Step | Hyp | Ref
| Expression |
1 | | fvex 6730 |
. . . . 5
⊢
(Base‘𝑔)
∈ V |
2 | | fvex 6730 |
. . . . 5
⊢
(+g‘𝑔) ∈ V |
3 | | fvex 6730 |
. . . . . . 7
⊢ (
·𝑠 ‘𝑔) ∈ V |
4 | | fvex 6730 |
. . . . . . 7
⊢
(Scalar‘𝑔)
∈ V |
5 | | fvex 6730 |
. . . . . . . . 9
⊢
(Base‘𝑓)
∈ V |
6 | | fvex 6730 |
. . . . . . . . 9
⊢
(+g‘𝑓) ∈ V |
7 | | fvex 6730 |
. . . . . . . . 9
⊢
(.r‘𝑓) ∈ V |
8 | | simp1 1138 |
. . . . . . . . . . 11
⊢ ((𝑘 = (Base‘𝑓) ∧ 𝑝 = (+g‘𝑓) ∧ 𝑡 = (.r‘𝑓)) → 𝑘 = (Base‘𝑓)) |
9 | | simp2 1139 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑘 = (Base‘𝑓) ∧ 𝑝 = (+g‘𝑓) ∧ 𝑡 = (.r‘𝑓)) → 𝑝 = (+g‘𝑓)) |
10 | 9 | oveqd 7230 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑘 = (Base‘𝑓) ∧ 𝑝 = (+g‘𝑓) ∧ 𝑡 = (.r‘𝑓)) → (𝑞𝑝𝑟) = (𝑞(+g‘𝑓)𝑟)) |
11 | 10 | oveq1d 7228 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑘 = (Base‘𝑓) ∧ 𝑝 = (+g‘𝑓) ∧ 𝑡 = (.r‘𝑓)) → ((𝑞𝑝𝑟)𝑠𝑤) = ((𝑞(+g‘𝑓)𝑟)𝑠𝑤)) |
12 | 11 | eqeq1d 2739 |
. . . . . . . . . . . . . . 15
⊢ ((𝑘 = (Base‘𝑓) ∧ 𝑝 = (+g‘𝑓) ∧ 𝑡 = (.r‘𝑓)) → (((𝑞𝑝𝑟)𝑠𝑤) = ((𝑞𝑠𝑤)𝑎(𝑟𝑠𝑤)) ↔ ((𝑞(+g‘𝑓)𝑟)𝑠𝑤) = ((𝑞𝑠𝑤)𝑎(𝑟𝑠𝑤)))) |
13 | 12 | 3anbi3d 1444 |
. . . . . . . . . . . . . 14
⊢ ((𝑘 = (Base‘𝑓) ∧ 𝑝 = (+g‘𝑓) ∧ 𝑡 = (.r‘𝑓)) → (((𝑟𝑠𝑤) ∈ 𝑣 ∧ (𝑟𝑠(𝑤𝑎𝑥)) = ((𝑟𝑠𝑤)𝑎(𝑟𝑠𝑥)) ∧ ((𝑞𝑝𝑟)𝑠𝑤) = ((𝑞𝑠𝑤)𝑎(𝑟𝑠𝑤))) ↔ ((𝑟𝑠𝑤) ∈ 𝑣 ∧ (𝑟𝑠(𝑤𝑎𝑥)) = ((𝑟𝑠𝑤)𝑎(𝑟𝑠𝑥)) ∧ ((𝑞(+g‘𝑓)𝑟)𝑠𝑤) = ((𝑞𝑠𝑤)𝑎(𝑟𝑠𝑤))))) |
14 | | simp3 1140 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑘 = (Base‘𝑓) ∧ 𝑝 = (+g‘𝑓) ∧ 𝑡 = (.r‘𝑓)) → 𝑡 = (.r‘𝑓)) |
15 | 14 | oveqd 7230 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑘 = (Base‘𝑓) ∧ 𝑝 = (+g‘𝑓) ∧ 𝑡 = (.r‘𝑓)) → (𝑞𝑡𝑟) = (𝑞(.r‘𝑓)𝑟)) |
16 | 15 | oveq1d 7228 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑘 = (Base‘𝑓) ∧ 𝑝 = (+g‘𝑓) ∧ 𝑡 = (.r‘𝑓)) → ((𝑞𝑡𝑟)𝑠𝑤) = ((𝑞(.r‘𝑓)𝑟)𝑠𝑤)) |
17 | 16 | eqeq1d 2739 |
. . . . . . . . . . . . . . 15
⊢ ((𝑘 = (Base‘𝑓) ∧ 𝑝 = (+g‘𝑓) ∧ 𝑡 = (.r‘𝑓)) → (((𝑞𝑡𝑟)𝑠𝑤) = (𝑞𝑠(𝑟𝑠𝑤)) ↔ ((𝑞(.r‘𝑓)𝑟)𝑠𝑤) = (𝑞𝑠(𝑟𝑠𝑤)))) |
18 | 17 | 3anbi1d 1442 |
. . . . . . . . . . . . . 14
⊢ ((𝑘 = (Base‘𝑓) ∧ 𝑝 = (+g‘𝑓) ∧ 𝑡 = (.r‘𝑓)) → ((((𝑞𝑡𝑟)𝑠𝑤) = (𝑞𝑠(𝑟𝑠𝑤)) ∧ ((1r‘𝑓)𝑠𝑤) = 𝑤 ∧ ((0g‘𝑓)𝑠𝑤) = (0g‘𝑔)) ↔ (((𝑞(.r‘𝑓)𝑟)𝑠𝑤) = (𝑞𝑠(𝑟𝑠𝑤)) ∧ ((1r‘𝑓)𝑠𝑤) = 𝑤 ∧ ((0g‘𝑓)𝑠𝑤) = (0g‘𝑔)))) |
19 | 13, 18 | anbi12d 634 |
. . . . . . . . . . . . 13
⊢ ((𝑘 = (Base‘𝑓) ∧ 𝑝 = (+g‘𝑓) ∧ 𝑡 = (.r‘𝑓)) → ((((𝑟𝑠𝑤) ∈ 𝑣 ∧ (𝑟𝑠(𝑤𝑎𝑥)) = ((𝑟𝑠𝑤)𝑎(𝑟𝑠𝑥)) ∧ ((𝑞𝑝𝑟)𝑠𝑤) = ((𝑞𝑠𝑤)𝑎(𝑟𝑠𝑤))) ∧ (((𝑞𝑡𝑟)𝑠𝑤) = (𝑞𝑠(𝑟𝑠𝑤)) ∧ ((1r‘𝑓)𝑠𝑤) = 𝑤 ∧ ((0g‘𝑓)𝑠𝑤) = (0g‘𝑔))) ↔ (((𝑟𝑠𝑤) ∈ 𝑣 ∧ (𝑟𝑠(𝑤𝑎𝑥)) = ((𝑟𝑠𝑤)𝑎(𝑟𝑠𝑥)) ∧ ((𝑞(+g‘𝑓)𝑟)𝑠𝑤) = ((𝑞𝑠𝑤)𝑎(𝑟𝑠𝑤))) ∧ (((𝑞(.r‘𝑓)𝑟)𝑠𝑤) = (𝑞𝑠(𝑟𝑠𝑤)) ∧ ((1r‘𝑓)𝑠𝑤) = 𝑤 ∧ ((0g‘𝑓)𝑠𝑤) = (0g‘𝑔))))) |
20 | 19 | 2ralbidv 3120 |
. . . . . . . . . . . 12
⊢ ((𝑘 = (Base‘𝑓) ∧ 𝑝 = (+g‘𝑓) ∧ 𝑡 = (.r‘𝑓)) → (∀𝑥 ∈ 𝑣 ∀𝑤 ∈ 𝑣 (((𝑟𝑠𝑤) ∈ 𝑣 ∧ (𝑟𝑠(𝑤𝑎𝑥)) = ((𝑟𝑠𝑤)𝑎(𝑟𝑠𝑥)) ∧ ((𝑞𝑝𝑟)𝑠𝑤) = ((𝑞𝑠𝑤)𝑎(𝑟𝑠𝑤))) ∧ (((𝑞𝑡𝑟)𝑠𝑤) = (𝑞𝑠(𝑟𝑠𝑤)) ∧ ((1r‘𝑓)𝑠𝑤) = 𝑤 ∧ ((0g‘𝑓)𝑠𝑤) = (0g‘𝑔))) ↔ ∀𝑥 ∈ 𝑣 ∀𝑤 ∈ 𝑣 (((𝑟𝑠𝑤) ∈ 𝑣 ∧ (𝑟𝑠(𝑤𝑎𝑥)) = ((𝑟𝑠𝑤)𝑎(𝑟𝑠𝑥)) ∧ ((𝑞(+g‘𝑓)𝑟)𝑠𝑤) = ((𝑞𝑠𝑤)𝑎(𝑟𝑠𝑤))) ∧ (((𝑞(.r‘𝑓)𝑟)𝑠𝑤) = (𝑞𝑠(𝑟𝑠𝑤)) ∧ ((1r‘𝑓)𝑠𝑤) = 𝑤 ∧ ((0g‘𝑓)𝑠𝑤) = (0g‘𝑔))))) |
21 | 8, 20 | raleqbidv 3313 |
. . . . . . . . . . 11
⊢ ((𝑘 = (Base‘𝑓) ∧ 𝑝 = (+g‘𝑓) ∧ 𝑡 = (.r‘𝑓)) → (∀𝑟 ∈ 𝑘 ∀𝑥 ∈ 𝑣 ∀𝑤 ∈ 𝑣 (((𝑟𝑠𝑤) ∈ 𝑣 ∧ (𝑟𝑠(𝑤𝑎𝑥)) = ((𝑟𝑠𝑤)𝑎(𝑟𝑠𝑥)) ∧ ((𝑞𝑝𝑟)𝑠𝑤) = ((𝑞𝑠𝑤)𝑎(𝑟𝑠𝑤))) ∧ (((𝑞𝑡𝑟)𝑠𝑤) = (𝑞𝑠(𝑟𝑠𝑤)) ∧ ((1r‘𝑓)𝑠𝑤) = 𝑤 ∧ ((0g‘𝑓)𝑠𝑤) = (0g‘𝑔))) ↔ ∀𝑟 ∈ (Base‘𝑓)∀𝑥 ∈ 𝑣 ∀𝑤 ∈ 𝑣 (((𝑟𝑠𝑤) ∈ 𝑣 ∧ (𝑟𝑠(𝑤𝑎𝑥)) = ((𝑟𝑠𝑤)𝑎(𝑟𝑠𝑥)) ∧ ((𝑞(+g‘𝑓)𝑟)𝑠𝑤) = ((𝑞𝑠𝑤)𝑎(𝑟𝑠𝑤))) ∧ (((𝑞(.r‘𝑓)𝑟)𝑠𝑤) = (𝑞𝑠(𝑟𝑠𝑤)) ∧ ((1r‘𝑓)𝑠𝑤) = 𝑤 ∧ ((0g‘𝑓)𝑠𝑤) = (0g‘𝑔))))) |
22 | 8, 21 | raleqbidv 3313 |
. . . . . . . . . 10
⊢ ((𝑘 = (Base‘𝑓) ∧ 𝑝 = (+g‘𝑓) ∧ 𝑡 = (.r‘𝑓)) → (∀𝑞 ∈ 𝑘 ∀𝑟 ∈ 𝑘 ∀𝑥 ∈ 𝑣 ∀𝑤 ∈ 𝑣 (((𝑟𝑠𝑤) ∈ 𝑣 ∧ (𝑟𝑠(𝑤𝑎𝑥)) = ((𝑟𝑠𝑤)𝑎(𝑟𝑠𝑥)) ∧ ((𝑞𝑝𝑟)𝑠𝑤) = ((𝑞𝑠𝑤)𝑎(𝑟𝑠𝑤))) ∧ (((𝑞𝑡𝑟)𝑠𝑤) = (𝑞𝑠(𝑟𝑠𝑤)) ∧ ((1r‘𝑓)𝑠𝑤) = 𝑤 ∧ ((0g‘𝑓)𝑠𝑤) = (0g‘𝑔))) ↔ ∀𝑞 ∈ (Base‘𝑓)∀𝑟 ∈ (Base‘𝑓)∀𝑥 ∈ 𝑣 ∀𝑤 ∈ 𝑣 (((𝑟𝑠𝑤) ∈ 𝑣 ∧ (𝑟𝑠(𝑤𝑎𝑥)) = ((𝑟𝑠𝑤)𝑎(𝑟𝑠𝑥)) ∧ ((𝑞(+g‘𝑓)𝑟)𝑠𝑤) = ((𝑞𝑠𝑤)𝑎(𝑟𝑠𝑤))) ∧ (((𝑞(.r‘𝑓)𝑟)𝑠𝑤) = (𝑞𝑠(𝑟𝑠𝑤)) ∧ ((1r‘𝑓)𝑠𝑤) = 𝑤 ∧ ((0g‘𝑓)𝑠𝑤) = (0g‘𝑔))))) |
23 | 22 | anbi2d 632 |
. . . . . . . . 9
⊢ ((𝑘 = (Base‘𝑓) ∧ 𝑝 = (+g‘𝑓) ∧ 𝑡 = (.r‘𝑓)) → ((𝑓 ∈ SRing ∧ ∀𝑞 ∈ 𝑘 ∀𝑟 ∈ 𝑘 ∀𝑥 ∈ 𝑣 ∀𝑤 ∈ 𝑣 (((𝑟𝑠𝑤) ∈ 𝑣 ∧ (𝑟𝑠(𝑤𝑎𝑥)) = ((𝑟𝑠𝑤)𝑎(𝑟𝑠𝑥)) ∧ ((𝑞𝑝𝑟)𝑠𝑤) = ((𝑞𝑠𝑤)𝑎(𝑟𝑠𝑤))) ∧ (((𝑞𝑡𝑟)𝑠𝑤) = (𝑞𝑠(𝑟𝑠𝑤)) ∧ ((1r‘𝑓)𝑠𝑤) = 𝑤 ∧ ((0g‘𝑓)𝑠𝑤) = (0g‘𝑔)))) ↔ (𝑓 ∈ SRing ∧ ∀𝑞 ∈ (Base‘𝑓)∀𝑟 ∈ (Base‘𝑓)∀𝑥 ∈ 𝑣 ∀𝑤 ∈ 𝑣 (((𝑟𝑠𝑤) ∈ 𝑣 ∧ (𝑟𝑠(𝑤𝑎𝑥)) = ((𝑟𝑠𝑤)𝑎(𝑟𝑠𝑥)) ∧ ((𝑞(+g‘𝑓)𝑟)𝑠𝑤) = ((𝑞𝑠𝑤)𝑎(𝑟𝑠𝑤))) ∧ (((𝑞(.r‘𝑓)𝑟)𝑠𝑤) = (𝑞𝑠(𝑟𝑠𝑤)) ∧ ((1r‘𝑓)𝑠𝑤) = 𝑤 ∧ ((0g‘𝑓)𝑠𝑤) = (0g‘𝑔)))))) |
24 | 5, 6, 7, 23 | sbc3ie 3781 |
. . . . . . . 8
⊢
([(Base‘𝑓) / 𝑘][(+g‘𝑓) / 𝑝][(.r‘𝑓) / 𝑡](𝑓 ∈ SRing ∧ ∀𝑞 ∈ 𝑘 ∀𝑟 ∈ 𝑘 ∀𝑥 ∈ 𝑣 ∀𝑤 ∈ 𝑣 (((𝑟𝑠𝑤) ∈ 𝑣 ∧ (𝑟𝑠(𝑤𝑎𝑥)) = ((𝑟𝑠𝑤)𝑎(𝑟𝑠𝑥)) ∧ ((𝑞𝑝𝑟)𝑠𝑤) = ((𝑞𝑠𝑤)𝑎(𝑟𝑠𝑤))) ∧ (((𝑞𝑡𝑟)𝑠𝑤) = (𝑞𝑠(𝑟𝑠𝑤)) ∧ ((1r‘𝑓)𝑠𝑤) = 𝑤 ∧ ((0g‘𝑓)𝑠𝑤) = (0g‘𝑔)))) ↔ (𝑓 ∈ SRing ∧ ∀𝑞 ∈ (Base‘𝑓)∀𝑟 ∈ (Base‘𝑓)∀𝑥 ∈ 𝑣 ∀𝑤 ∈ 𝑣 (((𝑟𝑠𝑤) ∈ 𝑣 ∧ (𝑟𝑠(𝑤𝑎𝑥)) = ((𝑟𝑠𝑤)𝑎(𝑟𝑠𝑥)) ∧ ((𝑞(+g‘𝑓)𝑟)𝑠𝑤) = ((𝑞𝑠𝑤)𝑎(𝑟𝑠𝑤))) ∧ (((𝑞(.r‘𝑓)𝑟)𝑠𝑤) = (𝑞𝑠(𝑟𝑠𝑤)) ∧ ((1r‘𝑓)𝑠𝑤) = 𝑤 ∧ ((0g‘𝑓)𝑠𝑤) = (0g‘𝑔))))) |
25 | | simpr 488 |
. . . . . . . . . 10
⊢ ((𝑠 = (
·𝑠 ‘𝑔) ∧ 𝑓 = (Scalar‘𝑔)) → 𝑓 = (Scalar‘𝑔)) |
26 | 25 | eleq1d 2822 |
. . . . . . . . 9
⊢ ((𝑠 = (
·𝑠 ‘𝑔) ∧ 𝑓 = (Scalar‘𝑔)) → (𝑓 ∈ SRing ↔ (Scalar‘𝑔) ∈
SRing)) |
27 | 25 | fveq2d 6721 |
. . . . . . . . . 10
⊢ ((𝑠 = (
·𝑠 ‘𝑔) ∧ 𝑓 = (Scalar‘𝑔)) → (Base‘𝑓) = (Base‘(Scalar‘𝑔))) |
28 | | simpl 486 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑠 = (
·𝑠 ‘𝑔) ∧ 𝑓 = (Scalar‘𝑔)) → 𝑠 = ( ·𝑠
‘𝑔)) |
29 | 28 | oveqd 7230 |
. . . . . . . . . . . . . . 15
⊢ ((𝑠 = (
·𝑠 ‘𝑔) ∧ 𝑓 = (Scalar‘𝑔)) → (𝑟𝑠𝑤) = (𝑟( ·𝑠
‘𝑔)𝑤)) |
30 | 29 | eleq1d 2822 |
. . . . . . . . . . . . . 14
⊢ ((𝑠 = (
·𝑠 ‘𝑔) ∧ 𝑓 = (Scalar‘𝑔)) → ((𝑟𝑠𝑤) ∈ 𝑣 ↔ (𝑟( ·𝑠
‘𝑔)𝑤) ∈ 𝑣)) |
31 | 28 | oveqd 7230 |
. . . . . . . . . . . . . . 15
⊢ ((𝑠 = (
·𝑠 ‘𝑔) ∧ 𝑓 = (Scalar‘𝑔)) → (𝑟𝑠(𝑤𝑎𝑥)) = (𝑟( ·𝑠
‘𝑔)(𝑤𝑎𝑥))) |
32 | 28 | oveqd 7230 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑠 = (
·𝑠 ‘𝑔) ∧ 𝑓 = (Scalar‘𝑔)) → (𝑟𝑠𝑥) = (𝑟( ·𝑠
‘𝑔)𝑥)) |
33 | 29, 32 | oveq12d 7231 |
. . . . . . . . . . . . . . 15
⊢ ((𝑠 = (
·𝑠 ‘𝑔) ∧ 𝑓 = (Scalar‘𝑔)) → ((𝑟𝑠𝑤)𝑎(𝑟𝑠𝑥)) = ((𝑟( ·𝑠
‘𝑔)𝑤)𝑎(𝑟( ·𝑠
‘𝑔)𝑥))) |
34 | 31, 33 | eqeq12d 2753 |
. . . . . . . . . . . . . 14
⊢ ((𝑠 = (
·𝑠 ‘𝑔) ∧ 𝑓 = (Scalar‘𝑔)) → ((𝑟𝑠(𝑤𝑎𝑥)) = ((𝑟𝑠𝑤)𝑎(𝑟𝑠𝑥)) ↔ (𝑟( ·𝑠
‘𝑔)(𝑤𝑎𝑥)) = ((𝑟( ·𝑠
‘𝑔)𝑤)𝑎(𝑟( ·𝑠
‘𝑔)𝑥)))) |
35 | 25 | fveq2d 6721 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑠 = (
·𝑠 ‘𝑔) ∧ 𝑓 = (Scalar‘𝑔)) → (+g‘𝑓) =
(+g‘(Scalar‘𝑔))) |
36 | 35 | oveqd 7230 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑠 = (
·𝑠 ‘𝑔) ∧ 𝑓 = (Scalar‘𝑔)) → (𝑞(+g‘𝑓)𝑟) = (𝑞(+g‘(Scalar‘𝑔))𝑟)) |
37 | | eqidd 2738 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑠 = (
·𝑠 ‘𝑔) ∧ 𝑓 = (Scalar‘𝑔)) → 𝑤 = 𝑤) |
38 | 28, 36, 37 | oveq123d 7234 |
. . . . . . . . . . . . . . 15
⊢ ((𝑠 = (
·𝑠 ‘𝑔) ∧ 𝑓 = (Scalar‘𝑔)) → ((𝑞(+g‘𝑓)𝑟)𝑠𝑤) = ((𝑞(+g‘(Scalar‘𝑔))𝑟)( ·𝑠
‘𝑔)𝑤)) |
39 | 28 | oveqd 7230 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑠 = (
·𝑠 ‘𝑔) ∧ 𝑓 = (Scalar‘𝑔)) → (𝑞𝑠𝑤) = (𝑞( ·𝑠
‘𝑔)𝑤)) |
40 | 39, 29 | oveq12d 7231 |
. . . . . . . . . . . . . . 15
⊢ ((𝑠 = (
·𝑠 ‘𝑔) ∧ 𝑓 = (Scalar‘𝑔)) → ((𝑞𝑠𝑤)𝑎(𝑟𝑠𝑤)) = ((𝑞( ·𝑠
‘𝑔)𝑤)𝑎(𝑟( ·𝑠
‘𝑔)𝑤))) |
41 | 38, 40 | eqeq12d 2753 |
. . . . . . . . . . . . . 14
⊢ ((𝑠 = (
·𝑠 ‘𝑔) ∧ 𝑓 = (Scalar‘𝑔)) → (((𝑞(+g‘𝑓)𝑟)𝑠𝑤) = ((𝑞𝑠𝑤)𝑎(𝑟𝑠𝑤)) ↔ ((𝑞(+g‘(Scalar‘𝑔))𝑟)( ·𝑠
‘𝑔)𝑤) = ((𝑞( ·𝑠
‘𝑔)𝑤)𝑎(𝑟( ·𝑠
‘𝑔)𝑤)))) |
42 | 30, 34, 41 | 3anbi123d 1438 |
. . . . . . . . . . . . 13
⊢ ((𝑠 = (
·𝑠 ‘𝑔) ∧ 𝑓 = (Scalar‘𝑔)) → (((𝑟𝑠𝑤) ∈ 𝑣 ∧ (𝑟𝑠(𝑤𝑎𝑥)) = ((𝑟𝑠𝑤)𝑎(𝑟𝑠𝑥)) ∧ ((𝑞(+g‘𝑓)𝑟)𝑠𝑤) = ((𝑞𝑠𝑤)𝑎(𝑟𝑠𝑤))) ↔ ((𝑟( ·𝑠
‘𝑔)𝑤) ∈ 𝑣 ∧ (𝑟( ·𝑠
‘𝑔)(𝑤𝑎𝑥)) = ((𝑟( ·𝑠
‘𝑔)𝑤)𝑎(𝑟( ·𝑠
‘𝑔)𝑥)) ∧ ((𝑞(+g‘(Scalar‘𝑔))𝑟)( ·𝑠
‘𝑔)𝑤) = ((𝑞( ·𝑠
‘𝑔)𝑤)𝑎(𝑟( ·𝑠
‘𝑔)𝑤))))) |
43 | 25 | fveq2d 6721 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑠 = (
·𝑠 ‘𝑔) ∧ 𝑓 = (Scalar‘𝑔)) → (.r‘𝑓) =
(.r‘(Scalar‘𝑔))) |
44 | 43 | oveqd 7230 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑠 = (
·𝑠 ‘𝑔) ∧ 𝑓 = (Scalar‘𝑔)) → (𝑞(.r‘𝑓)𝑟) = (𝑞(.r‘(Scalar‘𝑔))𝑟)) |
45 | 28, 44, 37 | oveq123d 7234 |
. . . . . . . . . . . . . . 15
⊢ ((𝑠 = (
·𝑠 ‘𝑔) ∧ 𝑓 = (Scalar‘𝑔)) → ((𝑞(.r‘𝑓)𝑟)𝑠𝑤) = ((𝑞(.r‘(Scalar‘𝑔))𝑟)( ·𝑠
‘𝑔)𝑤)) |
46 | | eqidd 2738 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑠 = (
·𝑠 ‘𝑔) ∧ 𝑓 = (Scalar‘𝑔)) → 𝑞 = 𝑞) |
47 | 28, 46, 29 | oveq123d 7234 |
. . . . . . . . . . . . . . 15
⊢ ((𝑠 = (
·𝑠 ‘𝑔) ∧ 𝑓 = (Scalar‘𝑔)) → (𝑞𝑠(𝑟𝑠𝑤)) = (𝑞( ·𝑠
‘𝑔)(𝑟(
·𝑠 ‘𝑔)𝑤))) |
48 | 45, 47 | eqeq12d 2753 |
. . . . . . . . . . . . . 14
⊢ ((𝑠 = (
·𝑠 ‘𝑔) ∧ 𝑓 = (Scalar‘𝑔)) → (((𝑞(.r‘𝑓)𝑟)𝑠𝑤) = (𝑞𝑠(𝑟𝑠𝑤)) ↔ ((𝑞(.r‘(Scalar‘𝑔))𝑟)( ·𝑠
‘𝑔)𝑤) = (𝑞( ·𝑠
‘𝑔)(𝑟(
·𝑠 ‘𝑔)𝑤)))) |
49 | 25 | fveq2d 6721 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑠 = (
·𝑠 ‘𝑔) ∧ 𝑓 = (Scalar‘𝑔)) → (1r‘𝑓) =
(1r‘(Scalar‘𝑔))) |
50 | 28, 49, 37 | oveq123d 7234 |
. . . . . . . . . . . . . . 15
⊢ ((𝑠 = (
·𝑠 ‘𝑔) ∧ 𝑓 = (Scalar‘𝑔)) → ((1r‘𝑓)𝑠𝑤) = ((1r‘(Scalar‘𝑔))(
·𝑠 ‘𝑔)𝑤)) |
51 | 50 | eqeq1d 2739 |
. . . . . . . . . . . . . 14
⊢ ((𝑠 = (
·𝑠 ‘𝑔) ∧ 𝑓 = (Scalar‘𝑔)) → (((1r‘𝑓)𝑠𝑤) = 𝑤 ↔
((1r‘(Scalar‘𝑔))( ·𝑠
‘𝑔)𝑤) = 𝑤)) |
52 | 25 | fveq2d 6721 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑠 = (
·𝑠 ‘𝑔) ∧ 𝑓 = (Scalar‘𝑔)) → (0g‘𝑓) =
(0g‘(Scalar‘𝑔))) |
53 | 28, 52, 37 | oveq123d 7234 |
. . . . . . . . . . . . . . 15
⊢ ((𝑠 = (
·𝑠 ‘𝑔) ∧ 𝑓 = (Scalar‘𝑔)) → ((0g‘𝑓)𝑠𝑤) = ((0g‘(Scalar‘𝑔))(
·𝑠 ‘𝑔)𝑤)) |
54 | 53 | eqeq1d 2739 |
. . . . . . . . . . . . . 14
⊢ ((𝑠 = (
·𝑠 ‘𝑔) ∧ 𝑓 = (Scalar‘𝑔)) → (((0g‘𝑓)𝑠𝑤) = (0g‘𝑔) ↔
((0g‘(Scalar‘𝑔))( ·𝑠
‘𝑔)𝑤) = (0g‘𝑔))) |
55 | 48, 51, 54 | 3anbi123d 1438 |
. . . . . . . . . . . . 13
⊢ ((𝑠 = (
·𝑠 ‘𝑔) ∧ 𝑓 = (Scalar‘𝑔)) → ((((𝑞(.r‘𝑓)𝑟)𝑠𝑤) = (𝑞𝑠(𝑟𝑠𝑤)) ∧ ((1r‘𝑓)𝑠𝑤) = 𝑤 ∧ ((0g‘𝑓)𝑠𝑤) = (0g‘𝑔)) ↔ (((𝑞(.r‘(Scalar‘𝑔))𝑟)( ·𝑠
‘𝑔)𝑤) = (𝑞( ·𝑠
‘𝑔)(𝑟(
·𝑠 ‘𝑔)𝑤)) ∧
((1r‘(Scalar‘𝑔))( ·𝑠
‘𝑔)𝑤) = 𝑤 ∧
((0g‘(Scalar‘𝑔))( ·𝑠
‘𝑔)𝑤) = (0g‘𝑔)))) |
56 | 42, 55 | anbi12d 634 |
. . . . . . . . . . . 12
⊢ ((𝑠 = (
·𝑠 ‘𝑔) ∧ 𝑓 = (Scalar‘𝑔)) → ((((𝑟𝑠𝑤) ∈ 𝑣 ∧ (𝑟𝑠(𝑤𝑎𝑥)) = ((𝑟𝑠𝑤)𝑎(𝑟𝑠𝑥)) ∧ ((𝑞(+g‘𝑓)𝑟)𝑠𝑤) = ((𝑞𝑠𝑤)𝑎(𝑟𝑠𝑤))) ∧ (((𝑞(.r‘𝑓)𝑟)𝑠𝑤) = (𝑞𝑠(𝑟𝑠𝑤)) ∧ ((1r‘𝑓)𝑠𝑤) = 𝑤 ∧ ((0g‘𝑓)𝑠𝑤) = (0g‘𝑔))) ↔ (((𝑟( ·𝑠
‘𝑔)𝑤) ∈ 𝑣 ∧ (𝑟( ·𝑠
‘𝑔)(𝑤𝑎𝑥)) = ((𝑟( ·𝑠
‘𝑔)𝑤)𝑎(𝑟( ·𝑠
‘𝑔)𝑥)) ∧ ((𝑞(+g‘(Scalar‘𝑔))𝑟)( ·𝑠
‘𝑔)𝑤) = ((𝑞( ·𝑠
‘𝑔)𝑤)𝑎(𝑟( ·𝑠
‘𝑔)𝑤))) ∧ (((𝑞(.r‘(Scalar‘𝑔))𝑟)( ·𝑠
‘𝑔)𝑤) = (𝑞( ·𝑠
‘𝑔)(𝑟(
·𝑠 ‘𝑔)𝑤)) ∧
((1r‘(Scalar‘𝑔))( ·𝑠
‘𝑔)𝑤) = 𝑤 ∧
((0g‘(Scalar‘𝑔))( ·𝑠
‘𝑔)𝑤) = (0g‘𝑔))))) |
57 | 56 | 2ralbidv 3120 |
. . . . . . . . . . 11
⊢ ((𝑠 = (
·𝑠 ‘𝑔) ∧ 𝑓 = (Scalar‘𝑔)) → (∀𝑥 ∈ 𝑣 ∀𝑤 ∈ 𝑣 (((𝑟𝑠𝑤) ∈ 𝑣 ∧ (𝑟𝑠(𝑤𝑎𝑥)) = ((𝑟𝑠𝑤)𝑎(𝑟𝑠𝑥)) ∧ ((𝑞(+g‘𝑓)𝑟)𝑠𝑤) = ((𝑞𝑠𝑤)𝑎(𝑟𝑠𝑤))) ∧ (((𝑞(.r‘𝑓)𝑟)𝑠𝑤) = (𝑞𝑠(𝑟𝑠𝑤)) ∧ ((1r‘𝑓)𝑠𝑤) = 𝑤 ∧ ((0g‘𝑓)𝑠𝑤) = (0g‘𝑔))) ↔ ∀𝑥 ∈ 𝑣 ∀𝑤 ∈ 𝑣 (((𝑟( ·𝑠
‘𝑔)𝑤) ∈ 𝑣 ∧ (𝑟( ·𝑠
‘𝑔)(𝑤𝑎𝑥)) = ((𝑟( ·𝑠
‘𝑔)𝑤)𝑎(𝑟( ·𝑠
‘𝑔)𝑥)) ∧ ((𝑞(+g‘(Scalar‘𝑔))𝑟)( ·𝑠
‘𝑔)𝑤) = ((𝑞( ·𝑠
‘𝑔)𝑤)𝑎(𝑟( ·𝑠
‘𝑔)𝑤))) ∧ (((𝑞(.r‘(Scalar‘𝑔))𝑟)( ·𝑠
‘𝑔)𝑤) = (𝑞( ·𝑠
‘𝑔)(𝑟(
·𝑠 ‘𝑔)𝑤)) ∧
((1r‘(Scalar‘𝑔))( ·𝑠
‘𝑔)𝑤) = 𝑤 ∧
((0g‘(Scalar‘𝑔))( ·𝑠
‘𝑔)𝑤) = (0g‘𝑔))))) |
58 | 27, 57 | raleqbidv 3313 |
. . . . . . . . . 10
⊢ ((𝑠 = (
·𝑠 ‘𝑔) ∧ 𝑓 = (Scalar‘𝑔)) → (∀𝑟 ∈ (Base‘𝑓)∀𝑥 ∈ 𝑣 ∀𝑤 ∈ 𝑣 (((𝑟𝑠𝑤) ∈ 𝑣 ∧ (𝑟𝑠(𝑤𝑎𝑥)) = ((𝑟𝑠𝑤)𝑎(𝑟𝑠𝑥)) ∧ ((𝑞(+g‘𝑓)𝑟)𝑠𝑤) = ((𝑞𝑠𝑤)𝑎(𝑟𝑠𝑤))) ∧ (((𝑞(.r‘𝑓)𝑟)𝑠𝑤) = (𝑞𝑠(𝑟𝑠𝑤)) ∧ ((1r‘𝑓)𝑠𝑤) = 𝑤 ∧ ((0g‘𝑓)𝑠𝑤) = (0g‘𝑔))) ↔ ∀𝑟 ∈ (Base‘(Scalar‘𝑔))∀𝑥 ∈ 𝑣 ∀𝑤 ∈ 𝑣 (((𝑟( ·𝑠
‘𝑔)𝑤) ∈ 𝑣 ∧ (𝑟( ·𝑠
‘𝑔)(𝑤𝑎𝑥)) = ((𝑟( ·𝑠
‘𝑔)𝑤)𝑎(𝑟( ·𝑠
‘𝑔)𝑥)) ∧ ((𝑞(+g‘(Scalar‘𝑔))𝑟)( ·𝑠
‘𝑔)𝑤) = ((𝑞( ·𝑠
‘𝑔)𝑤)𝑎(𝑟( ·𝑠
‘𝑔)𝑤))) ∧ (((𝑞(.r‘(Scalar‘𝑔))𝑟)( ·𝑠
‘𝑔)𝑤) = (𝑞( ·𝑠
‘𝑔)(𝑟(
·𝑠 ‘𝑔)𝑤)) ∧
((1r‘(Scalar‘𝑔))( ·𝑠
‘𝑔)𝑤) = 𝑤 ∧
((0g‘(Scalar‘𝑔))( ·𝑠
‘𝑔)𝑤) = (0g‘𝑔))))) |
59 | 27, 58 | raleqbidv 3313 |
. . . . . . . . 9
⊢ ((𝑠 = (
·𝑠 ‘𝑔) ∧ 𝑓 = (Scalar‘𝑔)) → (∀𝑞 ∈ (Base‘𝑓)∀𝑟 ∈ (Base‘𝑓)∀𝑥 ∈ 𝑣 ∀𝑤 ∈ 𝑣 (((𝑟𝑠𝑤) ∈ 𝑣 ∧ (𝑟𝑠(𝑤𝑎𝑥)) = ((𝑟𝑠𝑤)𝑎(𝑟𝑠𝑥)) ∧ ((𝑞(+g‘𝑓)𝑟)𝑠𝑤) = ((𝑞𝑠𝑤)𝑎(𝑟𝑠𝑤))) ∧ (((𝑞(.r‘𝑓)𝑟)𝑠𝑤) = (𝑞𝑠(𝑟𝑠𝑤)) ∧ ((1r‘𝑓)𝑠𝑤) = 𝑤 ∧ ((0g‘𝑓)𝑠𝑤) = (0g‘𝑔))) ↔ ∀𝑞 ∈ (Base‘(Scalar‘𝑔))∀𝑟 ∈ (Base‘(Scalar‘𝑔))∀𝑥 ∈ 𝑣 ∀𝑤 ∈ 𝑣 (((𝑟( ·𝑠
‘𝑔)𝑤) ∈ 𝑣 ∧ (𝑟( ·𝑠
‘𝑔)(𝑤𝑎𝑥)) = ((𝑟( ·𝑠
‘𝑔)𝑤)𝑎(𝑟( ·𝑠
‘𝑔)𝑥)) ∧ ((𝑞(+g‘(Scalar‘𝑔))𝑟)( ·𝑠
‘𝑔)𝑤) = ((𝑞( ·𝑠
‘𝑔)𝑤)𝑎(𝑟( ·𝑠
‘𝑔)𝑤))) ∧ (((𝑞(.r‘(Scalar‘𝑔))𝑟)( ·𝑠
‘𝑔)𝑤) = (𝑞( ·𝑠
‘𝑔)(𝑟(
·𝑠 ‘𝑔)𝑤)) ∧
((1r‘(Scalar‘𝑔))( ·𝑠
‘𝑔)𝑤) = 𝑤 ∧
((0g‘(Scalar‘𝑔))( ·𝑠
‘𝑔)𝑤) = (0g‘𝑔))))) |
60 | 26, 59 | anbi12d 634 |
. . . . . . . 8
⊢ ((𝑠 = (
·𝑠 ‘𝑔) ∧ 𝑓 = (Scalar‘𝑔)) → ((𝑓 ∈ SRing ∧ ∀𝑞 ∈ (Base‘𝑓)∀𝑟 ∈ (Base‘𝑓)∀𝑥 ∈ 𝑣 ∀𝑤 ∈ 𝑣 (((𝑟𝑠𝑤) ∈ 𝑣 ∧ (𝑟𝑠(𝑤𝑎𝑥)) = ((𝑟𝑠𝑤)𝑎(𝑟𝑠𝑥)) ∧ ((𝑞(+g‘𝑓)𝑟)𝑠𝑤) = ((𝑞𝑠𝑤)𝑎(𝑟𝑠𝑤))) ∧ (((𝑞(.r‘𝑓)𝑟)𝑠𝑤) = (𝑞𝑠(𝑟𝑠𝑤)) ∧ ((1r‘𝑓)𝑠𝑤) = 𝑤 ∧ ((0g‘𝑓)𝑠𝑤) = (0g‘𝑔)))) ↔ ((Scalar‘𝑔) ∈ SRing ∧ ∀𝑞 ∈
(Base‘(Scalar‘𝑔))∀𝑟 ∈ (Base‘(Scalar‘𝑔))∀𝑥 ∈ 𝑣 ∀𝑤 ∈ 𝑣 (((𝑟( ·𝑠
‘𝑔)𝑤) ∈ 𝑣 ∧ (𝑟( ·𝑠
‘𝑔)(𝑤𝑎𝑥)) = ((𝑟( ·𝑠
‘𝑔)𝑤)𝑎(𝑟( ·𝑠
‘𝑔)𝑥)) ∧ ((𝑞(+g‘(Scalar‘𝑔))𝑟)( ·𝑠
‘𝑔)𝑤) = ((𝑞( ·𝑠
‘𝑔)𝑤)𝑎(𝑟( ·𝑠
‘𝑔)𝑤))) ∧ (((𝑞(.r‘(Scalar‘𝑔))𝑟)( ·𝑠
‘𝑔)𝑤) = (𝑞( ·𝑠
‘𝑔)(𝑟(
·𝑠 ‘𝑔)𝑤)) ∧
((1r‘(Scalar‘𝑔))( ·𝑠
‘𝑔)𝑤) = 𝑤 ∧
((0g‘(Scalar‘𝑔))( ·𝑠
‘𝑔)𝑤) = (0g‘𝑔)))))) |
61 | 24, 60 | syl5bb 286 |
. . . . . . 7
⊢ ((𝑠 = (
·𝑠 ‘𝑔) ∧ 𝑓 = (Scalar‘𝑔)) → ([(Base‘𝑓) / 𝑘][(+g‘𝑓) / 𝑝][(.r‘𝑓) / 𝑡](𝑓 ∈ SRing ∧ ∀𝑞 ∈ 𝑘 ∀𝑟 ∈ 𝑘 ∀𝑥 ∈ 𝑣 ∀𝑤 ∈ 𝑣 (((𝑟𝑠𝑤) ∈ 𝑣 ∧ (𝑟𝑠(𝑤𝑎𝑥)) = ((𝑟𝑠𝑤)𝑎(𝑟𝑠𝑥)) ∧ ((𝑞𝑝𝑟)𝑠𝑤) = ((𝑞𝑠𝑤)𝑎(𝑟𝑠𝑤))) ∧ (((𝑞𝑡𝑟)𝑠𝑤) = (𝑞𝑠(𝑟𝑠𝑤)) ∧ ((1r‘𝑓)𝑠𝑤) = 𝑤 ∧ ((0g‘𝑓)𝑠𝑤) = (0g‘𝑔)))) ↔ ((Scalar‘𝑔) ∈ SRing ∧ ∀𝑞 ∈
(Base‘(Scalar‘𝑔))∀𝑟 ∈ (Base‘(Scalar‘𝑔))∀𝑥 ∈ 𝑣 ∀𝑤 ∈ 𝑣 (((𝑟( ·𝑠
‘𝑔)𝑤) ∈ 𝑣 ∧ (𝑟( ·𝑠
‘𝑔)(𝑤𝑎𝑥)) = ((𝑟( ·𝑠
‘𝑔)𝑤)𝑎(𝑟( ·𝑠
‘𝑔)𝑥)) ∧ ((𝑞(+g‘(Scalar‘𝑔))𝑟)( ·𝑠
‘𝑔)𝑤) = ((𝑞( ·𝑠
‘𝑔)𝑤)𝑎(𝑟( ·𝑠
‘𝑔)𝑤))) ∧ (((𝑞(.r‘(Scalar‘𝑔))𝑟)( ·𝑠
‘𝑔)𝑤) = (𝑞( ·𝑠
‘𝑔)(𝑟(
·𝑠 ‘𝑔)𝑤)) ∧
((1r‘(Scalar‘𝑔))( ·𝑠
‘𝑔)𝑤) = 𝑤 ∧
((0g‘(Scalar‘𝑔))( ·𝑠
‘𝑔)𝑤) = (0g‘𝑔)))))) |
62 | 3, 4, 61 | sbc2ie 3778 |
. . . . . 6
⊢
([( ·𝑠 ‘𝑔) / 𝑠][(Scalar‘𝑔) / 𝑓][(Base‘𝑓) / 𝑘][(+g‘𝑓) / 𝑝][(.r‘𝑓) / 𝑡](𝑓 ∈ SRing ∧ ∀𝑞 ∈ 𝑘 ∀𝑟 ∈ 𝑘 ∀𝑥 ∈ 𝑣 ∀𝑤 ∈ 𝑣 (((𝑟𝑠𝑤) ∈ 𝑣 ∧ (𝑟𝑠(𝑤𝑎𝑥)) = ((𝑟𝑠𝑤)𝑎(𝑟𝑠𝑥)) ∧ ((𝑞𝑝𝑟)𝑠𝑤) = ((𝑞𝑠𝑤)𝑎(𝑟𝑠𝑤))) ∧ (((𝑞𝑡𝑟)𝑠𝑤) = (𝑞𝑠(𝑟𝑠𝑤)) ∧ ((1r‘𝑓)𝑠𝑤) = 𝑤 ∧ ((0g‘𝑓)𝑠𝑤) = (0g‘𝑔)))) ↔ ((Scalar‘𝑔) ∈ SRing ∧ ∀𝑞 ∈
(Base‘(Scalar‘𝑔))∀𝑟 ∈ (Base‘(Scalar‘𝑔))∀𝑥 ∈ 𝑣 ∀𝑤 ∈ 𝑣 (((𝑟( ·𝑠
‘𝑔)𝑤) ∈ 𝑣 ∧ (𝑟( ·𝑠
‘𝑔)(𝑤𝑎𝑥)) = ((𝑟( ·𝑠
‘𝑔)𝑤)𝑎(𝑟( ·𝑠
‘𝑔)𝑥)) ∧ ((𝑞(+g‘(Scalar‘𝑔))𝑟)( ·𝑠
‘𝑔)𝑤) = ((𝑞( ·𝑠
‘𝑔)𝑤)𝑎(𝑟( ·𝑠
‘𝑔)𝑤))) ∧ (((𝑞(.r‘(Scalar‘𝑔))𝑟)( ·𝑠
‘𝑔)𝑤) = (𝑞( ·𝑠
‘𝑔)(𝑟(
·𝑠 ‘𝑔)𝑤)) ∧
((1r‘(Scalar‘𝑔))( ·𝑠
‘𝑔)𝑤) = 𝑤 ∧
((0g‘(Scalar‘𝑔))( ·𝑠
‘𝑔)𝑤) = (0g‘𝑔))))) |
63 | | simpl 486 |
. . . . . . . . 9
⊢ ((𝑣 = (Base‘𝑔) ∧ 𝑎 = (+g‘𝑔)) → 𝑣 = (Base‘𝑔)) |
64 | 63 | eleq2d 2823 |
. . . . . . . . . . . 12
⊢ ((𝑣 = (Base‘𝑔) ∧ 𝑎 = (+g‘𝑔)) → ((𝑟( ·𝑠
‘𝑔)𝑤) ∈ 𝑣 ↔ (𝑟( ·𝑠
‘𝑔)𝑤) ∈ (Base‘𝑔))) |
65 | | simpr 488 |
. . . . . . . . . . . . . . 15
⊢ ((𝑣 = (Base‘𝑔) ∧ 𝑎 = (+g‘𝑔)) → 𝑎 = (+g‘𝑔)) |
66 | 65 | oveqd 7230 |
. . . . . . . . . . . . . 14
⊢ ((𝑣 = (Base‘𝑔) ∧ 𝑎 = (+g‘𝑔)) → (𝑤𝑎𝑥) = (𝑤(+g‘𝑔)𝑥)) |
67 | 66 | oveq2d 7229 |
. . . . . . . . . . . . 13
⊢ ((𝑣 = (Base‘𝑔) ∧ 𝑎 = (+g‘𝑔)) → (𝑟( ·𝑠
‘𝑔)(𝑤𝑎𝑥)) = (𝑟( ·𝑠
‘𝑔)(𝑤(+g‘𝑔)𝑥))) |
68 | 65 | oveqd 7230 |
. . . . . . . . . . . . 13
⊢ ((𝑣 = (Base‘𝑔) ∧ 𝑎 = (+g‘𝑔)) → ((𝑟( ·𝑠
‘𝑔)𝑤)𝑎(𝑟( ·𝑠
‘𝑔)𝑥)) = ((𝑟( ·𝑠
‘𝑔)𝑤)(+g‘𝑔)(𝑟( ·𝑠
‘𝑔)𝑥))) |
69 | 67, 68 | eqeq12d 2753 |
. . . . . . . . . . . 12
⊢ ((𝑣 = (Base‘𝑔) ∧ 𝑎 = (+g‘𝑔)) → ((𝑟( ·𝑠
‘𝑔)(𝑤𝑎𝑥)) = ((𝑟( ·𝑠
‘𝑔)𝑤)𝑎(𝑟( ·𝑠
‘𝑔)𝑥)) ↔ (𝑟( ·𝑠
‘𝑔)(𝑤(+g‘𝑔)𝑥)) = ((𝑟( ·𝑠
‘𝑔)𝑤)(+g‘𝑔)(𝑟( ·𝑠
‘𝑔)𝑥)))) |
70 | 65 | oveqd 7230 |
. . . . . . . . . . . . 13
⊢ ((𝑣 = (Base‘𝑔) ∧ 𝑎 = (+g‘𝑔)) → ((𝑞( ·𝑠
‘𝑔)𝑤)𝑎(𝑟( ·𝑠
‘𝑔)𝑤)) = ((𝑞( ·𝑠
‘𝑔)𝑤)(+g‘𝑔)(𝑟( ·𝑠
‘𝑔)𝑤))) |
71 | 70 | eqeq2d 2748 |
. . . . . . . . . . . 12
⊢ ((𝑣 = (Base‘𝑔) ∧ 𝑎 = (+g‘𝑔)) → (((𝑞(+g‘(Scalar‘𝑔))𝑟)( ·𝑠
‘𝑔)𝑤) = ((𝑞( ·𝑠
‘𝑔)𝑤)𝑎(𝑟( ·𝑠
‘𝑔)𝑤)) ↔ ((𝑞(+g‘(Scalar‘𝑔))𝑟)( ·𝑠
‘𝑔)𝑤) = ((𝑞( ·𝑠
‘𝑔)𝑤)(+g‘𝑔)(𝑟( ·𝑠
‘𝑔)𝑤)))) |
72 | 64, 69, 71 | 3anbi123d 1438 |
. . . . . . . . . . 11
⊢ ((𝑣 = (Base‘𝑔) ∧ 𝑎 = (+g‘𝑔)) → (((𝑟( ·𝑠
‘𝑔)𝑤) ∈ 𝑣 ∧ (𝑟( ·𝑠
‘𝑔)(𝑤𝑎𝑥)) = ((𝑟( ·𝑠
‘𝑔)𝑤)𝑎(𝑟( ·𝑠
‘𝑔)𝑥)) ∧ ((𝑞(+g‘(Scalar‘𝑔))𝑟)( ·𝑠
‘𝑔)𝑤) = ((𝑞( ·𝑠
‘𝑔)𝑤)𝑎(𝑟( ·𝑠
‘𝑔)𝑤))) ↔ ((𝑟( ·𝑠
‘𝑔)𝑤) ∈ (Base‘𝑔) ∧ (𝑟( ·𝑠
‘𝑔)(𝑤(+g‘𝑔)𝑥)) = ((𝑟( ·𝑠
‘𝑔)𝑤)(+g‘𝑔)(𝑟( ·𝑠
‘𝑔)𝑥)) ∧ ((𝑞(+g‘(Scalar‘𝑔))𝑟)( ·𝑠
‘𝑔)𝑤) = ((𝑞( ·𝑠
‘𝑔)𝑤)(+g‘𝑔)(𝑟( ·𝑠
‘𝑔)𝑤))))) |
73 | 72 | anbi1d 633 |
. . . . . . . . . 10
⊢ ((𝑣 = (Base‘𝑔) ∧ 𝑎 = (+g‘𝑔)) → ((((𝑟( ·𝑠
‘𝑔)𝑤) ∈ 𝑣 ∧ (𝑟( ·𝑠
‘𝑔)(𝑤𝑎𝑥)) = ((𝑟( ·𝑠
‘𝑔)𝑤)𝑎(𝑟( ·𝑠
‘𝑔)𝑥)) ∧ ((𝑞(+g‘(Scalar‘𝑔))𝑟)( ·𝑠
‘𝑔)𝑤) = ((𝑞( ·𝑠
‘𝑔)𝑤)𝑎(𝑟( ·𝑠
‘𝑔)𝑤))) ∧ (((𝑞(.r‘(Scalar‘𝑔))𝑟)( ·𝑠
‘𝑔)𝑤) = (𝑞( ·𝑠
‘𝑔)(𝑟(
·𝑠 ‘𝑔)𝑤)) ∧
((1r‘(Scalar‘𝑔))( ·𝑠
‘𝑔)𝑤) = 𝑤 ∧
((0g‘(Scalar‘𝑔))( ·𝑠
‘𝑔)𝑤) = (0g‘𝑔))) ↔ (((𝑟( ·𝑠
‘𝑔)𝑤) ∈ (Base‘𝑔) ∧ (𝑟( ·𝑠
‘𝑔)(𝑤(+g‘𝑔)𝑥)) = ((𝑟( ·𝑠
‘𝑔)𝑤)(+g‘𝑔)(𝑟( ·𝑠
‘𝑔)𝑥)) ∧ ((𝑞(+g‘(Scalar‘𝑔))𝑟)( ·𝑠
‘𝑔)𝑤) = ((𝑞( ·𝑠
‘𝑔)𝑤)(+g‘𝑔)(𝑟( ·𝑠
‘𝑔)𝑤))) ∧ (((𝑞(.r‘(Scalar‘𝑔))𝑟)( ·𝑠
‘𝑔)𝑤) = (𝑞( ·𝑠
‘𝑔)(𝑟(
·𝑠 ‘𝑔)𝑤)) ∧
((1r‘(Scalar‘𝑔))( ·𝑠
‘𝑔)𝑤) = 𝑤 ∧
((0g‘(Scalar‘𝑔))( ·𝑠
‘𝑔)𝑤) = (0g‘𝑔))))) |
74 | 63, 73 | raleqbidv 3313 |
. . . . . . . . 9
⊢ ((𝑣 = (Base‘𝑔) ∧ 𝑎 = (+g‘𝑔)) → (∀𝑤 ∈ 𝑣 (((𝑟( ·𝑠
‘𝑔)𝑤) ∈ 𝑣 ∧ (𝑟( ·𝑠
‘𝑔)(𝑤𝑎𝑥)) = ((𝑟( ·𝑠
‘𝑔)𝑤)𝑎(𝑟( ·𝑠
‘𝑔)𝑥)) ∧ ((𝑞(+g‘(Scalar‘𝑔))𝑟)( ·𝑠
‘𝑔)𝑤) = ((𝑞( ·𝑠
‘𝑔)𝑤)𝑎(𝑟( ·𝑠
‘𝑔)𝑤))) ∧ (((𝑞(.r‘(Scalar‘𝑔))𝑟)( ·𝑠
‘𝑔)𝑤) = (𝑞( ·𝑠
‘𝑔)(𝑟(
·𝑠 ‘𝑔)𝑤)) ∧
((1r‘(Scalar‘𝑔))( ·𝑠
‘𝑔)𝑤) = 𝑤 ∧
((0g‘(Scalar‘𝑔))( ·𝑠
‘𝑔)𝑤) = (0g‘𝑔))) ↔ ∀𝑤 ∈ (Base‘𝑔)(((𝑟( ·𝑠
‘𝑔)𝑤) ∈ (Base‘𝑔) ∧ (𝑟( ·𝑠
‘𝑔)(𝑤(+g‘𝑔)𝑥)) = ((𝑟( ·𝑠
‘𝑔)𝑤)(+g‘𝑔)(𝑟( ·𝑠
‘𝑔)𝑥)) ∧ ((𝑞(+g‘(Scalar‘𝑔))𝑟)( ·𝑠
‘𝑔)𝑤) = ((𝑞( ·𝑠
‘𝑔)𝑤)(+g‘𝑔)(𝑟( ·𝑠
‘𝑔)𝑤))) ∧ (((𝑞(.r‘(Scalar‘𝑔))𝑟)( ·𝑠
‘𝑔)𝑤) = (𝑞( ·𝑠
‘𝑔)(𝑟(
·𝑠 ‘𝑔)𝑤)) ∧
((1r‘(Scalar‘𝑔))( ·𝑠
‘𝑔)𝑤) = 𝑤 ∧
((0g‘(Scalar‘𝑔))( ·𝑠
‘𝑔)𝑤) = (0g‘𝑔))))) |
75 | 63, 74 | raleqbidv 3313 |
. . . . . . . 8
⊢ ((𝑣 = (Base‘𝑔) ∧ 𝑎 = (+g‘𝑔)) → (∀𝑥 ∈ 𝑣 ∀𝑤 ∈ 𝑣 (((𝑟( ·𝑠
‘𝑔)𝑤) ∈ 𝑣 ∧ (𝑟( ·𝑠
‘𝑔)(𝑤𝑎𝑥)) = ((𝑟( ·𝑠
‘𝑔)𝑤)𝑎(𝑟( ·𝑠
‘𝑔)𝑥)) ∧ ((𝑞(+g‘(Scalar‘𝑔))𝑟)( ·𝑠
‘𝑔)𝑤) = ((𝑞( ·𝑠
‘𝑔)𝑤)𝑎(𝑟( ·𝑠
‘𝑔)𝑤))) ∧ (((𝑞(.r‘(Scalar‘𝑔))𝑟)( ·𝑠
‘𝑔)𝑤) = (𝑞( ·𝑠
‘𝑔)(𝑟(
·𝑠 ‘𝑔)𝑤)) ∧
((1r‘(Scalar‘𝑔))( ·𝑠
‘𝑔)𝑤) = 𝑤 ∧
((0g‘(Scalar‘𝑔))( ·𝑠
‘𝑔)𝑤) = (0g‘𝑔))) ↔ ∀𝑥 ∈ (Base‘𝑔)∀𝑤 ∈ (Base‘𝑔)(((𝑟( ·𝑠
‘𝑔)𝑤) ∈ (Base‘𝑔) ∧ (𝑟( ·𝑠
‘𝑔)(𝑤(+g‘𝑔)𝑥)) = ((𝑟( ·𝑠
‘𝑔)𝑤)(+g‘𝑔)(𝑟( ·𝑠
‘𝑔)𝑥)) ∧ ((𝑞(+g‘(Scalar‘𝑔))𝑟)( ·𝑠
‘𝑔)𝑤) = ((𝑞( ·𝑠
‘𝑔)𝑤)(+g‘𝑔)(𝑟( ·𝑠
‘𝑔)𝑤))) ∧ (((𝑞(.r‘(Scalar‘𝑔))𝑟)( ·𝑠
‘𝑔)𝑤) = (𝑞( ·𝑠
‘𝑔)(𝑟(
·𝑠 ‘𝑔)𝑤)) ∧
((1r‘(Scalar‘𝑔))( ·𝑠
‘𝑔)𝑤) = 𝑤 ∧
((0g‘(Scalar‘𝑔))( ·𝑠
‘𝑔)𝑤) = (0g‘𝑔))))) |
76 | 75 | 2ralbidv 3120 |
. . . . . . 7
⊢ ((𝑣 = (Base‘𝑔) ∧ 𝑎 = (+g‘𝑔)) → (∀𝑞 ∈ (Base‘(Scalar‘𝑔))∀𝑟 ∈ (Base‘(Scalar‘𝑔))∀𝑥 ∈ 𝑣 ∀𝑤 ∈ 𝑣 (((𝑟( ·𝑠
‘𝑔)𝑤) ∈ 𝑣 ∧ (𝑟( ·𝑠
‘𝑔)(𝑤𝑎𝑥)) = ((𝑟( ·𝑠
‘𝑔)𝑤)𝑎(𝑟( ·𝑠
‘𝑔)𝑥)) ∧ ((𝑞(+g‘(Scalar‘𝑔))𝑟)( ·𝑠
‘𝑔)𝑤) = ((𝑞( ·𝑠
‘𝑔)𝑤)𝑎(𝑟( ·𝑠
‘𝑔)𝑤))) ∧ (((𝑞(.r‘(Scalar‘𝑔))𝑟)( ·𝑠
‘𝑔)𝑤) = (𝑞( ·𝑠
‘𝑔)(𝑟(
·𝑠 ‘𝑔)𝑤)) ∧
((1r‘(Scalar‘𝑔))( ·𝑠
‘𝑔)𝑤) = 𝑤 ∧
((0g‘(Scalar‘𝑔))( ·𝑠
‘𝑔)𝑤) = (0g‘𝑔))) ↔ ∀𝑞 ∈ (Base‘(Scalar‘𝑔))∀𝑟 ∈ (Base‘(Scalar‘𝑔))∀𝑥 ∈ (Base‘𝑔)∀𝑤 ∈ (Base‘𝑔)(((𝑟( ·𝑠
‘𝑔)𝑤) ∈ (Base‘𝑔) ∧ (𝑟( ·𝑠
‘𝑔)(𝑤(+g‘𝑔)𝑥)) = ((𝑟( ·𝑠
‘𝑔)𝑤)(+g‘𝑔)(𝑟( ·𝑠
‘𝑔)𝑥)) ∧ ((𝑞(+g‘(Scalar‘𝑔))𝑟)( ·𝑠
‘𝑔)𝑤) = ((𝑞( ·𝑠
‘𝑔)𝑤)(+g‘𝑔)(𝑟( ·𝑠
‘𝑔)𝑤))) ∧ (((𝑞(.r‘(Scalar‘𝑔))𝑟)( ·𝑠
‘𝑔)𝑤) = (𝑞( ·𝑠
‘𝑔)(𝑟(
·𝑠 ‘𝑔)𝑤)) ∧
((1r‘(Scalar‘𝑔))( ·𝑠
‘𝑔)𝑤) = 𝑤 ∧
((0g‘(Scalar‘𝑔))( ·𝑠
‘𝑔)𝑤) = (0g‘𝑔))))) |
77 | 76 | anbi2d 632 |
. . . . . 6
⊢ ((𝑣 = (Base‘𝑔) ∧ 𝑎 = (+g‘𝑔)) → (((Scalar‘𝑔) ∈ SRing ∧ ∀𝑞 ∈
(Base‘(Scalar‘𝑔))∀𝑟 ∈ (Base‘(Scalar‘𝑔))∀𝑥 ∈ 𝑣 ∀𝑤 ∈ 𝑣 (((𝑟( ·𝑠
‘𝑔)𝑤) ∈ 𝑣 ∧ (𝑟( ·𝑠
‘𝑔)(𝑤𝑎𝑥)) = ((𝑟( ·𝑠
‘𝑔)𝑤)𝑎(𝑟( ·𝑠
‘𝑔)𝑥)) ∧ ((𝑞(+g‘(Scalar‘𝑔))𝑟)( ·𝑠
‘𝑔)𝑤) = ((𝑞( ·𝑠
‘𝑔)𝑤)𝑎(𝑟( ·𝑠
‘𝑔)𝑤))) ∧ (((𝑞(.r‘(Scalar‘𝑔))𝑟)( ·𝑠
‘𝑔)𝑤) = (𝑞( ·𝑠
‘𝑔)(𝑟(
·𝑠 ‘𝑔)𝑤)) ∧
((1r‘(Scalar‘𝑔))( ·𝑠
‘𝑔)𝑤) = 𝑤 ∧
((0g‘(Scalar‘𝑔))( ·𝑠
‘𝑔)𝑤) = (0g‘𝑔)))) ↔ ((Scalar‘𝑔) ∈ SRing ∧ ∀𝑞 ∈
(Base‘(Scalar‘𝑔))∀𝑟 ∈ (Base‘(Scalar‘𝑔))∀𝑥 ∈ (Base‘𝑔)∀𝑤 ∈ (Base‘𝑔)(((𝑟( ·𝑠
‘𝑔)𝑤) ∈ (Base‘𝑔) ∧ (𝑟( ·𝑠
‘𝑔)(𝑤(+g‘𝑔)𝑥)) = ((𝑟( ·𝑠
‘𝑔)𝑤)(+g‘𝑔)(𝑟( ·𝑠
‘𝑔)𝑥)) ∧ ((𝑞(+g‘(Scalar‘𝑔))𝑟)( ·𝑠
‘𝑔)𝑤) = ((𝑞( ·𝑠
‘𝑔)𝑤)(+g‘𝑔)(𝑟( ·𝑠
‘𝑔)𝑤))) ∧ (((𝑞(.r‘(Scalar‘𝑔))𝑟)( ·𝑠
‘𝑔)𝑤) = (𝑞( ·𝑠
‘𝑔)(𝑟(
·𝑠 ‘𝑔)𝑤)) ∧
((1r‘(Scalar‘𝑔))( ·𝑠
‘𝑔)𝑤) = 𝑤 ∧
((0g‘(Scalar‘𝑔))( ·𝑠
‘𝑔)𝑤) = (0g‘𝑔)))))) |
78 | 62, 77 | syl5bb 286 |
. . . . 5
⊢ ((𝑣 = (Base‘𝑔) ∧ 𝑎 = (+g‘𝑔)) → ([(
·𝑠 ‘𝑔) / 𝑠][(Scalar‘𝑔) / 𝑓][(Base‘𝑓) / 𝑘][(+g‘𝑓) / 𝑝][(.r‘𝑓) / 𝑡](𝑓 ∈ SRing ∧ ∀𝑞 ∈ 𝑘 ∀𝑟 ∈ 𝑘 ∀𝑥 ∈ 𝑣 ∀𝑤 ∈ 𝑣 (((𝑟𝑠𝑤) ∈ 𝑣 ∧ (𝑟𝑠(𝑤𝑎𝑥)) = ((𝑟𝑠𝑤)𝑎(𝑟𝑠𝑥)) ∧ ((𝑞𝑝𝑟)𝑠𝑤) = ((𝑞𝑠𝑤)𝑎(𝑟𝑠𝑤))) ∧ (((𝑞𝑡𝑟)𝑠𝑤) = (𝑞𝑠(𝑟𝑠𝑤)) ∧ ((1r‘𝑓)𝑠𝑤) = 𝑤 ∧ ((0g‘𝑓)𝑠𝑤) = (0g‘𝑔)))) ↔ ((Scalar‘𝑔) ∈ SRing ∧ ∀𝑞 ∈
(Base‘(Scalar‘𝑔))∀𝑟 ∈ (Base‘(Scalar‘𝑔))∀𝑥 ∈ (Base‘𝑔)∀𝑤 ∈ (Base‘𝑔)(((𝑟( ·𝑠
‘𝑔)𝑤) ∈ (Base‘𝑔) ∧ (𝑟( ·𝑠
‘𝑔)(𝑤(+g‘𝑔)𝑥)) = ((𝑟( ·𝑠
‘𝑔)𝑤)(+g‘𝑔)(𝑟( ·𝑠
‘𝑔)𝑥)) ∧ ((𝑞(+g‘(Scalar‘𝑔))𝑟)( ·𝑠
‘𝑔)𝑤) = ((𝑞( ·𝑠
‘𝑔)𝑤)(+g‘𝑔)(𝑟( ·𝑠
‘𝑔)𝑤))) ∧ (((𝑞(.r‘(Scalar‘𝑔))𝑟)( ·𝑠
‘𝑔)𝑤) = (𝑞( ·𝑠
‘𝑔)(𝑟(
·𝑠 ‘𝑔)𝑤)) ∧
((1r‘(Scalar‘𝑔))( ·𝑠
‘𝑔)𝑤) = 𝑤 ∧
((0g‘(Scalar‘𝑔))( ·𝑠
‘𝑔)𝑤) = (0g‘𝑔)))))) |
79 | 1, 2, 78 | sbc2ie 3778 |
. . . 4
⊢
([(Base‘𝑔) / 𝑣][(+g‘𝑔) / 𝑎][(
·𝑠 ‘𝑔) / 𝑠][(Scalar‘𝑔) / 𝑓][(Base‘𝑓) / 𝑘][(+g‘𝑓) / 𝑝][(.r‘𝑓) / 𝑡](𝑓 ∈ SRing ∧ ∀𝑞 ∈ 𝑘 ∀𝑟 ∈ 𝑘 ∀𝑥 ∈ 𝑣 ∀𝑤 ∈ 𝑣 (((𝑟𝑠𝑤) ∈ 𝑣 ∧ (𝑟𝑠(𝑤𝑎𝑥)) = ((𝑟𝑠𝑤)𝑎(𝑟𝑠𝑥)) ∧ ((𝑞𝑝𝑟)𝑠𝑤) = ((𝑞𝑠𝑤)𝑎(𝑟𝑠𝑤))) ∧ (((𝑞𝑡𝑟)𝑠𝑤) = (𝑞𝑠(𝑟𝑠𝑤)) ∧ ((1r‘𝑓)𝑠𝑤) = 𝑤 ∧ ((0g‘𝑓)𝑠𝑤) = (0g‘𝑔)))) ↔ ((Scalar‘𝑔) ∈ SRing ∧ ∀𝑞 ∈
(Base‘(Scalar‘𝑔))∀𝑟 ∈ (Base‘(Scalar‘𝑔))∀𝑥 ∈ (Base‘𝑔)∀𝑤 ∈ (Base‘𝑔)(((𝑟( ·𝑠
‘𝑔)𝑤) ∈ (Base‘𝑔) ∧ (𝑟( ·𝑠
‘𝑔)(𝑤(+g‘𝑔)𝑥)) = ((𝑟( ·𝑠
‘𝑔)𝑤)(+g‘𝑔)(𝑟( ·𝑠
‘𝑔)𝑥)) ∧ ((𝑞(+g‘(Scalar‘𝑔))𝑟)( ·𝑠
‘𝑔)𝑤) = ((𝑞( ·𝑠
‘𝑔)𝑤)(+g‘𝑔)(𝑟( ·𝑠
‘𝑔)𝑤))) ∧ (((𝑞(.r‘(Scalar‘𝑔))𝑟)( ·𝑠
‘𝑔)𝑤) = (𝑞( ·𝑠
‘𝑔)(𝑟(
·𝑠 ‘𝑔)𝑤)) ∧
((1r‘(Scalar‘𝑔))( ·𝑠
‘𝑔)𝑤) = 𝑤 ∧
((0g‘(Scalar‘𝑔))( ·𝑠
‘𝑔)𝑤) = (0g‘𝑔))))) |
80 | | fveq2 6717 |
. . . . . . 7
⊢ (𝑔 = 𝑊 → (Scalar‘𝑔) = (Scalar‘𝑊)) |
81 | | isslmd.f |
. . . . . . 7
⊢ 𝐹 = (Scalar‘𝑊) |
82 | 80, 81 | eqtr4di 2796 |
. . . . . 6
⊢ (𝑔 = 𝑊 → (Scalar‘𝑔) = 𝐹) |
83 | 82 | eleq1d 2822 |
. . . . 5
⊢ (𝑔 = 𝑊 → ((Scalar‘𝑔) ∈ SRing ↔ 𝐹 ∈ SRing)) |
84 | 82 | fveq2d 6721 |
. . . . . . 7
⊢ (𝑔 = 𝑊 → (Base‘(Scalar‘𝑔)) = (Base‘𝐹)) |
85 | | isslmd.k |
. . . . . . 7
⊢ 𝐾 = (Base‘𝐹) |
86 | 84, 85 | eqtr4di 2796 |
. . . . . 6
⊢ (𝑔 = 𝑊 → (Base‘(Scalar‘𝑔)) = 𝐾) |
87 | | fveq2 6717 |
. . . . . . . . 9
⊢ (𝑔 = 𝑊 → (Base‘𝑔) = (Base‘𝑊)) |
88 | | isslmd.v |
. . . . . . . . 9
⊢ 𝑉 = (Base‘𝑊) |
89 | 87, 88 | eqtr4di 2796 |
. . . . . . . 8
⊢ (𝑔 = 𝑊 → (Base‘𝑔) = 𝑉) |
90 | | fveq2 6717 |
. . . . . . . . . . . . . 14
⊢ (𝑔 = 𝑊 → (
·𝑠 ‘𝑔) = ( ·𝑠
‘𝑊)) |
91 | | isslmd.s |
. . . . . . . . . . . . . 14
⊢ · = (
·𝑠 ‘𝑊) |
92 | 90, 91 | eqtr4di 2796 |
. . . . . . . . . . . . 13
⊢ (𝑔 = 𝑊 → (
·𝑠 ‘𝑔) = · ) |
93 | 92 | oveqd 7230 |
. . . . . . . . . . . 12
⊢ (𝑔 = 𝑊 → (𝑟( ·𝑠
‘𝑔)𝑤) = (𝑟 · 𝑤)) |
94 | 93, 89 | eleq12d 2832 |
. . . . . . . . . . 11
⊢ (𝑔 = 𝑊 → ((𝑟( ·𝑠
‘𝑔)𝑤) ∈ (Base‘𝑔) ↔ (𝑟 · 𝑤) ∈ 𝑉)) |
95 | | eqidd 2738 |
. . . . . . . . . . . . 13
⊢ (𝑔 = 𝑊 → 𝑟 = 𝑟) |
96 | | fveq2 6717 |
. . . . . . . . . . . . . . 15
⊢ (𝑔 = 𝑊 → (+g‘𝑔) = (+g‘𝑊)) |
97 | | isslmd.a |
. . . . . . . . . . . . . . 15
⊢ + =
(+g‘𝑊) |
98 | 96, 97 | eqtr4di 2796 |
. . . . . . . . . . . . . 14
⊢ (𝑔 = 𝑊 → (+g‘𝑔) = + ) |
99 | 98 | oveqd 7230 |
. . . . . . . . . . . . 13
⊢ (𝑔 = 𝑊 → (𝑤(+g‘𝑔)𝑥) = (𝑤 + 𝑥)) |
100 | 92, 95, 99 | oveq123d 7234 |
. . . . . . . . . . . 12
⊢ (𝑔 = 𝑊 → (𝑟( ·𝑠
‘𝑔)(𝑤(+g‘𝑔)𝑥)) = (𝑟 · (𝑤 + 𝑥))) |
101 | 92 | oveqd 7230 |
. . . . . . . . . . . . 13
⊢ (𝑔 = 𝑊 → (𝑟( ·𝑠
‘𝑔)𝑥) = (𝑟 · 𝑥)) |
102 | 98, 93, 101 | oveq123d 7234 |
. . . . . . . . . . . 12
⊢ (𝑔 = 𝑊 → ((𝑟( ·𝑠
‘𝑔)𝑤)(+g‘𝑔)(𝑟( ·𝑠
‘𝑔)𝑥)) = ((𝑟 · 𝑤) + (𝑟 · 𝑥))) |
103 | 100, 102 | eqeq12d 2753 |
. . . . . . . . . . 11
⊢ (𝑔 = 𝑊 → ((𝑟( ·𝑠
‘𝑔)(𝑤(+g‘𝑔)𝑥)) = ((𝑟( ·𝑠
‘𝑔)𝑤)(+g‘𝑔)(𝑟( ·𝑠
‘𝑔)𝑥)) ↔ (𝑟 · (𝑤 + 𝑥)) = ((𝑟 · 𝑤) + (𝑟 · 𝑥)))) |
104 | 82 | fveq2d 6721 |
. . . . . . . . . . . . . . 15
⊢ (𝑔 = 𝑊 →
(+g‘(Scalar‘𝑔)) = (+g‘𝐹)) |
105 | | isslmd.p |
. . . . . . . . . . . . . . 15
⊢ ⨣ =
(+g‘𝐹) |
106 | 104, 105 | eqtr4di 2796 |
. . . . . . . . . . . . . 14
⊢ (𝑔 = 𝑊 →
(+g‘(Scalar‘𝑔)) = ⨣ ) |
107 | 106 | oveqd 7230 |
. . . . . . . . . . . . 13
⊢ (𝑔 = 𝑊 → (𝑞(+g‘(Scalar‘𝑔))𝑟) = (𝑞 ⨣ 𝑟)) |
108 | | eqidd 2738 |
. . . . . . . . . . . . 13
⊢ (𝑔 = 𝑊 → 𝑤 = 𝑤) |
109 | 92, 107, 108 | oveq123d 7234 |
. . . . . . . . . . . 12
⊢ (𝑔 = 𝑊 → ((𝑞(+g‘(Scalar‘𝑔))𝑟)( ·𝑠
‘𝑔)𝑤) = ((𝑞 ⨣ 𝑟) · 𝑤)) |
110 | 92 | oveqd 7230 |
. . . . . . . . . . . . 13
⊢ (𝑔 = 𝑊 → (𝑞( ·𝑠
‘𝑔)𝑤) = (𝑞 · 𝑤)) |
111 | 98, 110, 93 | oveq123d 7234 |
. . . . . . . . . . . 12
⊢ (𝑔 = 𝑊 → ((𝑞( ·𝑠
‘𝑔)𝑤)(+g‘𝑔)(𝑟( ·𝑠
‘𝑔)𝑤)) = ((𝑞 · 𝑤) + (𝑟 · 𝑤))) |
112 | 109, 111 | eqeq12d 2753 |
. . . . . . . . . . 11
⊢ (𝑔 = 𝑊 → (((𝑞(+g‘(Scalar‘𝑔))𝑟)( ·𝑠
‘𝑔)𝑤) = ((𝑞( ·𝑠
‘𝑔)𝑤)(+g‘𝑔)(𝑟( ·𝑠
‘𝑔)𝑤)) ↔ ((𝑞 ⨣ 𝑟) · 𝑤) = ((𝑞 · 𝑤) + (𝑟 · 𝑤)))) |
113 | 94, 103, 112 | 3anbi123d 1438 |
. . . . . . . . . 10
⊢ (𝑔 = 𝑊 → (((𝑟( ·𝑠
‘𝑔)𝑤) ∈ (Base‘𝑔) ∧ (𝑟( ·𝑠
‘𝑔)(𝑤(+g‘𝑔)𝑥)) = ((𝑟( ·𝑠
‘𝑔)𝑤)(+g‘𝑔)(𝑟( ·𝑠
‘𝑔)𝑥)) ∧ ((𝑞(+g‘(Scalar‘𝑔))𝑟)( ·𝑠
‘𝑔)𝑤) = ((𝑞( ·𝑠
‘𝑔)𝑤)(+g‘𝑔)(𝑟( ·𝑠
‘𝑔)𝑤))) ↔ ((𝑟 · 𝑤) ∈ 𝑉 ∧ (𝑟 · (𝑤 + 𝑥)) = ((𝑟 · 𝑤) + (𝑟 · 𝑥)) ∧ ((𝑞 ⨣ 𝑟) · 𝑤) = ((𝑞 · 𝑤) + (𝑟 · 𝑤))))) |
114 | 82 | fveq2d 6721 |
. . . . . . . . . . . . . . 15
⊢ (𝑔 = 𝑊 →
(.r‘(Scalar‘𝑔)) = (.r‘𝐹)) |
115 | | isslmd.t |
. . . . . . . . . . . . . . 15
⊢ × =
(.r‘𝐹) |
116 | 114, 115 | eqtr4di 2796 |
. . . . . . . . . . . . . 14
⊢ (𝑔 = 𝑊 →
(.r‘(Scalar‘𝑔)) = × ) |
117 | 116 | oveqd 7230 |
. . . . . . . . . . . . 13
⊢ (𝑔 = 𝑊 → (𝑞(.r‘(Scalar‘𝑔))𝑟) = (𝑞 × 𝑟)) |
118 | 92, 117, 108 | oveq123d 7234 |
. . . . . . . . . . . 12
⊢ (𝑔 = 𝑊 → ((𝑞(.r‘(Scalar‘𝑔))𝑟)( ·𝑠
‘𝑔)𝑤) = ((𝑞 × 𝑟) · 𝑤)) |
119 | | eqidd 2738 |
. . . . . . . . . . . . 13
⊢ (𝑔 = 𝑊 → 𝑞 = 𝑞) |
120 | 92, 119, 93 | oveq123d 7234 |
. . . . . . . . . . . 12
⊢ (𝑔 = 𝑊 → (𝑞( ·𝑠
‘𝑔)(𝑟(
·𝑠 ‘𝑔)𝑤)) = (𝑞 · (𝑟 · 𝑤))) |
121 | 118, 120 | eqeq12d 2753 |
. . . . . . . . . . 11
⊢ (𝑔 = 𝑊 → (((𝑞(.r‘(Scalar‘𝑔))𝑟)( ·𝑠
‘𝑔)𝑤) = (𝑞( ·𝑠
‘𝑔)(𝑟(
·𝑠 ‘𝑔)𝑤)) ↔ ((𝑞 × 𝑟) · 𝑤) = (𝑞 · (𝑟 · 𝑤)))) |
122 | 82 | fveq2d 6721 |
. . . . . . . . . . . . . 14
⊢ (𝑔 = 𝑊 →
(1r‘(Scalar‘𝑔)) = (1r‘𝐹)) |
123 | | isslmd.u |
. . . . . . . . . . . . . 14
⊢ 1 =
(1r‘𝐹) |
124 | 122, 123 | eqtr4di 2796 |
. . . . . . . . . . . . 13
⊢ (𝑔 = 𝑊 →
(1r‘(Scalar‘𝑔)) = 1 ) |
125 | 92, 124, 108 | oveq123d 7234 |
. . . . . . . . . . . 12
⊢ (𝑔 = 𝑊 →
((1r‘(Scalar‘𝑔))( ·𝑠
‘𝑔)𝑤) = ( 1 · 𝑤)) |
126 | 125 | eqeq1d 2739 |
. . . . . . . . . . 11
⊢ (𝑔 = 𝑊 →
(((1r‘(Scalar‘𝑔))( ·𝑠
‘𝑔)𝑤) = 𝑤 ↔ ( 1 · 𝑤) = 𝑤)) |
127 | 82 | fveq2d 6721 |
. . . . . . . . . . . . . 14
⊢ (𝑔 = 𝑊 →
(0g‘(Scalar‘𝑔)) = (0g‘𝐹)) |
128 | | isslmd.o |
. . . . . . . . . . . . . 14
⊢ 𝑂 = (0g‘𝐹) |
129 | 127, 128 | eqtr4di 2796 |
. . . . . . . . . . . . 13
⊢ (𝑔 = 𝑊 →
(0g‘(Scalar‘𝑔)) = 𝑂) |
130 | 92, 129, 108 | oveq123d 7234 |
. . . . . . . . . . . 12
⊢ (𝑔 = 𝑊 →
((0g‘(Scalar‘𝑔))( ·𝑠
‘𝑔)𝑤) = (𝑂 · 𝑤)) |
131 | | fveq2 6717 |
. . . . . . . . . . . . 13
⊢ (𝑔 = 𝑊 → (0g‘𝑔) = (0g‘𝑊)) |
132 | | isslmd.0 |
. . . . . . . . . . . . 13
⊢ 0 =
(0g‘𝑊) |
133 | 131, 132 | eqtr4di 2796 |
. . . . . . . . . . . 12
⊢ (𝑔 = 𝑊 → (0g‘𝑔) = 0 ) |
134 | 130, 133 | eqeq12d 2753 |
. . . . . . . . . . 11
⊢ (𝑔 = 𝑊 →
(((0g‘(Scalar‘𝑔))( ·𝑠
‘𝑔)𝑤) = (0g‘𝑔) ↔ (𝑂 · 𝑤) = 0 )) |
135 | 121, 126,
134 | 3anbi123d 1438 |
. . . . . . . . . 10
⊢ (𝑔 = 𝑊 → ((((𝑞(.r‘(Scalar‘𝑔))𝑟)( ·𝑠
‘𝑔)𝑤) = (𝑞( ·𝑠
‘𝑔)(𝑟(
·𝑠 ‘𝑔)𝑤)) ∧
((1r‘(Scalar‘𝑔))( ·𝑠
‘𝑔)𝑤) = 𝑤 ∧
((0g‘(Scalar‘𝑔))( ·𝑠
‘𝑔)𝑤) = (0g‘𝑔)) ↔ (((𝑞 × 𝑟) · 𝑤) = (𝑞 · (𝑟 · 𝑤)) ∧ ( 1 · 𝑤) = 𝑤 ∧ (𝑂 · 𝑤) = 0 ))) |
136 | 113, 135 | anbi12d 634 |
. . . . . . . . 9
⊢ (𝑔 = 𝑊 → ((((𝑟( ·𝑠
‘𝑔)𝑤) ∈ (Base‘𝑔) ∧ (𝑟( ·𝑠
‘𝑔)(𝑤(+g‘𝑔)𝑥)) = ((𝑟( ·𝑠
‘𝑔)𝑤)(+g‘𝑔)(𝑟( ·𝑠
‘𝑔)𝑥)) ∧ ((𝑞(+g‘(Scalar‘𝑔))𝑟)( ·𝑠
‘𝑔)𝑤) = ((𝑞( ·𝑠
‘𝑔)𝑤)(+g‘𝑔)(𝑟( ·𝑠
‘𝑔)𝑤))) ∧ (((𝑞(.r‘(Scalar‘𝑔))𝑟)( ·𝑠
‘𝑔)𝑤) = (𝑞( ·𝑠
‘𝑔)(𝑟(
·𝑠 ‘𝑔)𝑤)) ∧
((1r‘(Scalar‘𝑔))( ·𝑠
‘𝑔)𝑤) = 𝑤 ∧
((0g‘(Scalar‘𝑔))( ·𝑠
‘𝑔)𝑤) = (0g‘𝑔))) ↔ (((𝑟 · 𝑤) ∈ 𝑉 ∧ (𝑟 · (𝑤 + 𝑥)) = ((𝑟 · 𝑤) + (𝑟 · 𝑥)) ∧ ((𝑞 ⨣ 𝑟) · 𝑤) = ((𝑞 · 𝑤) + (𝑟 · 𝑤))) ∧ (((𝑞 × 𝑟) · 𝑤) = (𝑞 · (𝑟 · 𝑤)) ∧ ( 1 · 𝑤) = 𝑤 ∧ (𝑂 · 𝑤) = 0 )))) |
137 | 89, 136 | raleqbidv 3313 |
. . . . . . . 8
⊢ (𝑔 = 𝑊 → (∀𝑤 ∈ (Base‘𝑔)(((𝑟( ·𝑠
‘𝑔)𝑤) ∈ (Base‘𝑔) ∧ (𝑟( ·𝑠
‘𝑔)(𝑤(+g‘𝑔)𝑥)) = ((𝑟( ·𝑠
‘𝑔)𝑤)(+g‘𝑔)(𝑟( ·𝑠
‘𝑔)𝑥)) ∧ ((𝑞(+g‘(Scalar‘𝑔))𝑟)( ·𝑠
‘𝑔)𝑤) = ((𝑞( ·𝑠
‘𝑔)𝑤)(+g‘𝑔)(𝑟( ·𝑠
‘𝑔)𝑤))) ∧ (((𝑞(.r‘(Scalar‘𝑔))𝑟)( ·𝑠
‘𝑔)𝑤) = (𝑞( ·𝑠
‘𝑔)(𝑟(
·𝑠 ‘𝑔)𝑤)) ∧
((1r‘(Scalar‘𝑔))( ·𝑠
‘𝑔)𝑤) = 𝑤 ∧
((0g‘(Scalar‘𝑔))( ·𝑠
‘𝑔)𝑤) = (0g‘𝑔))) ↔ ∀𝑤 ∈ 𝑉 (((𝑟 · 𝑤) ∈ 𝑉 ∧ (𝑟 · (𝑤 + 𝑥)) = ((𝑟 · 𝑤) + (𝑟 · 𝑥)) ∧ ((𝑞 ⨣ 𝑟) · 𝑤) = ((𝑞 · 𝑤) + (𝑟 · 𝑤))) ∧ (((𝑞 × 𝑟) · 𝑤) = (𝑞 · (𝑟 · 𝑤)) ∧ ( 1 · 𝑤) = 𝑤 ∧ (𝑂 · 𝑤) = 0 )))) |
138 | 89, 137 | raleqbidv 3313 |
. . . . . . 7
⊢ (𝑔 = 𝑊 → (∀𝑥 ∈ (Base‘𝑔)∀𝑤 ∈ (Base‘𝑔)(((𝑟( ·𝑠
‘𝑔)𝑤) ∈ (Base‘𝑔) ∧ (𝑟( ·𝑠
‘𝑔)(𝑤(+g‘𝑔)𝑥)) = ((𝑟( ·𝑠
‘𝑔)𝑤)(+g‘𝑔)(𝑟( ·𝑠
‘𝑔)𝑥)) ∧ ((𝑞(+g‘(Scalar‘𝑔))𝑟)( ·𝑠
‘𝑔)𝑤) = ((𝑞( ·𝑠
‘𝑔)𝑤)(+g‘𝑔)(𝑟( ·𝑠
‘𝑔)𝑤))) ∧ (((𝑞(.r‘(Scalar‘𝑔))𝑟)( ·𝑠
‘𝑔)𝑤) = (𝑞( ·𝑠
‘𝑔)(𝑟(
·𝑠 ‘𝑔)𝑤)) ∧
((1r‘(Scalar‘𝑔))( ·𝑠
‘𝑔)𝑤) = 𝑤 ∧
((0g‘(Scalar‘𝑔))( ·𝑠
‘𝑔)𝑤) = (0g‘𝑔))) ↔ ∀𝑥 ∈ 𝑉 ∀𝑤 ∈ 𝑉 (((𝑟 · 𝑤) ∈ 𝑉 ∧ (𝑟 · (𝑤 + 𝑥)) = ((𝑟 · 𝑤) + (𝑟 · 𝑥)) ∧ ((𝑞 ⨣ 𝑟) · 𝑤) = ((𝑞 · 𝑤) + (𝑟 · 𝑤))) ∧ (((𝑞 × 𝑟) · 𝑤) = (𝑞 · (𝑟 · 𝑤)) ∧ ( 1 · 𝑤) = 𝑤 ∧ (𝑂 · 𝑤) = 0 )))) |
139 | 86, 138 | raleqbidv 3313 |
. . . . . 6
⊢ (𝑔 = 𝑊 → (∀𝑟 ∈ (Base‘(Scalar‘𝑔))∀𝑥 ∈ (Base‘𝑔)∀𝑤 ∈ (Base‘𝑔)(((𝑟( ·𝑠
‘𝑔)𝑤) ∈ (Base‘𝑔) ∧ (𝑟( ·𝑠
‘𝑔)(𝑤(+g‘𝑔)𝑥)) = ((𝑟( ·𝑠
‘𝑔)𝑤)(+g‘𝑔)(𝑟( ·𝑠
‘𝑔)𝑥)) ∧ ((𝑞(+g‘(Scalar‘𝑔))𝑟)( ·𝑠
‘𝑔)𝑤) = ((𝑞( ·𝑠
‘𝑔)𝑤)(+g‘𝑔)(𝑟( ·𝑠
‘𝑔)𝑤))) ∧ (((𝑞(.r‘(Scalar‘𝑔))𝑟)( ·𝑠
‘𝑔)𝑤) = (𝑞( ·𝑠
‘𝑔)(𝑟(
·𝑠 ‘𝑔)𝑤)) ∧
((1r‘(Scalar‘𝑔))( ·𝑠
‘𝑔)𝑤) = 𝑤 ∧
((0g‘(Scalar‘𝑔))( ·𝑠
‘𝑔)𝑤) = (0g‘𝑔))) ↔ ∀𝑟 ∈ 𝐾 ∀𝑥 ∈ 𝑉 ∀𝑤 ∈ 𝑉 (((𝑟 · 𝑤) ∈ 𝑉 ∧ (𝑟 · (𝑤 + 𝑥)) = ((𝑟 · 𝑤) + (𝑟 · 𝑥)) ∧ ((𝑞 ⨣ 𝑟) · 𝑤) = ((𝑞 · 𝑤) + (𝑟 · 𝑤))) ∧ (((𝑞 × 𝑟) · 𝑤) = (𝑞 · (𝑟 · 𝑤)) ∧ ( 1 · 𝑤) = 𝑤 ∧ (𝑂 · 𝑤) = 0 )))) |
140 | 86, 139 | raleqbidv 3313 |
. . . . 5
⊢ (𝑔 = 𝑊 → (∀𝑞 ∈ (Base‘(Scalar‘𝑔))∀𝑟 ∈ (Base‘(Scalar‘𝑔))∀𝑥 ∈ (Base‘𝑔)∀𝑤 ∈ (Base‘𝑔)(((𝑟( ·𝑠
‘𝑔)𝑤) ∈ (Base‘𝑔) ∧ (𝑟( ·𝑠
‘𝑔)(𝑤(+g‘𝑔)𝑥)) = ((𝑟( ·𝑠
‘𝑔)𝑤)(+g‘𝑔)(𝑟( ·𝑠
‘𝑔)𝑥)) ∧ ((𝑞(+g‘(Scalar‘𝑔))𝑟)( ·𝑠
‘𝑔)𝑤) = ((𝑞( ·𝑠
‘𝑔)𝑤)(+g‘𝑔)(𝑟( ·𝑠
‘𝑔)𝑤))) ∧ (((𝑞(.r‘(Scalar‘𝑔))𝑟)( ·𝑠
‘𝑔)𝑤) = (𝑞( ·𝑠
‘𝑔)(𝑟(
·𝑠 ‘𝑔)𝑤)) ∧
((1r‘(Scalar‘𝑔))( ·𝑠
‘𝑔)𝑤) = 𝑤 ∧
((0g‘(Scalar‘𝑔))( ·𝑠
‘𝑔)𝑤) = (0g‘𝑔))) ↔ ∀𝑞 ∈ 𝐾 ∀𝑟 ∈ 𝐾 ∀𝑥 ∈ 𝑉 ∀𝑤 ∈ 𝑉 (((𝑟 · 𝑤) ∈ 𝑉 ∧ (𝑟 · (𝑤 + 𝑥)) = ((𝑟 · 𝑤) + (𝑟 · 𝑥)) ∧ ((𝑞 ⨣ 𝑟) · 𝑤) = ((𝑞 · 𝑤) + (𝑟 · 𝑤))) ∧ (((𝑞 × 𝑟) · 𝑤) = (𝑞 · (𝑟 · 𝑤)) ∧ ( 1 · 𝑤) = 𝑤 ∧ (𝑂 · 𝑤) = 0 )))) |
141 | 83, 140 | anbi12d 634 |
. . . 4
⊢ (𝑔 = 𝑊 → (((Scalar‘𝑔) ∈ SRing ∧ ∀𝑞 ∈
(Base‘(Scalar‘𝑔))∀𝑟 ∈ (Base‘(Scalar‘𝑔))∀𝑥 ∈ (Base‘𝑔)∀𝑤 ∈ (Base‘𝑔)(((𝑟( ·𝑠
‘𝑔)𝑤) ∈ (Base‘𝑔) ∧ (𝑟( ·𝑠
‘𝑔)(𝑤(+g‘𝑔)𝑥)) = ((𝑟( ·𝑠
‘𝑔)𝑤)(+g‘𝑔)(𝑟( ·𝑠
‘𝑔)𝑥)) ∧ ((𝑞(+g‘(Scalar‘𝑔))𝑟)( ·𝑠
‘𝑔)𝑤) = ((𝑞( ·𝑠
‘𝑔)𝑤)(+g‘𝑔)(𝑟( ·𝑠
‘𝑔)𝑤))) ∧ (((𝑞(.r‘(Scalar‘𝑔))𝑟)( ·𝑠
‘𝑔)𝑤) = (𝑞( ·𝑠
‘𝑔)(𝑟(
·𝑠 ‘𝑔)𝑤)) ∧
((1r‘(Scalar‘𝑔))( ·𝑠
‘𝑔)𝑤) = 𝑤 ∧
((0g‘(Scalar‘𝑔))( ·𝑠
‘𝑔)𝑤) = (0g‘𝑔)))) ↔ (𝐹 ∈ SRing ∧ ∀𝑞 ∈ 𝐾 ∀𝑟 ∈ 𝐾 ∀𝑥 ∈ 𝑉 ∀𝑤 ∈ 𝑉 (((𝑟 · 𝑤) ∈ 𝑉 ∧ (𝑟 · (𝑤 + 𝑥)) = ((𝑟 · 𝑤) + (𝑟 · 𝑥)) ∧ ((𝑞 ⨣ 𝑟) · 𝑤) = ((𝑞 · 𝑤) + (𝑟 · 𝑤))) ∧ (((𝑞 × 𝑟) · 𝑤) = (𝑞 · (𝑟 · 𝑤)) ∧ ( 1 · 𝑤) = 𝑤 ∧ (𝑂 · 𝑤) = 0 ))))) |
142 | 79, 141 | syl5bb 286 |
. . 3
⊢ (𝑔 = 𝑊 → ([(Base‘𝑔) / 𝑣][(+g‘𝑔) / 𝑎][(
·𝑠 ‘𝑔) / 𝑠][(Scalar‘𝑔) / 𝑓][(Base‘𝑓) / 𝑘][(+g‘𝑓) / 𝑝][(.r‘𝑓) / 𝑡](𝑓 ∈ SRing ∧ ∀𝑞 ∈ 𝑘 ∀𝑟 ∈ 𝑘 ∀𝑥 ∈ 𝑣 ∀𝑤 ∈ 𝑣 (((𝑟𝑠𝑤) ∈ 𝑣 ∧ (𝑟𝑠(𝑤𝑎𝑥)) = ((𝑟𝑠𝑤)𝑎(𝑟𝑠𝑥)) ∧ ((𝑞𝑝𝑟)𝑠𝑤) = ((𝑞𝑠𝑤)𝑎(𝑟𝑠𝑤))) ∧ (((𝑞𝑡𝑟)𝑠𝑤) = (𝑞𝑠(𝑟𝑠𝑤)) ∧ ((1r‘𝑓)𝑠𝑤) = 𝑤 ∧ ((0g‘𝑓)𝑠𝑤) = (0g‘𝑔)))) ↔ (𝐹 ∈ SRing ∧ ∀𝑞 ∈ 𝐾 ∀𝑟 ∈ 𝐾 ∀𝑥 ∈ 𝑉 ∀𝑤 ∈ 𝑉 (((𝑟 · 𝑤) ∈ 𝑉 ∧ (𝑟 · (𝑤 + 𝑥)) = ((𝑟 · 𝑤) + (𝑟 · 𝑥)) ∧ ((𝑞 ⨣ 𝑟) · 𝑤) = ((𝑞 · 𝑤) + (𝑟 · 𝑤))) ∧ (((𝑞 × 𝑟) · 𝑤) = (𝑞 · (𝑟 · 𝑤)) ∧ ( 1 · 𝑤) = 𝑤 ∧ (𝑂 · 𝑤) = 0 ))))) |
143 | | df-slmd 31173 |
. . 3
⊢ SLMod =
{𝑔 ∈ CMnd ∣
[(Base‘𝑔) /
𝑣][(+g‘𝑔) / 𝑎][(
·𝑠 ‘𝑔) / 𝑠][(Scalar‘𝑔) / 𝑓][(Base‘𝑓) / 𝑘][(+g‘𝑓) / 𝑝][(.r‘𝑓) / 𝑡](𝑓 ∈ SRing ∧ ∀𝑞 ∈ 𝑘 ∀𝑟 ∈ 𝑘 ∀𝑥 ∈ 𝑣 ∀𝑤 ∈ 𝑣 (((𝑟𝑠𝑤) ∈ 𝑣 ∧ (𝑟𝑠(𝑤𝑎𝑥)) = ((𝑟𝑠𝑤)𝑎(𝑟𝑠𝑥)) ∧ ((𝑞𝑝𝑟)𝑠𝑤) = ((𝑞𝑠𝑤)𝑎(𝑟𝑠𝑤))) ∧ (((𝑞𝑡𝑟)𝑠𝑤) = (𝑞𝑠(𝑟𝑠𝑤)) ∧ ((1r‘𝑓)𝑠𝑤) = 𝑤 ∧ ((0g‘𝑓)𝑠𝑤) = (0g‘𝑔))))} |
144 | 142, 143 | elrab2 3605 |
. 2
⊢ (𝑊 ∈ SLMod ↔ (𝑊 ∈ CMnd ∧ (𝐹 ∈ SRing ∧
∀𝑞 ∈ 𝐾 ∀𝑟 ∈ 𝐾 ∀𝑥 ∈ 𝑉 ∀𝑤 ∈ 𝑉 (((𝑟 · 𝑤) ∈ 𝑉 ∧ (𝑟 · (𝑤 + 𝑥)) = ((𝑟 · 𝑤) + (𝑟 · 𝑥)) ∧ ((𝑞 ⨣ 𝑟) · 𝑤) = ((𝑞 · 𝑤) + (𝑟 · 𝑤))) ∧ (((𝑞 × 𝑟) · 𝑤) = (𝑞 · (𝑟 · 𝑤)) ∧ ( 1 · 𝑤) = 𝑤 ∧ (𝑂 · 𝑤) = 0 ))))) |
145 | | 3anass 1097 |
. 2
⊢ ((𝑊 ∈ CMnd ∧ 𝐹 ∈ SRing ∧
∀𝑞 ∈ 𝐾 ∀𝑟 ∈ 𝐾 ∀𝑥 ∈ 𝑉 ∀𝑤 ∈ 𝑉 (((𝑟 · 𝑤) ∈ 𝑉 ∧ (𝑟 · (𝑤 + 𝑥)) = ((𝑟 · 𝑤) + (𝑟 · 𝑥)) ∧ ((𝑞 ⨣ 𝑟) · 𝑤) = ((𝑞 · 𝑤) + (𝑟 · 𝑤))) ∧ (((𝑞 × 𝑟) · 𝑤) = (𝑞 · (𝑟 · 𝑤)) ∧ ( 1 · 𝑤) = 𝑤 ∧ (𝑂 · 𝑤) = 0 ))) ↔ (𝑊 ∈ CMnd ∧ (𝐹 ∈ SRing ∧
∀𝑞 ∈ 𝐾 ∀𝑟 ∈ 𝐾 ∀𝑥 ∈ 𝑉 ∀𝑤 ∈ 𝑉 (((𝑟 · 𝑤) ∈ 𝑉 ∧ (𝑟 · (𝑤 + 𝑥)) = ((𝑟 · 𝑤) + (𝑟 · 𝑥)) ∧ ((𝑞 ⨣ 𝑟) · 𝑤) = ((𝑞 · 𝑤) + (𝑟 · 𝑤))) ∧ (((𝑞 × 𝑟) · 𝑤) = (𝑞 · (𝑟 · 𝑤)) ∧ ( 1 · 𝑤) = 𝑤 ∧ (𝑂 · 𝑤) = 0 ))))) |
146 | 144, 145 | bitr4i 281 |
1
⊢ (𝑊 ∈ SLMod ↔ (𝑊 ∈ CMnd ∧ 𝐹 ∈ SRing ∧
∀𝑞 ∈ 𝐾 ∀𝑟 ∈ 𝐾 ∀𝑥 ∈ 𝑉 ∀𝑤 ∈ 𝑉 (((𝑟 · 𝑤) ∈ 𝑉 ∧ (𝑟 · (𝑤 + 𝑥)) = ((𝑟 · 𝑤) + (𝑟 · 𝑥)) ∧ ((𝑞 ⨣ 𝑟) · 𝑤) = ((𝑞 · 𝑤) + (𝑟 · 𝑤))) ∧ (((𝑞 × 𝑟) · 𝑤) = (𝑞 · (𝑟 · 𝑤)) ∧ ( 1 · 𝑤) = 𝑤 ∧ (𝑂 · 𝑤) = 0 )))) |