![]() |
Metamath
Proof Explorer Theorem List (p. 324 of 473) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | ![]() (1-29860) |
![]() (29861-31383) |
![]() (31384-47242) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | dimvalfi 32301 | The dimension of a vector space 𝐹 is the cardinality of one of its bases. This version of dimval 32300 does not depend on the axiom of choice, but it is limited to the case where the base 𝑆 is finite. (Contributed by Thierry Arnoux, 24-May-2023.) |
⊢ 𝐽 = (LBasis‘𝐹) ⇒ ⊢ ((𝐹 ∈ LVec ∧ 𝑆 ∈ 𝐽 ∧ 𝑆 ∈ Fin) → (dim‘𝐹) = (♯‘𝑆)) | ||
Theorem | dimcl 32302 | Closure of the vector space dimension. (Contributed by Thierry Arnoux, 18-May-2023.) |
⊢ (𝑉 ∈ LVec → (dim‘𝑉) ∈ ℕ0*) | ||
Theorem | lvecdim0i 32303 | A vector space of dimension zero is reduced to its identity element. (Contributed by Thierry Arnoux, 31-Jul-2023.) |
⊢ 0 = (0g‘𝑉) ⇒ ⊢ ((𝑉 ∈ LVec ∧ (dim‘𝑉) = 0) → (Base‘𝑉) = { 0 }) | ||
Theorem | lvecdim0 32304 | A vector space of dimension zero is reduced to its identity element, biconditional version. (Contributed by Thierry Arnoux, 31-Jul-2023.) |
⊢ 0 = (0g‘𝑉) ⇒ ⊢ (𝑉 ∈ LVec → ((dim‘𝑉) = 0 ↔ (Base‘𝑉) = { 0 })) | ||
Theorem | lssdimle 32305 | The dimension of a linear subspace is less than or equal to the dimension of the parent vector space. This is corollary 5.4 of [Lang] p. 141. (Contributed by Thierry Arnoux, 20-May-2023.) |
⊢ 𝑋 = (𝑊 ↾s 𝑈) ⇒ ⊢ ((𝑊 ∈ LVec ∧ 𝑈 ∈ (LSubSp‘𝑊)) → (dim‘𝑋) ≤ (dim‘𝑊)) | ||
Theorem | dimpropd 32306* | If two structures have the same components (properties), they have the same dimension. (Contributed by Thierry Arnoux, 18-May-2023.) |
⊢ (𝜑 → 𝐵 = (Base‘𝐾)) & ⊢ (𝜑 → 𝐵 = (Base‘𝐿)) & ⊢ (𝜑 → 𝐵 ⊆ 𝑊) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑊 ∧ 𝑦 ∈ 𝑊)) → (𝑥(+g‘𝐾)𝑦) = (𝑥(+g‘𝐿)𝑦)) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝐵)) → (𝑥( ·𝑠 ‘𝐾)𝑦) ∈ 𝑊) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝐵)) → (𝑥( ·𝑠 ‘𝐾)𝑦) = (𝑥( ·𝑠 ‘𝐿)𝑦)) & ⊢ 𝐹 = (Scalar‘𝐾) & ⊢ 𝐺 = (Scalar‘𝐿) & ⊢ (𝜑 → 𝑃 = (Base‘𝐹)) & ⊢ (𝜑 → 𝑃 = (Base‘𝐺)) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝑃)) → (𝑥(+g‘𝐹)𝑦) = (𝑥(+g‘𝐺)𝑦)) & ⊢ (𝜑 → 𝐾 ∈ LVec) & ⊢ (𝜑 → 𝐿 ∈ LVec) ⇒ ⊢ (𝜑 → (dim‘𝐾) = (dim‘𝐿)) | ||
Theorem | rgmoddim 32307 | The left vector space induced by a ring over itself has dimension 1. (Contributed by Thierry Arnoux, 5-Aug-2023.) |
⊢ 𝑉 = (ringLMod‘𝐹) ⇒ ⊢ (𝐹 ∈ Field → (dim‘𝑉) = 1) | ||
Theorem | frlmdim 32308 | Dimension of a free left module. (Contributed by Thierry Arnoux, 20-May-2023.) |
⊢ 𝐹 = (𝑅 freeLMod 𝐼) ⇒ ⊢ ((𝑅 ∈ DivRing ∧ 𝐼 ∈ 𝑉) → (dim‘𝐹) = (♯‘𝐼)) | ||
Theorem | tnglvec 32309 | Augmenting a structure with a norm conserves left vector spaces. (Contributed by Thierry Arnoux, 20-May-2023.) |
⊢ 𝑇 = (𝐺 toNrmGrp 𝑁) ⇒ ⊢ (𝑁 ∈ 𝑉 → (𝐺 ∈ LVec ↔ 𝑇 ∈ LVec)) | ||
Theorem | tngdim 32310 | Dimension of a left vector space augmented with a norm. (Contributed by Thierry Arnoux, 20-May-2023.) |
⊢ 𝑇 = (𝐺 toNrmGrp 𝑁) ⇒ ⊢ ((𝐺 ∈ LVec ∧ 𝑁 ∈ 𝑉) → (dim‘𝐺) = (dim‘𝑇)) | ||
Theorem | rrxdim 32311 | Dimension of the generalized Euclidean space. (Contributed by Thierry Arnoux, 20-May-2023.) |
⊢ 𝐻 = (ℝ^‘𝐼) ⇒ ⊢ (𝐼 ∈ 𝑉 → (dim‘𝐻) = (♯‘𝐼)) | ||
Theorem | matdim 32312 | Dimension of the space of square matrices. (Contributed by Thierry Arnoux, 20-May-2023.) |
⊢ 𝐴 = (𝐼 Mat 𝑅) & ⊢ 𝑁 = (♯‘𝐼) ⇒ ⊢ ((𝐼 ∈ Fin ∧ 𝑅 ∈ DivRing) → (dim‘𝐴) = (𝑁 · 𝑁)) | ||
Theorem | lbslsat 32313 | A nonzero vector 𝑋 is a basis of a line spanned by the singleton 𝑋. Spans of nonzero singletons are sometimes called "atoms", see df-lsatoms 37438 and for example lsatlspsn 37455. (Contributed by Thierry Arnoux, 20-May-2023.) |
⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝑁 = (LSpan‘𝑊) & ⊢ 0 = (0g‘𝑊) & ⊢ 𝑌 = (𝑊 ↾s (𝑁‘{𝑋})) ⇒ ⊢ ((𝑊 ∈ LVec ∧ 𝑋 ∈ 𝑉 ∧ 𝑋 ≠ 0 ) → {𝑋} ∈ (LBasis‘𝑌)) | ||
Theorem | lsatdim 32314 | A line, spanned by a nonzero singleton, has dimension 1. (Contributed by Thierry Arnoux, 20-May-2023.) |
⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝑁 = (LSpan‘𝑊) & ⊢ 0 = (0g‘𝑊) & ⊢ 𝑌 = (𝑊 ↾s (𝑁‘{𝑋})) ⇒ ⊢ ((𝑊 ∈ LVec ∧ 𝑋 ∈ 𝑉 ∧ 𝑋 ≠ 0 ) → (dim‘𝑌) = 1) | ||
Theorem | drngdimgt0 32315 | The dimension of a vector space that is also a division ring is greater than zero. (Contributed by Thierry Arnoux, 29-Jul-2023.) |
⊢ ((𝐹 ∈ LVec ∧ 𝐹 ∈ DivRing) → 0 < (dim‘𝐹)) | ||
Theorem | lmhmlvec2 32316 | A homomorphism of left vector spaces has a left vector space as codomain. (Contributed by Thierry Arnoux, 7-May-2023.) |
⊢ ((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) → 𝑈 ∈ LVec) | ||
Theorem | kerlmhm 32317 | The kernel of a vector space homomorphism is a vector space itself. (Contributed by Thierry Arnoux, 7-May-2023.) |
⊢ 0 = (0g‘𝑈) & ⊢ 𝐾 = (𝑉 ↾s (◡𝐹 “ { 0 })) ⇒ ⊢ ((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) → 𝐾 ∈ LVec) | ||
Theorem | imlmhm 32318 | The image of a vector space homomorphism is a vector space itself. (Contributed by Thierry Arnoux, 7-May-2023.) |
⊢ 𝐼 = (𝑈 ↾s ran 𝐹) ⇒ ⊢ ((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) → 𝐼 ∈ LVec) | ||
Theorem | lindsunlem 32319 | Lemma for lindsun 32320. (Contributed by Thierry Arnoux, 9-May-2023.) |
⊢ 𝑁 = (LSpan‘𝑊) & ⊢ 0 = (0g‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ LVec) & ⊢ (𝜑 → 𝑈 ∈ (LIndS‘𝑊)) & ⊢ (𝜑 → 𝑉 ∈ (LIndS‘𝑊)) & ⊢ (𝜑 → ((𝑁‘𝑈) ∩ (𝑁‘𝑉)) = { 0 }) & ⊢ 𝑂 = (0g‘(Scalar‘𝑊)) & ⊢ 𝐹 = (Base‘(Scalar‘𝑊)) & ⊢ (𝜑 → 𝐶 ∈ 𝑈) & ⊢ (𝜑 → 𝐾 ∈ (𝐹 ∖ {𝑂})) & ⊢ (𝜑 → (𝐾( ·𝑠 ‘𝑊)𝐶) ∈ (𝑁‘((𝑈 ∪ 𝑉) ∖ {𝐶}))) ⇒ ⊢ (𝜑 → ⊥) | ||
Theorem | lindsun 32320 | Condition for the union of two independent sets to be an independent set. (Contributed by Thierry Arnoux, 9-May-2023.) |
⊢ 𝑁 = (LSpan‘𝑊) & ⊢ 0 = (0g‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ LVec) & ⊢ (𝜑 → 𝑈 ∈ (LIndS‘𝑊)) & ⊢ (𝜑 → 𝑉 ∈ (LIndS‘𝑊)) & ⊢ (𝜑 → ((𝑁‘𝑈) ∩ (𝑁‘𝑉)) = { 0 }) ⇒ ⊢ (𝜑 → (𝑈 ∪ 𝑉) ∈ (LIndS‘𝑊)) | ||
Theorem | lbsdiflsp0 32321 | The linear spans of two disjunct independent sets only have a trivial intersection. This can be seen as the opposite direction of lindsun 32320. (Contributed by Thierry Arnoux, 17-May-2023.) |
⊢ 𝐽 = (LBasis‘𝑊) & ⊢ 𝑁 = (LSpan‘𝑊) & ⊢ 0 = (0g‘𝑊) ⇒ ⊢ ((𝑊 ∈ LVec ∧ 𝐵 ∈ 𝐽 ∧ 𝑉 ⊆ 𝐵) → ((𝑁‘(𝐵 ∖ 𝑉)) ∩ (𝑁‘𝑉)) = { 0 }) | ||
Theorem | dimkerim 32322 | Given a linear map 𝐹 between vector spaces 𝑉 and 𝑈, the dimension of the vector space 𝑉 is the sum of the dimension of 𝐹 's kernel and the dimension of 𝐹's image. Second part of theorem 5.3 in [Lang] p. 141 This can also be described as the Rank-nullity theorem, (dim‘𝐼) being the rank of 𝐹 (the dimension of its image), and (dim‘𝐾) its nullity (the dimension of its kernel). (Contributed by Thierry Arnoux, 17-May-2023.) |
⊢ 0 = (0g‘𝑈) & ⊢ 𝐾 = (𝑉 ↾s (◡𝐹 “ { 0 })) & ⊢ 𝐼 = (𝑈 ↾s ran 𝐹) ⇒ ⊢ ((𝑉 ∈ LVec ∧ 𝐹 ∈ (𝑉 LMHom 𝑈)) → (dim‘𝑉) = ((dim‘𝐾) +𝑒 (dim‘𝐼))) | ||
Theorem | qusdimsum 32323 | Let 𝑊 be a vector space, and let 𝑋 be a subspace. Then the dimension of 𝑊 is the sum of the dimension of 𝑋 and the dimension of the quotient space of 𝑋. First part of theorem 5.3 in [Lang] p. 141. (Contributed by Thierry Arnoux, 20-May-2023.) |
⊢ 𝑋 = (𝑊 ↾s 𝑈) & ⊢ 𝑌 = (𝑊 /s (𝑊 ~QG 𝑈)) ⇒ ⊢ ((𝑊 ∈ LVec ∧ 𝑈 ∈ (LSubSp‘𝑊)) → (dim‘𝑊) = ((dim‘𝑋) +𝑒 (dim‘𝑌))) | ||
Theorem | fedgmullem1 32324* | Lemma for fedgmul 32326. (Contributed by Thierry Arnoux, 20-Jul-2023.) |
⊢ 𝐴 = ((subringAlg ‘𝐸)‘𝑉) & ⊢ 𝐵 = ((subringAlg ‘𝐸)‘𝑈) & ⊢ 𝐶 = ((subringAlg ‘𝐹)‘𝑉) & ⊢ 𝐹 = (𝐸 ↾s 𝑈) & ⊢ 𝐾 = (𝐸 ↾s 𝑉) & ⊢ (𝜑 → 𝐸 ∈ DivRing) & ⊢ (𝜑 → 𝐹 ∈ DivRing) & ⊢ (𝜑 → 𝐾 ∈ DivRing) & ⊢ (𝜑 → 𝑈 ∈ (SubRing‘𝐸)) & ⊢ (𝜑 → 𝑉 ∈ (SubRing‘𝐹)) & ⊢ 𝐷 = (𝑗 ∈ 𝑌, 𝑖 ∈ 𝑋 ↦ (𝑖(.r‘𝐸)𝑗)) & ⊢ 𝐻 = (𝑗 ∈ 𝑌, 𝑖 ∈ 𝑋 ↦ ((𝐺‘𝑗)‘𝑖)) & ⊢ (𝜑 → 𝑋 ∈ (LBasis‘𝐶)) & ⊢ (𝜑 → 𝑌 ∈ (LBasis‘𝐵)) & ⊢ (𝜑 → 𝑍 ∈ (Base‘𝐴)) & ⊢ (𝜑 → 𝐿:𝑌⟶(Base‘(Scalar‘𝐵))) & ⊢ (𝜑 → 𝐿 finSupp (0g‘(Scalar‘𝐵))) & ⊢ (𝜑 → 𝑍 = (𝐵 Σg (𝑗 ∈ 𝑌 ↦ ((𝐿‘𝑗)( ·𝑠 ‘𝐵)𝑗)))) & ⊢ (𝜑 → 𝐺:𝑌⟶((Base‘(Scalar‘𝐶)) ↑m 𝑋)) & ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑌) → (𝐺‘𝑗) finSupp (0g‘(Scalar‘𝐶))) & ⊢ ((𝜑 ∧ 𝑗 ∈ 𝑌) → (𝐿‘𝑗) = (𝐶 Σg (𝑖 ∈ 𝑋 ↦ (((𝐺‘𝑗)‘𝑖)( ·𝑠 ‘𝐶)𝑖)))) ⇒ ⊢ (𝜑 → (𝐻 finSupp (0g‘(Scalar‘𝐴)) ∧ 𝑍 = (𝐴 Σg (𝐻 ∘f ( ·𝑠 ‘𝐴)𝐷)))) | ||
Theorem | fedgmullem2 32325* | Lemma for fedgmul 32326. (Contributed by Thierry Arnoux, 20-Jul-2023.) |
⊢ 𝐴 = ((subringAlg ‘𝐸)‘𝑉) & ⊢ 𝐵 = ((subringAlg ‘𝐸)‘𝑈) & ⊢ 𝐶 = ((subringAlg ‘𝐹)‘𝑉) & ⊢ 𝐹 = (𝐸 ↾s 𝑈) & ⊢ 𝐾 = (𝐸 ↾s 𝑉) & ⊢ (𝜑 → 𝐸 ∈ DivRing) & ⊢ (𝜑 → 𝐹 ∈ DivRing) & ⊢ (𝜑 → 𝐾 ∈ DivRing) & ⊢ (𝜑 → 𝑈 ∈ (SubRing‘𝐸)) & ⊢ (𝜑 → 𝑉 ∈ (SubRing‘𝐹)) & ⊢ 𝐷 = (𝑗 ∈ 𝑌, 𝑖 ∈ 𝑋 ↦ (𝑖(.r‘𝐸)𝑗)) & ⊢ 𝐻 = (𝑗 ∈ 𝑌, 𝑖 ∈ 𝑋 ↦ ((𝐺‘𝑗)‘𝑖)) & ⊢ (𝜑 → 𝑋 ∈ (LBasis‘𝐶)) & ⊢ (𝜑 → 𝑌 ∈ (LBasis‘𝐵)) & ⊢ (𝜑 → 𝑊 ∈ (Base‘((Scalar‘𝐴) freeLMod (𝑌 × 𝑋)))) & ⊢ (𝜑 → (𝐴 Σg (𝑊 ∘f ( ·𝑠 ‘𝐴)𝐷)) = (0g‘𝐴)) ⇒ ⊢ (𝜑 → 𝑊 = ((𝑌 × 𝑋) × {(0g‘(Scalar‘𝐴))})) | ||
Theorem | fedgmul 32326 | The multiplicativity formula for degrees of field extensions. Given 𝐸 a field extension of 𝐹, itself a field extension of 𝐾, we have [𝐸:𝐾] = [𝐸:𝐹][𝐹:𝐾]. Proposition 1.2 of [Lang], p. 224. Here (dim‘𝐴) is the degree of the extension 𝐸 of 𝐾, (dim‘𝐵) is the degree of the extension 𝐸 of 𝐹, and (dim‘𝐶) is the degree of the extension 𝐹 of 𝐾. This proof is valid for infinite dimensions, and is actually valid for division ring extensions, not just field extensions. (Contributed by Thierry Arnoux, 25-Jul-2023.) |
⊢ 𝐴 = ((subringAlg ‘𝐸)‘𝑉) & ⊢ 𝐵 = ((subringAlg ‘𝐸)‘𝑈) & ⊢ 𝐶 = ((subringAlg ‘𝐹)‘𝑉) & ⊢ 𝐹 = (𝐸 ↾s 𝑈) & ⊢ 𝐾 = (𝐸 ↾s 𝑉) & ⊢ (𝜑 → 𝐸 ∈ DivRing) & ⊢ (𝜑 → 𝐹 ∈ DivRing) & ⊢ (𝜑 → 𝐾 ∈ DivRing) & ⊢ (𝜑 → 𝑈 ∈ (SubRing‘𝐸)) & ⊢ (𝜑 → 𝑉 ∈ (SubRing‘𝐹)) ⇒ ⊢ (𝜑 → (dim‘𝐴) = ((dim‘𝐵) ·e (dim‘𝐶))) | ||
Syntax | cfldext 32327 | Syntax for the field extension relation. |
class /FldExt | ||
Syntax | cfinext 32328 | Syntax for the finite field extension relation. |
class /FinExt | ||
Syntax | calgext 32329 | Syntax for the algebraic field extension relation. |
class /AlgExt | ||
Syntax | cextdg 32330 | Syntax for the field extension degree operation. |
class [:] | ||
Definition | df-fldext 32331* | Definition of the field extension relation. (Contributed by Thierry Arnoux, 29-Jul-2023.) |
⊢ /FldExt = {〈𝑒, 𝑓〉 ∣ ((𝑒 ∈ Field ∧ 𝑓 ∈ Field) ∧ (𝑓 = (𝑒 ↾s (Base‘𝑓)) ∧ (Base‘𝑓) ∈ (SubRing‘𝑒)))} | ||
Definition | df-extdg 32332* | Definition of the field extension degree operation. (Contributed by Thierry Arnoux, 29-Jul-2023.) |
⊢ [:] = (𝑒 ∈ V, 𝑓 ∈ (/FldExt “ {𝑒}) ↦ (dim‘((subringAlg ‘𝑒)‘(Base‘𝑓)))) | ||
Definition | df-finext 32333* | Definition of the finite field extension relation. (Contributed by Thierry Arnoux, 29-Jul-2023.) |
⊢ /FinExt = {〈𝑒, 𝑓〉 ∣ (𝑒/FldExt𝑓 ∧ (𝑒[:]𝑓) ∈ ℕ0)} | ||
Definition | df-algext 32334* | Definition of the algebraic extension relation. (Contributed by Thierry Arnoux, 29-Jul-2023.) |
⊢ /AlgExt = {〈𝑒, 𝑓〉 ∣ (𝑒/FldExt𝑓 ∧ ∀𝑥 ∈ (Base‘𝑒)∃𝑝 ∈ (Poly1‘𝑓)(((eval1‘𝑓)‘𝑝)‘𝑥) = (0g‘𝑒))} | ||
Theorem | relfldext 32335 | The field extension is a relation. (Contributed by Thierry Arnoux, 29-Jul-2023.) |
⊢ Rel /FldExt | ||
Theorem | brfldext 32336 | The field extension relation explicited. (Contributed by Thierry Arnoux, 29-Jul-2023.) |
⊢ ((𝐸 ∈ Field ∧ 𝐹 ∈ Field) → (𝐸/FldExt𝐹 ↔ (𝐹 = (𝐸 ↾s (Base‘𝐹)) ∧ (Base‘𝐹) ∈ (SubRing‘𝐸)))) | ||
Theorem | ccfldextrr 32337 | The field of the complex numbers is an extension of the field of the real numbers. (Contributed by Thierry Arnoux, 20-Jul-2023.) |
⊢ ℂfld/FldExtℝfld | ||
Theorem | fldextfld1 32338 | A field extension is only defined if the extension is a field. (Contributed by Thierry Arnoux, 29-Jul-2023.) |
⊢ (𝐸/FldExt𝐹 → 𝐸 ∈ Field) | ||
Theorem | fldextfld2 32339 | A field extension is only defined if the subfield is a field. (Contributed by Thierry Arnoux, 29-Jul-2023.) |
⊢ (𝐸/FldExt𝐹 → 𝐹 ∈ Field) | ||
Theorem | fldextsubrg 32340 | Field extension implies a subring relation. (Contributed by Thierry Arnoux, 29-Jul-2023.) |
⊢ 𝑈 = (Base‘𝐹) ⇒ ⊢ (𝐸/FldExt𝐹 → 𝑈 ∈ (SubRing‘𝐸)) | ||
Theorem | fldextress 32341 | Field extension implies a structure restriction relation. (Contributed by Thierry Arnoux, 29-Jul-2023.) |
⊢ (𝐸/FldExt𝐹 → 𝐹 = (𝐸 ↾s (Base‘𝐹))) | ||
Theorem | brfinext 32342 | The finite field extension relation explicited. (Contributed by Thierry Arnoux, 29-Jul-2023.) |
⊢ (𝐸/FldExt𝐹 → (𝐸/FinExt𝐹 ↔ (𝐸[:]𝐹) ∈ ℕ0)) | ||
Theorem | extdgval 32343 | Value of the field extension degree operation. (Contributed by Thierry Arnoux, 29-Jul-2023.) |
⊢ (𝐸/FldExt𝐹 → (𝐸[:]𝐹) = (dim‘((subringAlg ‘𝐸)‘(Base‘𝐹)))) | ||
Theorem | fldextsralvec 32344 | The subring algebra associated with a field extension is a vector space. (Contributed by Thierry Arnoux, 3-Aug-2023.) |
⊢ (𝐸/FldExt𝐹 → ((subringAlg ‘𝐸)‘(Base‘𝐹)) ∈ LVec) | ||
Theorem | extdgcl 32345 | Closure of the field extension degree operation. (Contributed by Thierry Arnoux, 29-Jul-2023.) |
⊢ (𝐸/FldExt𝐹 → (𝐸[:]𝐹) ∈ ℕ0*) | ||
Theorem | extdggt0 32346 | Degrees of field extension are greater than zero. (Contributed by Thierry Arnoux, 30-Jul-2023.) |
⊢ (𝐸/FldExt𝐹 → 0 < (𝐸[:]𝐹)) | ||
Theorem | fldexttr 32347 | Field extension is a transitive relation. (Contributed by Thierry Arnoux, 29-Jul-2023.) |
⊢ ((𝐸/FldExt𝐹 ∧ 𝐹/FldExt𝐾) → 𝐸/FldExt𝐾) | ||
Theorem | fldextid 32348 | The field extension relation is reflexive. (Contributed by Thierry Arnoux, 30-Jul-2023.) |
⊢ (𝐹 ∈ Field → 𝐹/FldExt𝐹) | ||
Theorem | extdgid 32349 | A trivial field extension has degree one. (Contributed by Thierry Arnoux, 4-Aug-2023.) |
⊢ (𝐸 ∈ Field → (𝐸[:]𝐸) = 1) | ||
Theorem | extdgmul 32350 | The multiplicativity formula for degrees of field extensions. Given 𝐸 a field extension of 𝐹, itself a field extension of 𝐾, the degree of the extension 𝐸/FldExt𝐾 is the product of the degrees of the extensions 𝐸/FldExt𝐹 and 𝐹/FldExt𝐾. Proposition 1.2 of [Lang], p. 224. (Contributed by Thierry Arnoux, 30-Jul-2023.) |
⊢ ((𝐸/FldExt𝐹 ∧ 𝐹/FldExt𝐾) → (𝐸[:]𝐾) = ((𝐸[:]𝐹) ·e (𝐹[:]𝐾))) | ||
Theorem | finexttrb 32351 | The extension 𝐸 of 𝐾 is finite if and only if 𝐸 is finite over 𝐹 and 𝐹 is finite over 𝐾. Corollary 1.3 of [Lang] , p. 225. (Contributed by Thierry Arnoux, 30-Jul-2023.) |
⊢ ((𝐸/FldExt𝐹 ∧ 𝐹/FldExt𝐾) → (𝐸/FinExt𝐾 ↔ (𝐸/FinExt𝐹 ∧ 𝐹/FinExt𝐾))) | ||
Theorem | extdg1id 32352 | If the degree of the extension 𝐸/FldExt𝐹 is 1, then 𝐸 and 𝐹 are identical. (Contributed by Thierry Arnoux, 6-Aug-2023.) |
⊢ ((𝐸/FldExt𝐹 ∧ (𝐸[:]𝐹) = 1) → 𝐸 = 𝐹) | ||
Theorem | extdg1b 32353 | The degree of the extension 𝐸/FldExt𝐹 is 1 iff 𝐸 and 𝐹 are the same structure. (Contributed by Thierry Arnoux, 6-Aug-2023.) |
⊢ (𝐸/FldExt𝐹 → ((𝐸[:]𝐹) = 1 ↔ 𝐸 = 𝐹)) | ||
Theorem | fldextchr 32354 | The characteristic of a subfield is the same as the characteristic of the larger field. (Contributed by Thierry Arnoux, 20-Aug-2023.) |
⊢ (𝐸/FldExt𝐹 → (chr‘𝐹) = (chr‘𝐸)) | ||
Theorem | ccfldsrarelvec 32355 | The subring algebra of the complex numbers over the real numbers is a left vector space. (Contributed by Thierry Arnoux, 20-Aug-2023.) |
⊢ ((subringAlg ‘ℂfld)‘ℝ) ∈ LVec | ||
Theorem | ccfldextdgrr 32356 | The degree of the field extension of the complex numbers over the real numbers is 2. (Suggested by GL, 4-Aug-2023.) (Contributed by Thierry Arnoux, 20-Aug-2023.) |
⊢ (ℂfld[:]ℝfld) = 2 | ||
Syntax | cirng 32357 | Integral subring of a ring. |
class IntgRing | ||
Definition | df-irng 32358* | Define the subring of elements of a ring 𝑟 integral over a subset 𝑠. (Contributed by Mario Carneiro, 2-Dec-2014.) (Revised by Thierry Arnoux, 28-Jan-2025.) |
⊢ IntgRing = (𝑟 ∈ V, 𝑠 ∈ V ↦ ∪ 𝑓 ∈ (Monic1p‘(𝑟 ↾s 𝑠))(◡((𝑟 evalSub1 𝑠)‘𝑓) “ {(0g‘𝑟)})) | ||
Theorem | irngval 32359* | The elements of a field 𝑅 integral over a subset 𝑆. In the case of a subfield, those are the algebraic numbers over the field 𝑆 within the field 𝑅. That is, the numbers 𝑋 which are roots of monic polynomials 𝑃(𝑋) with coefficients in 𝑆. (Contributed by Thierry Arnoux, 28-Jan-2025.) |
⊢ 𝑂 = (𝑅 evalSub1 𝑆) & ⊢ 𝑈 = (𝑅 ↾s 𝑆) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ (𝜑 → 𝑆 ⊆ 𝐵) ⇒ ⊢ (𝜑 → (𝑅 IntgRing 𝑆) = ∪ 𝑓 ∈ (Monic1p‘𝑈)(◡(𝑂‘𝑓) “ { 0 })) | ||
Theorem | elirng 32360* | Property for an element 𝑋 of a field 𝑅 to be integral over a subring 𝑆. (Contributed by Thierry Arnoux, 28-Jan-2025.) |
⊢ 𝑂 = (𝑅 evalSub1 𝑆) & ⊢ 𝑈 = (𝑅 ↾s 𝑆) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ CRing) & ⊢ (𝜑 → 𝑆 ∈ (SubRing‘𝑅)) ⇒ ⊢ (𝜑 → (𝑋 ∈ (𝑅 IntgRing 𝑆) ↔ (𝑋 ∈ 𝐵 ∧ ∃𝑓 ∈ (Monic1p‘𝑈)((𝑂‘𝑓)‘𝑋) = 0 ))) | ||
Theorem | irngss 32361 | All elements of a subring 𝑆 are integral over 𝑆. This is only true in the case of a nonzero ring, since there are no integral elements in a zero ring (see 0ringirng 32363). (Contributed by Thierry Arnoux, 28-Jan-2025.) |
⊢ 𝑂 = (𝑅 evalSub1 𝑆) & ⊢ 𝑈 = (𝑅 ↾s 𝑆) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ CRing) & ⊢ (𝜑 → 𝑆 ∈ (SubRing‘𝑅)) & ⊢ (𝜑 → 𝑅 ∈ NzRing) ⇒ ⊢ (𝜑 → 𝑆 ⊆ (𝑅 IntgRing 𝑆)) | ||
Theorem | irngssv 32362 | An integral element is an element of the base set. (Contributed by Thierry Arnoux, 28-Jan-2025.) |
⊢ 𝑂 = (𝑅 evalSub1 𝑆) & ⊢ 𝑈 = (𝑅 ↾s 𝑆) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ CRing) & ⊢ (𝜑 → 𝑆 ∈ (SubRing‘𝑅)) ⇒ ⊢ (𝜑 → (𝑅 IntgRing 𝑆) ⊆ 𝐵) | ||
Theorem | 0ringirng 32363 | A zero ring 𝑅 has no integral elements. (Contributed by Thierry Arnoux, 5-Feb-2025.) |
⊢ 𝑂 = (𝑅 evalSub1 𝑆) & ⊢ 𝑈 = (𝑅 ↾s 𝑆) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ CRing) & ⊢ (𝜑 → 𝑆 ∈ (SubRing‘𝑅)) & ⊢ (𝜑 → ¬ 𝑅 ∈ NzRing) ⇒ ⊢ (𝜑 → (𝑅 IntgRing 𝑆) = ∅) | ||
Theorem | irngnzply1lem 32364 | In the case of a field 𝐸, a root 𝑋 of some nonzero polynomial 𝑃 with coefficients in a subfield 𝐹 is integral over 𝐹. (Contributed by Thierry Arnoux, 5-Feb-2025.) |
⊢ 𝑂 = (𝐸 evalSub1 𝐹) & ⊢ 𝑍 = (0g‘(Poly1‘𝐸)) & ⊢ 0 = (0g‘𝐸) & ⊢ (𝜑 → 𝐸 ∈ Field) & ⊢ (𝜑 → 𝐹 ∈ (SubDRing‘𝐸)) & ⊢ 𝐵 = (Base‘𝐸) & ⊢ (𝜑 → 𝑃 ∈ dom 𝑂) & ⊢ (𝜑 → 𝑃 ≠ 𝑍) & ⊢ (𝜑 → ((𝑂‘𝑃)‘𝑋) = 0 ) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) ⇒ ⊢ (𝜑 → 𝑋 ∈ (𝐸 IntgRing 𝐹)) | ||
Theorem | irngnzply1 32365* | In the case of a field 𝐸, the roots of nonzero polynomials 𝑝 with coefficients in a subfield 𝐹 are exactly the integral elements over 𝐹. Roots of nonzero polynomials are called algebraic numbers, so this shows that in the case of a field, elements integral over 𝐹 are exactly the algebraic numbers. In this formula, dom 𝑂 represents the polynomials, and 𝑍 the zero polynomial. (Contributed by Thierry Arnoux, 5-Feb-2025.) |
⊢ 𝑂 = (𝐸 evalSub1 𝐹) & ⊢ 𝑍 = (0g‘(Poly1‘𝐸)) & ⊢ 0 = (0g‘𝐸) & ⊢ (𝜑 → 𝐸 ∈ Field) & ⊢ (𝜑 → 𝐹 ∈ (SubDRing‘𝐸)) ⇒ ⊢ (𝜑 → (𝐸 IntgRing 𝐹) = ∪ 𝑝 ∈ (dom 𝑂 ∖ {𝑍})(◡(𝑂‘𝑝) “ { 0 })) | ||
Syntax | cminply 32366 | Extend class notation with the minimal polynomial builder function. |
class minPoly | ||
Definition | df-minply 32367* | Define the minimal polynomial builder function. (Contributed by Thierry Arnoux, 19-Jan-2025.) |
⊢ minPoly = (𝑒 ∈ V, 𝑓 ∈ V ↦ (𝑥 ∈ (Base‘𝑒) ↦ ((idlGen1p‘(𝑒 ↾s 𝑓))‘{𝑝 ∈ dom (𝑒 evalSub1 𝑓) ∣ (((𝑒 evalSub1 𝑓)‘𝑝)‘𝑥) = (0g‘𝑒)}))) | ||
Theorem | evls1maprhm 32368* | The function 𝐹 mapping polynomials 𝑝 to their subring evaluation at a given point 𝑋 is a ring homomorphism. (Contributed by Thierry Arnoux, 8-Feb-2025.) |
⊢ 𝑂 = (𝑅 evalSub1 𝑆) & ⊢ 𝑃 = (Poly1‘(𝑅 ↾s 𝑆)) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝑈 = (Base‘𝑃) & ⊢ (𝜑 → 𝑅 ∈ CRing) & ⊢ (𝜑 → 𝑆 ∈ (SubRing‘𝑅)) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ 𝐹 = (𝑝 ∈ 𝑈 ↦ ((𝑂‘𝑝)‘𝑋)) ⇒ ⊢ (𝜑 → 𝐹 ∈ (𝑃 RingHom 𝑅)) | ||
Theorem | ply1annidllem 32369* | Write the set 𝑄 of polynomials annihilating an element 𝐴 as the kernel of the ring homomorphism 𝐹 mapping polynomials 𝑝 to their subring evaluation at a given point 𝐴. (Contributed by Thierry Arnoux, 9-Feb-2025.) |
⊢ 𝑂 = (𝑅 evalSub1 𝑆) & ⊢ 𝑃 = (Poly1‘(𝑅 ↾s 𝑆)) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ CRing) & ⊢ (𝜑 → 𝑆 ∈ (SubRing‘𝑅)) & ⊢ (𝜑 → 𝐴 ∈ 𝐵) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝑄 = {𝑞 ∈ dom 𝑂 ∣ ((𝑂‘𝑞)‘𝐴) = 0 } & ⊢ 𝐹 = (𝑝 ∈ (Base‘𝑃) ↦ ((𝑂‘𝑝)‘𝐴)) ⇒ ⊢ (𝜑 → 𝑄 = (◡𝐹 “ { 0 })) | ||
Theorem | ply1annidl 32370* | The set 𝑄 of polynomials annihilating an element 𝐴 forms an ideal. (Contributed by Thierry Arnoux, 9-Feb-2025.) |
⊢ 𝑂 = (𝑅 evalSub1 𝑆) & ⊢ 𝑃 = (Poly1‘(𝑅 ↾s 𝑆)) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ CRing) & ⊢ (𝜑 → 𝑆 ∈ (SubRing‘𝑅)) & ⊢ (𝜑 → 𝐴 ∈ 𝐵) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝑄 = {𝑞 ∈ dom 𝑂 ∣ ((𝑂‘𝑞)‘𝐴) = 0 } ⇒ ⊢ (𝜑 → 𝑄 ∈ (LIdeal‘𝑃)) | ||
Theorem | ply1annig1p 32371* | The ideal 𝑄 of polynomials annihilating an element 𝐴 is generated by the ideal's canonical generator. (Contributed by Thierry Arnoux, 9-Feb-2025.) |
⊢ 𝑂 = (𝐸 evalSub1 𝐹) & ⊢ 𝑃 = (Poly1‘(𝐸 ↾s 𝐹)) & ⊢ 𝐵 = (Base‘𝐸) & ⊢ (𝜑 → 𝐸 ∈ Field) & ⊢ (𝜑 → 𝐹 ∈ (SubDRing‘𝐸)) & ⊢ (𝜑 → 𝐴 ∈ 𝐵) & ⊢ 0 = (0g‘𝐸) & ⊢ 𝑄 = {𝑞 ∈ dom 𝑂 ∣ ((𝑂‘𝑞)‘𝐴) = 0 } & ⊢ 𝐾 = (RSpan‘𝑃) & ⊢ 𝐺 = (idlGen1p‘(𝐸 ↾s 𝐹)) ⇒ ⊢ (𝜑 → 𝑄 = (𝐾‘{(𝐺‘𝑄)})) | ||
Theorem | minplyval 32372* | Expand the value of the minimal polynomial (𝑀‘𝐴) for a given element 𝐴. It is defined as the unique monic polynomial of minimal degree which annihilates 𝐴. By ply1annig1p 32371, that polynomial generates the ideal of the annihilators of 𝐴. (Contributed by Thierry Arnoux, 9-Feb-2025.) |
⊢ 𝑂 = (𝐸 evalSub1 𝐹) & ⊢ 𝑃 = (Poly1‘(𝐸 ↾s 𝐹)) & ⊢ 𝐵 = (Base‘𝐸) & ⊢ (𝜑 → 𝐸 ∈ Field) & ⊢ (𝜑 → 𝐹 ∈ (SubDRing‘𝐸)) & ⊢ (𝜑 → 𝐴 ∈ 𝐵) & ⊢ 0 = (0g‘𝐸) & ⊢ 𝑄 = {𝑞 ∈ dom 𝑂 ∣ ((𝑂‘𝑞)‘𝐴) = 0 } & ⊢ 𝐾 = (RSpan‘𝑃) & ⊢ 𝐺 = (idlGen1p‘(𝐸 ↾s 𝐹)) & ⊢ 𝑀 = (𝐸 minPoly 𝐹) ⇒ ⊢ (𝜑 → (𝑀‘𝐴) = (𝐺‘𝑄)) | ||
Theorem | ply1annprmidl 32373* | The set 𝑄 of polynomials annihilating an element 𝐴 is a prime ideal. (Contributed by Thierry Arnoux, 9-Feb-2025.) |
⊢ 𝑂 = (𝐸 evalSub1 𝐹) & ⊢ 𝑃 = (Poly1‘(𝐸 ↾s 𝐹)) & ⊢ 𝐵 = (Base‘𝐸) & ⊢ (𝜑 → 𝐸 ∈ Field) & ⊢ (𝜑 → 𝐹 ∈ (SubDRing‘𝐸)) & ⊢ (𝜑 → 𝐴 ∈ 𝐵) & ⊢ 0 = (0g‘𝐸) & ⊢ 𝑄 = {𝑞 ∈ dom 𝑂 ∣ ((𝑂‘𝑞)‘𝐴) = 0 } ⇒ ⊢ (𝜑 → 𝑄 ∈ (PrmIdeal‘𝑃)) | ||
Syntax | csmat 32374 | Syntax for a function generating submatrices. |
class subMat1 | ||
Definition | df-smat 32375* | Define a function generating submatrices of an integer-indexed matrix. The function maps an index in ((1...𝑀) × (1...𝑁)) into a new index in ((1...(𝑀 − 1)) × (1...(𝑁 − 1))). A submatrix is obtained by deleting a row and a column of the original matrix. Because this function re-indexes the matrix, the resulting submatrix still has the same index set for rows and columns, and its determinent is defined, unlike the current df-subma 21926. (Contributed by Thierry Arnoux, 18-Aug-2020.) |
⊢ subMat1 = (𝑚 ∈ V ↦ (𝑘 ∈ ℕ, 𝑙 ∈ ℕ ↦ (𝑚 ∘ (𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ 〈if(𝑖 < 𝑘, 𝑖, (𝑖 + 1)), if(𝑗 < 𝑙, 𝑗, (𝑗 + 1))〉)))) | ||
Theorem | smatfval 32376* | Value of the submatrix. (Contributed by Thierry Arnoux, 19-Aug-2020.) |
⊢ ((𝐾 ∈ ℕ ∧ 𝐿 ∈ ℕ ∧ 𝑀 ∈ 𝑉) → (𝐾(subMat1‘𝑀)𝐿) = (𝑀 ∘ (𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ 〈if(𝑖 < 𝐾, 𝑖, (𝑖 + 1)), if(𝑗 < 𝐿, 𝑗, (𝑗 + 1))〉))) | ||
Theorem | smatrcl 32377 | Closure of the rectangular submatrix. (Contributed by Thierry Arnoux, 19-Aug-2020.) |
⊢ 𝑆 = (𝐾(subMat1‘𝐴)𝐿) & ⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝐾 ∈ (1...𝑀)) & ⊢ (𝜑 → 𝐿 ∈ (1...𝑁)) & ⊢ (𝜑 → 𝐴 ∈ (𝐵 ↑m ((1...𝑀) × (1...𝑁)))) ⇒ ⊢ (𝜑 → 𝑆 ∈ (𝐵 ↑m ((1...(𝑀 − 1)) × (1...(𝑁 − 1))))) | ||
Theorem | smatlem 32378 | Lemma for the next theorems. (Contributed by Thierry Arnoux, 19-Aug-2020.) |
⊢ 𝑆 = (𝐾(subMat1‘𝐴)𝐿) & ⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝐾 ∈ (1...𝑀)) & ⊢ (𝜑 → 𝐿 ∈ (1...𝑁)) & ⊢ (𝜑 → 𝐴 ∈ (𝐵 ↑m ((1...𝑀) × (1...𝑁)))) & ⊢ (𝜑 → 𝐼 ∈ ℕ) & ⊢ (𝜑 → 𝐽 ∈ ℕ) & ⊢ (𝜑 → if(𝐼 < 𝐾, 𝐼, (𝐼 + 1)) = 𝑋) & ⊢ (𝜑 → if(𝐽 < 𝐿, 𝐽, (𝐽 + 1)) = 𝑌) ⇒ ⊢ (𝜑 → (𝐼𝑆𝐽) = (𝑋𝐴𝑌)) | ||
Theorem | smattl 32379 | Entries of a submatrix, top left. (Contributed by Thierry Arnoux, 19-Aug-2020.) |
⊢ 𝑆 = (𝐾(subMat1‘𝐴)𝐿) & ⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝐾 ∈ (1...𝑀)) & ⊢ (𝜑 → 𝐿 ∈ (1...𝑁)) & ⊢ (𝜑 → 𝐴 ∈ (𝐵 ↑m ((1...𝑀) × (1...𝑁)))) & ⊢ (𝜑 → 𝐼 ∈ (1..^𝐾)) & ⊢ (𝜑 → 𝐽 ∈ (1..^𝐿)) ⇒ ⊢ (𝜑 → (𝐼𝑆𝐽) = (𝐼𝐴𝐽)) | ||
Theorem | smattr 32380 | Entries of a submatrix, top right. (Contributed by Thierry Arnoux, 19-Aug-2020.) |
⊢ 𝑆 = (𝐾(subMat1‘𝐴)𝐿) & ⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝐾 ∈ (1...𝑀)) & ⊢ (𝜑 → 𝐿 ∈ (1...𝑁)) & ⊢ (𝜑 → 𝐴 ∈ (𝐵 ↑m ((1...𝑀) × (1...𝑁)))) & ⊢ (𝜑 → 𝐼 ∈ (𝐾...𝑀)) & ⊢ (𝜑 → 𝐽 ∈ (1..^𝐿)) ⇒ ⊢ (𝜑 → (𝐼𝑆𝐽) = ((𝐼 + 1)𝐴𝐽)) | ||
Theorem | smatbl 32381 | Entries of a submatrix, bottom left. (Contributed by Thierry Arnoux, 19-Aug-2020.) |
⊢ 𝑆 = (𝐾(subMat1‘𝐴)𝐿) & ⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝐾 ∈ (1...𝑀)) & ⊢ (𝜑 → 𝐿 ∈ (1...𝑁)) & ⊢ (𝜑 → 𝐴 ∈ (𝐵 ↑m ((1...𝑀) × (1...𝑁)))) & ⊢ (𝜑 → 𝐼 ∈ (1..^𝐾)) & ⊢ (𝜑 → 𝐽 ∈ (𝐿...𝑁)) ⇒ ⊢ (𝜑 → (𝐼𝑆𝐽) = (𝐼𝐴(𝐽 + 1))) | ||
Theorem | smatbr 32382 | Entries of a submatrix, bottom right. (Contributed by Thierry Arnoux, 19-Aug-2020.) |
⊢ 𝑆 = (𝐾(subMat1‘𝐴)𝐿) & ⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝐾 ∈ (1...𝑀)) & ⊢ (𝜑 → 𝐿 ∈ (1...𝑁)) & ⊢ (𝜑 → 𝐴 ∈ (𝐵 ↑m ((1...𝑀) × (1...𝑁)))) & ⊢ (𝜑 → 𝐼 ∈ (𝐾...𝑀)) & ⊢ (𝜑 → 𝐽 ∈ (𝐿...𝑁)) ⇒ ⊢ (𝜑 → (𝐼𝑆𝐽) = ((𝐼 + 1)𝐴(𝐽 + 1))) | ||
Theorem | smatcl 32383 | Closure of the square submatrix: if 𝑀 is a square matrix of dimension 𝑁 with indices in (1...𝑁), then a submatrix of 𝑀 is of dimension (𝑁 − 1). (Contributed by Thierry Arnoux, 19-Aug-2020.) |
⊢ 𝐴 = ((1...𝑁) Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝐶 = (Base‘((1...(𝑁 − 1)) Mat 𝑅)) & ⊢ 𝑆 = (𝐾(subMat1‘𝑀)𝐿) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝐾 ∈ (1...𝑁)) & ⊢ (𝜑 → 𝐿 ∈ (1...𝑁)) & ⊢ (𝜑 → 𝑀 ∈ 𝐵) ⇒ ⊢ (𝜑 → 𝑆 ∈ 𝐶) | ||
Theorem | matmpo 32384* | Write a square matrix as a mapping operation. (Contributed by Thierry Arnoux, 16-Aug-2020.) |
⊢ 𝐴 = (𝑁 Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) ⇒ ⊢ (𝑀 ∈ 𝐵 → 𝑀 = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ (𝑖𝑀𝑗))) | ||
Theorem | 1smat1 32385 | The submatrix of the identity matrix obtained by removing the ith row and the ith column is an identity matrix. Cf. 1marepvsma1 21932. (Contributed by Thierry Arnoux, 19-Aug-2020.) |
⊢ 1 = (1r‘((1...𝑁) Mat 𝑅)) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝐼 ∈ (1...𝑁)) ⇒ ⊢ (𝜑 → (𝐼(subMat1‘ 1 )𝐼) = (1r‘((1...(𝑁 − 1)) Mat 𝑅))) | ||
Theorem | submat1n 32386 | One case where the submatrix with integer indices, subMat1, and the general submatrix subMat, agree. (Contributed by Thierry Arnoux, 22-Aug-2020.) |
⊢ 𝐴 = ((1...𝑁) Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) ⇒ ⊢ ((𝑁 ∈ ℕ ∧ 𝑀 ∈ 𝐵) → (𝑁(subMat1‘𝑀)𝑁) = (𝑁(((1...𝑁) subMat 𝑅)‘𝑀)𝑁)) | ||
Theorem | submatres 32387 | Special case where the submatrix is a restriction of the initial matrix, and no renumbering occurs. (Contributed by Thierry Arnoux, 26-Aug-2020.) |
⊢ 𝐴 = ((1...𝑁) Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) ⇒ ⊢ ((𝑁 ∈ ℕ ∧ 𝑀 ∈ 𝐵) → (𝑁(subMat1‘𝑀)𝑁) = (𝑀 ↾ ((1...(𝑁 − 1)) × (1...(𝑁 − 1))))) | ||
Theorem | submateqlem1 32388 | Lemma for submateq 32390. (Contributed by Thierry Arnoux, 25-Aug-2020.) |
⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝐾 ∈ (1...𝑁)) & ⊢ (𝜑 → 𝑀 ∈ (1...(𝑁 − 1))) & ⊢ (𝜑 → 𝐾 ≤ 𝑀) ⇒ ⊢ (𝜑 → (𝑀 ∈ (𝐾...𝑁) ∧ (𝑀 + 1) ∈ ((1...𝑁) ∖ {𝐾}))) | ||
Theorem | submateqlem2 32389 | Lemma for submateq 32390. (Contributed by Thierry Arnoux, 26-Aug-2020.) |
⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝐾 ∈ (1...𝑁)) & ⊢ (𝜑 → 𝑀 ∈ (1...(𝑁 − 1))) & ⊢ (𝜑 → 𝑀 < 𝐾) ⇒ ⊢ (𝜑 → (𝑀 ∈ (1..^𝐾) ∧ 𝑀 ∈ ((1...𝑁) ∖ {𝐾}))) | ||
Theorem | submateq 32390* | Sufficient condition for two submatrices to be equal. (Contributed by Thierry Arnoux, 25-Aug-2020.) |
⊢ 𝐴 = ((1...𝑁) Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝐼 ∈ (1...𝑁)) & ⊢ (𝜑 → 𝐽 ∈ (1...𝑁)) & ⊢ (𝜑 → 𝐸 ∈ 𝐵) & ⊢ (𝜑 → 𝐹 ∈ 𝐵) & ⊢ ((𝜑 ∧ 𝑖 ∈ ((1...𝑁) ∖ {𝐼}) ∧ 𝑗 ∈ ((1...𝑁) ∖ {𝐽})) → (𝑖𝐸𝑗) = (𝑖𝐹𝑗)) ⇒ ⊢ (𝜑 → (𝐼(subMat1‘𝐸)𝐽) = (𝐼(subMat1‘𝐹)𝐽)) | ||
Theorem | submatminr1 32391 | If we take a submatrix by removing the row 𝐼 and column 𝐽, then the result is the same on the matrix with row 𝐼 and column 𝐽 modified by the minMatR1 operator. (Contributed by Thierry Arnoux, 25-Aug-2020.) |
⊢ 𝐴 = ((1...𝑁) Mat 𝑅) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝐼 ∈ (1...𝑁)) & ⊢ (𝜑 → 𝐽 ∈ (1...𝑁)) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ (𝜑 → 𝑀 ∈ 𝐵) & ⊢ 𝐸 = (𝐼(((1...𝑁) minMatR1 𝑅)‘𝑀)𝐽) ⇒ ⊢ (𝜑 → (𝐼(subMat1‘𝑀)𝐽) = (𝐼(subMat1‘𝐸)𝐽)) | ||
Syntax | clmat 32392 | Extend class notation with the literal matrix conversion function. |
class litMat | ||
Definition | df-lmat 32393* | Define a function converting words of words into matrices. (Contributed by Thierry Arnoux, 28-Aug-2020.) |
⊢ litMat = (𝑚 ∈ V ↦ (𝑖 ∈ (1...(♯‘𝑚)), 𝑗 ∈ (1...(♯‘(𝑚‘0))) ↦ ((𝑚‘(𝑖 − 1))‘(𝑗 − 1)))) | ||
Theorem | lmatval 32394* | Value of the literal matrix conversion function. (Contributed by Thierry Arnoux, 28-Aug-2020.) |
⊢ (𝑀 ∈ 𝑉 → (litMat‘𝑀) = (𝑖 ∈ (1...(♯‘𝑀)), 𝑗 ∈ (1...(♯‘(𝑀‘0))) ↦ ((𝑀‘(𝑖 − 1))‘(𝑗 − 1)))) | ||
Theorem | lmatfval 32395* | Entries of a literal matrix. (Contributed by Thierry Arnoux, 28-Aug-2020.) |
⊢ 𝑀 = (litMat‘𝑊) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝑊 ∈ Word Word 𝑉) & ⊢ (𝜑 → (♯‘𝑊) = 𝑁) & ⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) → (♯‘(𝑊‘𝑖)) = 𝑁) & ⊢ (𝜑 → 𝐼 ∈ (1...𝑁)) & ⊢ (𝜑 → 𝐽 ∈ (1...𝑁)) ⇒ ⊢ (𝜑 → (𝐼𝑀𝐽) = ((𝑊‘(𝐼 − 1))‘(𝐽 − 1))) | ||
Theorem | lmatfvlem 32396* | Useful lemma to extract literal matrix entries. Suggested by Mario Carneiro. (Contributed by Thierry Arnoux, 3-Sep-2020.) |
⊢ 𝑀 = (litMat‘𝑊) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝑊 ∈ Word Word 𝑉) & ⊢ (𝜑 → (♯‘𝑊) = 𝑁) & ⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) → (♯‘(𝑊‘𝑖)) = 𝑁) & ⊢ 𝐾 ∈ ℕ0 & ⊢ 𝐿 ∈ ℕ0 & ⊢ 𝐼 ≤ 𝑁 & ⊢ 𝐽 ≤ 𝑁 & ⊢ (𝐾 + 1) = 𝐼 & ⊢ (𝐿 + 1) = 𝐽 & ⊢ (𝑊‘𝐾) = 𝑋 & ⊢ (𝜑 → (𝑋‘𝐿) = 𝑌) ⇒ ⊢ (𝜑 → (𝐼𝑀𝐽) = 𝑌) | ||
Theorem | lmatcl 32397* | Closure of the literal matrix. (Contributed by Thierry Arnoux, 12-Sep-2020.) |
⊢ 𝑀 = (litMat‘𝑊) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝑊 ∈ Word Word 𝑉) & ⊢ (𝜑 → (♯‘𝑊) = 𝑁) & ⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑁)) → (♯‘(𝑊‘𝑖)) = 𝑁) & ⊢ 𝑉 = (Base‘𝑅) & ⊢ 𝑂 = ((1...𝑁) Mat 𝑅) & ⊢ 𝑃 = (Base‘𝑂) & ⊢ (𝜑 → 𝑅 ∈ 𝑋) ⇒ ⊢ (𝜑 → 𝑀 ∈ 𝑃) | ||
Theorem | lmat22lem 32398* | Lemma for lmat22e11 32399 and co. (Contributed by Thierry Arnoux, 28-Aug-2020.) |
⊢ 𝑀 = (litMat‘〈“〈“𝐴𝐵”〉〈“𝐶𝐷”〉”〉) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 ∈ 𝑉) & ⊢ (𝜑 → 𝐶 ∈ 𝑉) & ⊢ (𝜑 → 𝐷 ∈ 𝑉) ⇒ ⊢ ((𝜑 ∧ 𝑖 ∈ (0..^2)) → (♯‘(〈“〈“𝐴𝐵”〉〈“𝐶𝐷”〉”〉‘𝑖)) = 2) | ||
Theorem | lmat22e11 32399 | Entry of a 2x2 literal matrix. (Contributed by Thierry Arnoux, 28-Aug-2020.) |
⊢ 𝑀 = (litMat‘〈“〈“𝐴𝐵”〉〈“𝐶𝐷”〉”〉) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 ∈ 𝑉) & ⊢ (𝜑 → 𝐶 ∈ 𝑉) & ⊢ (𝜑 → 𝐷 ∈ 𝑉) ⇒ ⊢ (𝜑 → (1𝑀1) = 𝐴) | ||
Theorem | lmat22e12 32400 | Entry of a 2x2 literal matrix. (Contributed by Thierry Arnoux, 12-Sep-2020.) |
⊢ 𝑀 = (litMat‘〈“〈“𝐴𝐵”〉〈“𝐶𝐷”〉”〉) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 ∈ 𝑉) & ⊢ (𝜑 → 𝐶 ∈ 𝑉) & ⊢ (𝜑 → 𝐷 ∈ 𝑉) ⇒ ⊢ (𝜑 → (1𝑀2) = 𝐵) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |