·π
βπ)π€)(+gβπ)(π( Β·π
βπ)π₯)) β§ ((π(+gβ(Scalarβπ))π)( Β·π
βπ)π€) = ((π( Β·π
βπ)π€)(+gβπ)(π( Β·π
βπ)π€))) β ((π Β· π€) β π β§ (π Β· (π€ + π₯)) = ((π Β· π€) + (π Β· π₯)) β§ ((π ⨣ π) Β· π€) = ((π Β· π€) + (π Β· π€))))) |
114 | 82 | fveq2d 6892 |
. . . . . . . . . . . . . . 15
β’ (π = π β
(.rβ(Scalarβπ)) = (.rβπΉ)) |
115 | | isslmd.t |
. . . . . . . . . . . . . . 15
β’ Γ =
(.rβπΉ) |
116 | 114, 115 | eqtr4di 2790 |
. . . . . . . . . . . . . 14
β’ (π = π β
(.rβ(Scalarβπ)) = Γ ) |
117 | 116 | oveqd 7422 |
. . . . . . . . . . . . 13
β’ (π = π β (π(.rβ(Scalarβπ))π) = (π Γ π)) |
118 | 92, 117, 108 | oveq123d 7426 |
. . . . . . . . . . . 12
β’ (π = π β ((π(.rβ(Scalarβπ))π)( Β·π
βπ)π€) = ((π Γ π) Β· π€)) |
119 | | eqidd 2733 |
. . . . . . . . . . . . 13
β’ (π = π β π = π) |
120 | 92, 119, 93 | oveq123d 7426 |
. . . . . . . . . . . 12
β’ (π = π β (π( Β·π
βπ)(π(
Β·π βπ)π€)) = (π Β· (π Β· π€))) |
121 | 118, 120 | eqeq12d 2748 |
. . . . . . . . . . 11
β’ (π = π β (((π(.rβ(Scalarβπ))π)( Β·π
βπ)π€) = (π( Β·π
βπ)(π(
Β·π βπ)π€)) β ((π Γ π) Β· π€) = (π Β· (π Β· π€)))) |
122 | 82 | fveq2d 6892 |
. . . . . . . . . . . . . 14
β’ (π = π β
(1rβ(Scalarβπ)) = (1rβπΉ)) |
123 | | isslmd.u |
. . . . . . . . . . . . . 14
β’ 1 =
(1rβπΉ) |
124 | 122, 123 | eqtr4di 2790 |
. . . . . . . . . . . . 13
β’ (π = π β
(1rβ(Scalarβπ)) = 1 ) |
125 | 92, 124, 108 | oveq123d 7426 |
. . . . . . . . . . . 12
β’ (π = π β
((1rβ(Scalarβπ))( Β·π
βπ)π€) = ( 1 Β· π€)) |
126 | 125 | eqeq1d 2734 |
. . . . . . . . . . 11
β’ (π = π β
(((1rβ(Scalarβπ))( Β·π
βπ)π€) = π€ β ( 1 Β· π€) = π€)) |
127 | 82 | fveq2d 6892 |
. . . . . . . . . . . . . 14
β’ (π = π β
(0gβ(Scalarβπ)) = (0gβπΉ)) |
128 | | isslmd.o |
. . . . . . . . . . . . . 14
β’ π = (0gβπΉ) |
129 | 127, 128 | eqtr4di 2790 |
. . . . . . . . . . . . 13
β’ (π = π β
(0gβ(Scalarβπ)) = π) |
130 | 92, 129, 108 | oveq123d 7426 |
. . . . . . . . . . . 12
β’ (π = π β
((0gβ(Scalarβπ))( Β·π
βπ)π€) = (π Β· π€)) |
131 | | fveq2 6888 |
. . . . . . . . . . . . 13
β’ (π = π β (0gβπ) = (0gβπ)) |
132 | | isslmd.0 |
. . . . . . . . . . . . 13
β’ 0 =
(0gβπ) |
133 | 131, 132 | eqtr4di 2790 |
. . . . . . . . . . . 12
β’ (π = π β (0gβπ) = 0 ) |
134 | 130, 133 | eqeq12d 2748 |
. . . . . . . . . . 11
β’ (π = π β
(((0gβ(Scalarβπ))( Β·π
βπ)π€) = (0gβπ) β (π Β· π€) = 0 )) |
135 | 121, 126,
134 | 3anbi123d 1436 |
. . . . . . . . . 10
β’ (π = π β ((((π(.rβ(Scalarβπ))π)( Β·π
βπ)π€) = (π( Β·π
βπ)(π(
Β·π βπ)π€)) β§
((1rβ(Scalarβπ))( Β·π
βπ)π€) = π€ β§
((0gβ(Scalarβπ))( Β·π
βπ)π€) = (0gβπ)) β (((π Γ π) Β· π€) = (π Β· (π Β· π€)) β§ ( 1 Β· π€) = π€ β§ (π Β· π€) = 0 ))) |
136 | 113, 135 | anbi12d 631 |
. . . . . . . . 9
β’ (π = π β ((((π( Β·π
βπ)π€) β (Baseβπ) β§ (π( Β·π
βπ)(π€(+gβπ)π₯)) = ((π( Β·π
βπ)π€)(+gβπ)(π( Β·π
βπ)π₯)) β§ ((π(+gβ(Scalarβπ))π)( Β·π
βπ)π€) = ((π( Β·π
βπ)π€)(+gβπ)(π( Β·π
βπ)π€))) β§ (((π(.rβ(Scalarβπ))π)( Β·π
βπ)π€) = (π( Β·π
βπ)(π(
Β·π βπ)π€)) β§
((1rβ(Scalarβπ))( Β·π
βπ)π€) = π€ β§
((0gβ(Scalarβπ))( Β·π
βπ)π€) = (0gβπ))) β (((π Β· π€) β π β§ (π Β· (π€ + π₯)) = ((π Β· π€) + (π Β· π₯)) β§ ((π ⨣ π) Β· π€) = ((π Β· π€) + (π Β· π€))) β§ (((π Γ π) Β· π€) = (π Β· (π Β· π€)) β§ ( 1 Β· π€) = π€ β§ (π Β· π€) = 0 )))) |
137 | 89, 136 | raleqbidv 3342 |
. . . . . . . 8
β’ (π = π β (βπ€ β (Baseβπ)(((π( Β·π
βπ)π€) β (Baseβπ) β§ (π( Β·π
βπ)(π€(+gβπ)π₯)) = ((π( Β·π
βπ)π€)(+gβπ)(π( Β·π
βπ)π₯)) β§ ((π(+gβ(Scalarβπ))π)( Β·π
βπ)π€) = ((π( Β·π
βπ)π€)(+gβπ)(π( Β·π
βπ)π€))) β§ (((π(.rβ(Scalarβπ))π)( Β·π
βπ)π€) = (π( Β·π
βπ)(π(
Β·π βπ)π€)) β§
((1rβ(Scalarβπ))( Β·π
βπ)π€) = π€ β§
((0gβ(Scalarβπ))( Β·π
βπ)π€) = (0gβπ))) β βπ€ β π (((π Β· π€) β π β§ (π Β· (π€ + π₯)) = ((π Β· π€) + (π Β· π₯)) β§ ((π ⨣ π) Β· π€) = ((π Β· π€) + (π Β· π€))) β§ (((π Γ π) Β· π€) = (π Β· (π Β· π€)) β§ ( 1 Β· π€) = π€ β§ (π Β· π€) = 0 )))) |
138 | 89, 137 | raleqbidv 3342 |
. . . . . . 7
β’ (π = π β (βπ₯ β (Baseβπ)βπ€ β (Baseβπ)(((π( Β·π
βπ)π€) β (Baseβπ) β§ (π( Β·π
βπ)(π€(+gβπ)π₯)) = ((π( Β·π
βπ)π€)(+gβπ)(π( Β·π
βπ)π₯)) β§ ((π(+gβ(Scalarβπ))π)( Β·π
βπ)π€) = ((π( Β·π
βπ)π€)(+gβπ)(π( Β·π
βπ)π€))) β§ (((π(.rβ(Scalarβπ))π)( Β·π
βπ)π€) = (π( Β·π
βπ)(π(
Β·π βπ)π€)) β§
((1rβ(Scalarβπ))( Β·π
βπ)π€) = π€ β§
((0gβ(Scalarβπ))( Β·π
βπ)π€) = (0gβπ))) β βπ₯ β π βπ€ β π (((π Β· π€) β π β§ (π Β· (π€ + π₯)) = ((π Β· π€) + (π Β· π₯)) β§ ((π ⨣ π) Β· π€) = ((π Β· π€) + (π Β· π€))) β§ (((π Γ π) Β· π€) = (π Β· (π Β· π€)) β§ ( 1 Β· π€) = π€ β§ (π Β· π€) = 0 )))) |
139 | 86, 138 | raleqbidv 3342 |
. . . . . 6
β’ (π = π β (βπ β (Baseβ(Scalarβπ))βπ₯ β (Baseβπ)βπ€ β (Baseβπ)(((π( Β·π
βπ)π€) β (Baseβπ) β§ (π( Β·π
βπ)(π€(+gβπ)π₯)) = ((π( Β·π
βπ)π€)(+gβπ)(π( Β·π
βπ)π₯)) β§ ((π(+gβ(Scalarβπ))π)( Β·π
βπ)π€) = ((π( Β·π
βπ)π€)(+gβπ)(π( Β·π
βπ)π€))) β§ (((π(.rβ(Scalarβπ))π)( Β·π
βπ)π€) = (π( Β·π
βπ)(π(
Β·π βπ)π€)) β§
((1rβ(Scalarβπ))( Β·π
βπ)π€) = π€ β§
((0gβ(Scalarβπ))( Β·π
βπ)π€) = (0gβπ))) β βπ β πΎ βπ₯ β π βπ€ β π (((π Β· π€) β π β§ (π Β· (π€ + π₯)) = ((π Β· π€) + (π Β· π₯)) β§ ((π ⨣ π) Β· π€) = ((π Β· π€) + (π Β· π€))) β§ (((π Γ π) Β· π€) = (π Β· (π Β· π€)) β§ ( 1 Β· π€) = π€ β§ (π Β· π€) = 0 )))) |
140 | 86, 139 | raleqbidv 3342 |
. . . . 5
β’ (π = π β (βπ β (Baseβ(Scalarβπ))βπ β (Baseβ(Scalarβπ))βπ₯ β (Baseβπ)βπ€ β (Baseβπ)(((π( Β·π
βπ)π€) β (Baseβπ) β§ (π( Β·π
βπ)(π€(+gβπ)π₯)) = ((π( Β·π
βπ)π€)(+gβπ)(π( Β·π
βπ)π₯)) β§ ((π(+gβ(Scalarβπ))π)( Β·π
βπ)π€) = ((π( Β·π
βπ)π€)(+gβπ)(π( Β·π
βπ)π€))) β§ (((π(.rβ(Scalarβπ))π)( Β·π
βπ)π€) = (π( Β·π
βπ)(π(
Β·π βπ)π€)) β§
((1rβ(Scalarβπ))( Β·π
βπ)π€) = π€ β§
((0gβ(Scalarβπ))( Β·π
βπ)π€) = (0gβπ))) β βπ β πΎ βπ β πΎ βπ₯ β π βπ€ β π (((π Β· π€) β π β§ (π Β· (π€ + π₯)) = ((π Β· π€) + (π Β· π₯)) β§ ((π ⨣ π) Β· π€) = ((π Β· π€) + (π Β· π€))) β§ (((π Γ π) Β· π€) = (π Β· (π Β· π€)) β§ ( 1 Β· π€) = π€ β§ (π Β· π€) = 0 )))) |
141 | 83, 140 | anbi12d 631 |
. . . 4
β’ (π = π β (((Scalarβπ) β SRing β§ βπ β
(Baseβ(Scalarβπ))βπ β (Baseβ(Scalarβπ))βπ₯ β (Baseβπ)βπ€ β (Baseβπ)(((π( Β·π
βπ)π€) β (Baseβπ) β§ (π( Β·π
βπ)(π€(+gβπ)π₯)) = ((π( Β·π
βπ)π€)(+gβπ)(π( Β·π
βπ)π₯)) β§ ((π(+gβ(Scalarβπ))π)( Β·π
βπ)π€) = ((π( Β·π
βπ)π€)(+gβπ)(π( Β·π
βπ)π€))) β§ (((π(.rβ(Scalarβπ))π)( Β·π
βπ)π€) = (π( Β·π
βπ)(π(
Β·π βπ)π€)) β§
((1rβ(Scalarβπ))( Β·π
βπ)π€) = π€ β§
((0gβ(Scalarβπ))( Β·π
βπ)π€) = (0gβπ)))) β (πΉ β SRing β§ βπ β πΎ βπ β πΎ βπ₯ β π βπ€ β π (((π Β· π€) β π β§ (π Β· (π€ + π₯)) = ((π Β· π€) + (π Β· π₯)) β§ ((π ⨣ π) Β· π€) = ((π Β· π€) + (π Β· π€))) β§ (((π Γ π) Β· π€) = (π Β· (π Β· π€)) β§ ( 1 Β· π€) = π€ β§ (π Β· π€) = 0 ))))) |
142 | 79, 141 | bitrid 282 |
. . 3
β’ (π = π β ([(Baseβπ) / π£][(+gβπ) / π][(
Β·π βπ) / π ][(Scalarβπ) / π][(Baseβπ) / π][(+gβπ) / π][(.rβπ) / π‘](π β SRing β§ βπ β π βπ β π βπ₯ β π£ βπ€ β π£ (((ππ π€) β π£ β§ (ππ (π€ππ₯)) = ((ππ π€)π(ππ π₯)) β§ ((πππ)π π€) = ((ππ π€)π(ππ π€))) β§ (((ππ‘π)π π€) = (ππ (ππ π€)) β§ ((1rβπ)π π€) = π€ β§ ((0gβπ)π π€) = (0gβπ)))) β (πΉ β SRing β§ βπ β πΎ βπ β πΎ βπ₯ β π βπ€ β π (((π Β· π€) β π β§ (π Β· (π€ + π₯)) = ((π Β· π€) + (π Β· π₯)) β§ ((π ⨣ π) Β· π€) = ((π Β· π€) + (π Β· π€))) β§ (((π Γ π) Β· π€) = (π Β· (π Β· π€)) β§ ( 1 Β· π€) = π€ β§ (π Β· π€) = 0 ))))) |
143 | | df-slmd 32333 |
. . 3
β’ SLMod =
{π β CMnd β£
[(Baseβπ) /
π£][(+gβπ) / π][(
Β·π βπ) / π ][(Scalarβπ) / π][(Baseβπ) / π][(+gβπ) / π][(.rβπ) / π‘](π β SRing β§ βπ β π βπ β π βπ₯ β π£ βπ€ β π£ (((ππ π€) β π£ β§ (ππ (π€ππ₯)) = ((ππ π€)π(ππ π₯)) β§ ((πππ)π π€) = ((ππ π€)π(ππ π€))) β§ (((ππ‘π)π π€) = (ππ (ππ π€)) β§ ((1rβπ)π π€) = π€ β§ ((0gβπ)π π€) = (0gβπ))))} |
144 | 142, 143 | elrab2 3685 |
. 2
β’ (π β SLMod β (π β CMnd β§ (πΉ β SRing β§
βπ β πΎ βπ β πΎ βπ₯ β π βπ€ β π (((π Β· π€) β π β§ (π Β· (π€ + π₯)) = ((π Β· π€) + (π Β· π₯)) β§ ((π ⨣ π) Β· π€) = ((π Β· π€) + (π Β· π€))) β§ (((π Γ π) Β· π€) = (π Β· (π Β· π€)) β§ ( 1 Β· π€) = π€ β§ (π Β· π€) = 0 ))))) |
145 | | 3anass 1095 |
. 2
β’ ((π β CMnd β§ πΉ β SRing β§
βπ β πΎ βπ β πΎ βπ₯ β π βπ€ β π (((π Β· π€) β π β§ (π Β· (π€ + π₯)) = ((π Β· π€) + (π Β· π₯)) β§ ((π ⨣ π) Β· π€) = ((π Β· π€) + (π Β· π€))) β§ (((π Γ π) Β· π€) = (π Β· (π Β· π€)) β§ ( 1 Β· π€) = π€ β§ (π Β· π€) = 0 ))) β (π β CMnd β§ (πΉ β SRing β§
βπ β πΎ βπ β πΎ βπ₯ β π βπ€ β π (((π Β· π€) β π β§ (π Β· (π€ + π₯)) = ((π Β· π€) + (π Β· π₯)) β§ ((π ⨣ π) Β· π€) = ((π Β· π€) + (π Β· π€))) β§ (((π Γ π) Β· π€) = (π Β· (π Β· π€)) β§ ( 1 Β· π€) = π€ β§ (π Β· π€) = 0 ))))) |
146 | 144, 145 | bitr4i 277 |
1
β’ (π β SLMod β (π β CMnd β§ πΉ β SRing β§
βπ β πΎ βπ β πΎ βπ₯ β π βπ€ β π (((π Β· π€) β π β§ (π Β· (π€ + π₯)) = ((π Β· π€) + (π Β· π₯)) β§ ((π ⨣ π) Β· π€) = ((π Β· π€) + (π Β· π€))) β§ (((π Γ π) Β· π€) = (π Β· (π Β· π€)) β§ ( 1 Β· π€) = π€ β§ (π Β· π€) = 0 )))) |