| Metamath
Proof Explorer Theorem List (p. 324 of 497) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30845) |
(30846-32368) |
(32369-49617) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | cvexch 32301 | The Hilbert lattice satisfies the exchange axiom. Proposition 1(iii) of [Kalmbach] p. 140 and its converse. Originally proved by Garrett Birkhoff in 1933. (Contributed by NM, 21-Jun-2004.) (New usage is discouraged.) |
| ⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → ((𝐴 ∩ 𝐵) ⋖ℋ 𝐵 ↔ 𝐴 ⋖ℋ (𝐴 ∨ℋ 𝐵))) | ||
| Theorem | cvp 32302 | The Hilbert lattice satisfies the covering property of Definition 7.4 of [MaedaMaeda] p. 31 and its converse. (Contributed by NM, 21-Jun-2004.) (New usage is discouraged.) |
| ⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ HAtoms) → ((𝐴 ∩ 𝐵) = 0ℋ ↔ 𝐴 ⋖ℋ (𝐴 ∨ℋ 𝐵))) | ||
| Theorem | atnssm0 32303 | The meet of a Hilbert lattice element and an incomparable atom is the zero subspace. (Contributed by NM, 30-Jun-2004.) (New usage is discouraged.) |
| ⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ HAtoms) → (¬ 𝐵 ⊆ 𝐴 ↔ (𝐴 ∩ 𝐵) = 0ℋ)) | ||
| Theorem | atnemeq0 32304 | The meet of distinct atoms is the zero subspace. (Contributed by NM, 25-Jun-2004.) (New usage is discouraged.) |
| ⊢ ((𝐴 ∈ HAtoms ∧ 𝐵 ∈ HAtoms) → (𝐴 ≠ 𝐵 ↔ (𝐴 ∩ 𝐵) = 0ℋ)) | ||
| Theorem | atssma 32305 | The meet with an atom's superset is the atom. (Contributed by NM, 12-Jun-2006.) (New usage is discouraged.) |
| ⊢ ((𝐴 ∈ HAtoms ∧ 𝐵 ∈ Cℋ ) → (𝐴 ⊆ 𝐵 ↔ (𝐴 ∩ 𝐵) ∈ HAtoms)) | ||
| Theorem | atcv0eq 32306 | Two atoms covering the zero subspace are equal. (Contributed by NM, 26-Jun-2004.) (New usage is discouraged.) |
| ⊢ ((𝐴 ∈ HAtoms ∧ 𝐵 ∈ HAtoms) → (0ℋ ⋖ℋ (𝐴 ∨ℋ 𝐵) ↔ 𝐴 = 𝐵)) | ||
| Theorem | atcv1 32307 | Two atoms covering the zero subspace are equal. (Contributed by NM, 26-Jun-2004.) (New usage is discouraged.) |
| ⊢ (((𝐴 ∈ Cℋ ∧ 𝐵 ∈ HAtoms ∧ 𝐶 ∈ HAtoms) ∧ 𝐴 ⋖ℋ (𝐵 ∨ℋ 𝐶)) → (𝐴 = 0ℋ ↔ 𝐵 = 𝐶)) | ||
| Theorem | atexch 32308 | The Hilbert lattice satisfies the atom exchange property. Proposition 1(i) of [Kalmbach] p. 140. A version of this theorem related to vector analysis was originally proved by Hermann Grassmann in 1862. Also Definition 3.4-3(b) in [MegPav2000] p. 2345 (PDF p. 8) (use atnemeq0 32304 to obtain atom inequality). (Contributed by NM, 27-Jun-2004.) (New usage is discouraged.) |
| ⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ HAtoms ∧ 𝐶 ∈ HAtoms) → ((𝐵 ⊆ (𝐴 ∨ℋ 𝐶) ∧ (𝐴 ∩ 𝐵) = 0ℋ) → 𝐶 ⊆ (𝐴 ∨ℋ 𝐵))) | ||
| Theorem | atomli 32309 | An assertion holding in atomic orthomodular lattices that is equivalent to the exchange axiom. Proposition 3.2.17 of [PtakPulmannova] p. 66. (Contributed by NM, 24-Jun-2004.) (New usage is discouraged.) |
| ⊢ 𝐴 ∈ Cℋ ⇒ ⊢ (𝐵 ∈ HAtoms → ((𝐴 ∨ℋ 𝐵) ∩ (⊥‘𝐴)) ∈ (HAtoms ∪ {0ℋ})) | ||
| Theorem | atoml2i 32310 | An assertion holding in atomic orthomodular lattices that is equivalent to the exchange axiom. Proposition P8(ii) of [BeltramettiCassinelli1] p. 400. (Contributed by NM, 12-Jun-2006.) (New usage is discouraged.) |
| ⊢ 𝐴 ∈ Cℋ ⇒ ⊢ ((𝐵 ∈ HAtoms ∧ ¬ 𝐵 ⊆ 𝐴) → ((𝐴 ∨ℋ 𝐵) ∩ (⊥‘𝐴)) ∈ HAtoms) | ||
| Theorem | atordi 32311 | An ordering law for a Hilbert lattice atom and a commuting subspace. (Contributed by NM, 12-Jun-2006.) (New usage is discouraged.) |
| ⊢ 𝐴 ∈ Cℋ ⇒ ⊢ ((𝐵 ∈ HAtoms ∧ 𝐴 𝐶ℋ 𝐵) → (𝐵 ⊆ 𝐴 ∨ 𝐵 ⊆ (⊥‘𝐴))) | ||
| Theorem | atcvatlem 32312 | Lemma for atcvati 32313. (Contributed by NM, 27-Jun-2004.) (New usage is discouraged.) |
| ⊢ 𝐴 ∈ Cℋ ⇒ ⊢ (((𝐵 ∈ HAtoms ∧ 𝐶 ∈ HAtoms) ∧ (𝐴 ≠ 0ℋ ∧ 𝐴 ⊊ (𝐵 ∨ℋ 𝐶))) → (¬ 𝐵 ⊆ 𝐴 → 𝐴 ∈ HAtoms)) | ||
| Theorem | atcvati 32313 | A nonzero Hilbert lattice element less than the join of two atoms is an atom. (Contributed by NM, 28-Jun-2004.) (New usage is discouraged.) |
| ⊢ 𝐴 ∈ Cℋ ⇒ ⊢ ((𝐵 ∈ HAtoms ∧ 𝐶 ∈ HAtoms) → ((𝐴 ≠ 0ℋ ∧ 𝐴 ⊊ (𝐵 ∨ℋ 𝐶)) → 𝐴 ∈ HAtoms)) | ||
| Theorem | atcvat2i 32314 | A Hilbert lattice element covered by the join of two distinct atoms is an atom. (Contributed by NM, 26-Jun-2004.) (New usage is discouraged.) |
| ⊢ 𝐴 ∈ Cℋ ⇒ ⊢ ((𝐵 ∈ HAtoms ∧ 𝐶 ∈ HAtoms) → ((¬ 𝐵 = 𝐶 ∧ 𝐴 ⋖ℋ (𝐵 ∨ℋ 𝐶)) → 𝐴 ∈ HAtoms)) | ||
| Theorem | atord 32315 | An ordering law for a Hilbert lattice atom and a commuting subspace. (Contributed by NM, 12-Jun-2006.) (New usage is discouraged.) |
| ⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ HAtoms ∧ 𝐴 𝐶ℋ 𝐵) → (𝐵 ⊆ 𝐴 ∨ 𝐵 ⊆ (⊥‘𝐴))) | ||
| Theorem | atcvat2 32316 | A Hilbert lattice element covered by the join of two distinct atoms is an atom. (Contributed by NM, 29-Jun-2004.) (New usage is discouraged.) |
| ⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ HAtoms ∧ 𝐶 ∈ HAtoms) → ((¬ 𝐵 = 𝐶 ∧ 𝐴 ⋖ℋ (𝐵 ∨ℋ 𝐶)) → 𝐴 ∈ HAtoms)) | ||
| Theorem | chirredlem1 32317* | Lemma for chirredi 32321. (Contributed by NM, 14-Jun-2006.) (New usage is discouraged.) |
| ⊢ 𝐴 ∈ Cℋ ⇒ ⊢ (((𝑝 ∈ HAtoms ∧ (𝑞 ∈ Cℋ ∧ 𝑞 ⊆ (⊥‘𝐴))) ∧ ((𝑟 ∈ HAtoms ∧ 𝑟 ⊆ 𝐴) ∧ 𝑟 ⊆ (𝑝 ∨ℋ 𝑞))) → (𝑝 ∩ (⊥‘𝑟)) = 0ℋ) | ||
| Theorem | chirredlem2 32318* | Lemma for chirredi 32321. (Contributed by NM, 15-Jun-2006.) (New usage is discouraged.) |
| ⊢ 𝐴 ∈ Cℋ ⇒ ⊢ ((((𝑝 ∈ HAtoms ∧ 𝑝 ⊆ 𝐴) ∧ (𝑞 ∈ Cℋ ∧ 𝑞 ⊆ (⊥‘𝐴))) ∧ ((𝑟 ∈ HAtoms ∧ 𝑟 ⊆ 𝐴) ∧ 𝑟 ⊆ (𝑝 ∨ℋ 𝑞))) → ((⊥‘𝑟) ∩ (𝑝 ∨ℋ 𝑞)) = 𝑞) | ||
| Theorem | chirredlem3 32319* | Lemma for chirredi 32321. (Contributed by NM, 15-Jun-2006.) (New usage is discouraged.) |
| ⊢ 𝐴 ∈ Cℋ & ⊢ (𝑥 ∈ Cℋ → 𝐴 𝐶ℋ 𝑥) ⇒ ⊢ ((((𝑝 ∈ HAtoms ∧ 𝑝 ⊆ 𝐴) ∧ (𝑞 ∈ HAtoms ∧ 𝑞 ⊆ (⊥‘𝐴))) ∧ (𝑟 ∈ HAtoms ∧ 𝑟 ⊆ (𝑝 ∨ℋ 𝑞))) → (𝑟 ⊆ 𝐴 → 𝑟 = 𝑝)) | ||
| Theorem | chirredlem4 32320* | Lemma for chirredi 32321. (Contributed by NM, 15-Jun-2006.) (New usage is discouraged.) |
| ⊢ 𝐴 ∈ Cℋ & ⊢ (𝑥 ∈ Cℋ → 𝐴 𝐶ℋ 𝑥) ⇒ ⊢ ((((𝑝 ∈ HAtoms ∧ 𝑝 ⊆ 𝐴) ∧ (𝑞 ∈ HAtoms ∧ 𝑞 ⊆ (⊥‘𝐴))) ∧ (𝑟 ∈ HAtoms ∧ 𝑟 ⊆ (𝑝 ∨ℋ 𝑞))) → (𝑟 = 𝑝 ∨ 𝑟 = 𝑞)) | ||
| Theorem | chirredi 32321* | The Hilbert lattice is irreducible: any element that commutes with all elements must be zero or one. Theorem 14.8.4 of [BeltramettiCassinelli] p. 166. (Contributed by NM, 15-Jun-2006.) (New usage is discouraged.) |
| ⊢ 𝐴 ∈ Cℋ & ⊢ (𝑥 ∈ Cℋ → 𝐴 𝐶ℋ 𝑥) ⇒ ⊢ (𝐴 = 0ℋ ∨ 𝐴 = ℋ) | ||
| Theorem | chirred 32322* | The Hilbert lattice is irreducible: any element that commutes with all elements must be zero or one. Theorem 14.8.4 of [BeltramettiCassinelli] p. 166. (Contributed by NM, 16-Jun-2006.) (New usage is discouraged.) |
| ⊢ ((𝐴 ∈ Cℋ ∧ ∀𝑥 ∈ Cℋ 𝐴 𝐶ℋ 𝑥) → (𝐴 = 0ℋ ∨ 𝐴 = ℋ)) | ||
| Theorem | atcvat3i 32323 | A condition implying that a certain lattice element is an atom. Part of Lemma 3.2.20 of [PtakPulmannova] p. 68. (Contributed by NM, 2-Jul-2004.) (New usage is discouraged.) |
| ⊢ 𝐴 ∈ Cℋ ⇒ ⊢ ((𝐵 ∈ HAtoms ∧ 𝐶 ∈ HAtoms) → (((¬ 𝐵 = 𝐶 ∧ ¬ 𝐶 ⊆ 𝐴) ∧ 𝐵 ⊆ (𝐴 ∨ℋ 𝐶)) → (𝐴 ∩ (𝐵 ∨ℋ 𝐶)) ∈ HAtoms)) | ||
| Theorem | atcvat4i 32324* | A condition implying existence of an atom with the properties shown. Lemma 3.2.20 of [PtakPulmannova] p. 68. (Contributed by NM, 2-Jul-2004.) (New usage is discouraged.) |
| ⊢ 𝐴 ∈ Cℋ ⇒ ⊢ ((𝐵 ∈ HAtoms ∧ 𝐶 ∈ HAtoms) → ((𝐴 ≠ 0ℋ ∧ 𝐵 ⊆ (𝐴 ∨ℋ 𝐶)) → ∃𝑥 ∈ HAtoms (𝑥 ⊆ 𝐴 ∧ 𝐵 ⊆ (𝐶 ∨ℋ 𝑥)))) | ||
| Theorem | atdmd 32325 | Two Hilbert lattice elements have the dual modular pair property if the first is an atom. Theorem 7.6(c) of [MaedaMaeda] p. 31. (Contributed by NM, 22-Jun-2004.) (New usage is discouraged.) |
| ⊢ ((𝐴 ∈ HAtoms ∧ 𝐵 ∈ Cℋ ) → 𝐴 𝑀ℋ* 𝐵) | ||
| Theorem | atmd 32326 | Two Hilbert lattice elements have the modular pair property if the first is an atom. Theorem 7.6(b) of [MaedaMaeda] p. 31. (Contributed by NM, 22-Jun-2004.) (New usage is discouraged.) |
| ⊢ ((𝐴 ∈ HAtoms ∧ 𝐵 ∈ Cℋ ) → 𝐴 𝑀ℋ 𝐵) | ||
| Theorem | atmd2 32327 | Two Hilbert lattice elements have the dual modular pair property if the second is an atom. Part of Exercise 6 of [Kalmbach] p. 103. (Contributed by NM, 22-Jun-2004.) (New usage is discouraged.) |
| ⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ HAtoms) → 𝐴 𝑀ℋ 𝐵) | ||
| Theorem | atabsi 32328 | Absorption of an incomparable atom. Similar to Exercise 7.1 of [MaedaMaeda] p. 34. (Contributed by NM, 15-Jul-2004.) (New usage is discouraged.) |
| ⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Cℋ ⇒ ⊢ (𝐶 ∈ HAtoms → (¬ 𝐶 ⊆ (𝐴 ∨ℋ 𝐵) → ((𝐴 ∨ℋ 𝐶) ∩ 𝐵) = (𝐴 ∩ 𝐵))) | ||
| Theorem | atabs2i 32329 | Absorption of an incomparable atom. (Contributed by NM, 18-Jul-2004.) (New usage is discouraged.) |
| ⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Cℋ ⇒ ⊢ (𝐶 ∈ HAtoms → (¬ 𝐶 ⊆ (𝐴 ∨ℋ 𝐵) → ((𝐴 ∨ℋ 𝐶) ∩ (𝐴 ∨ℋ 𝐵)) = 𝐴)) | ||
| Theorem | mdsymlem1 32330* | Lemma for mdsymi 32338. (Contributed by NM, 1-Jul-2004.) (New usage is discouraged.) |
| ⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Cℋ & ⊢ 𝐶 = (𝐴 ∨ℋ 𝑝) ⇒ ⊢ (((𝑝 ∈ Cℋ ∧ (𝐵 ∩ 𝐶) ⊆ 𝐴) ∧ (𝐵 𝑀ℋ* 𝐴 ∧ 𝑝 ⊆ (𝐴 ∨ℋ 𝐵))) → 𝑝 ⊆ 𝐴) | ||
| Theorem | mdsymlem2 32331* | Lemma for mdsymi 32338. (Contributed by NM, 1-Jul-2004.) (New usage is discouraged.) |
| ⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Cℋ & ⊢ 𝐶 = (𝐴 ∨ℋ 𝑝) ⇒ ⊢ (((𝑝 ∈ HAtoms ∧ (𝐵 ∩ 𝐶) ⊆ 𝐴) ∧ (𝐵 𝑀ℋ* 𝐴 ∧ 𝑝 ⊆ (𝐴 ∨ℋ 𝐵))) → (𝐵 ≠ 0ℋ → ∃𝑟 ∈ HAtoms ∃𝑞 ∈ HAtoms (𝑝 ⊆ (𝑞 ∨ℋ 𝑟) ∧ (𝑞 ⊆ 𝐴 ∧ 𝑟 ⊆ 𝐵)))) | ||
| Theorem | mdsymlem3 32332* | Lemma for mdsymi 32338. (Contributed by NM, 2-Jul-2004.) (New usage is discouraged.) |
| ⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Cℋ & ⊢ 𝐶 = (𝐴 ∨ℋ 𝑝) ⇒ ⊢ ((((𝑝 ∈ HAtoms ∧ ¬ (𝐵 ∩ 𝐶) ⊆ 𝐴) ∧ 𝑝 ⊆ (𝐴 ∨ℋ 𝐵)) ∧ 𝐴 ≠ 0ℋ) → ∃𝑟 ∈ HAtoms ∃𝑞 ∈ HAtoms (𝑝 ⊆ (𝑞 ∨ℋ 𝑟) ∧ (𝑞 ⊆ 𝐴 ∧ 𝑟 ⊆ 𝐵))) | ||
| Theorem | mdsymlem4 32333* | Lemma for mdsymi 32338. This is the forward direction of Lemma 4(i) of [Maeda] p. 168. (Contributed by NM, 2-Jul-2004.) (New usage is discouraged.) |
| ⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Cℋ & ⊢ 𝐶 = (𝐴 ∨ℋ 𝑝) ⇒ ⊢ (𝑝 ∈ HAtoms → ((𝐵 𝑀ℋ* 𝐴 ∧ ((𝐴 ≠ 0ℋ ∧ 𝐵 ≠ 0ℋ) ∧ 𝑝 ⊆ (𝐴 ∨ℋ 𝐵))) → ∃𝑞 ∈ HAtoms ∃𝑟 ∈ HAtoms (𝑝 ⊆ (𝑞 ∨ℋ 𝑟) ∧ (𝑞 ⊆ 𝐴 ∧ 𝑟 ⊆ 𝐵)))) | ||
| Theorem | mdsymlem5 32334* | Lemma for mdsymi 32338. (Contributed by NM, 2-Jul-2004.) (New usage is discouraged.) |
| ⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Cℋ & ⊢ 𝐶 = (𝐴 ∨ℋ 𝑝) ⇒ ⊢ ((𝑞 ∈ HAtoms ∧ 𝑟 ∈ HAtoms) → (¬ 𝑞 = 𝑝 → ((𝑝 ⊆ (𝑞 ∨ℋ 𝑟) ∧ (𝑞 ⊆ 𝐴 ∧ 𝑟 ⊆ 𝐵)) → (((𝑐 ∈ Cℋ ∧ 𝐴 ⊆ 𝑐) ∧ 𝑝 ∈ HAtoms) → (𝑝 ⊆ 𝑐 → 𝑝 ⊆ ((𝑐 ∩ 𝐵) ∨ℋ 𝐴)))))) | ||
| Theorem | mdsymlem6 32335* | Lemma for mdsymi 32338. This is the converse direction of Lemma 4(i) of [Maeda] p. 168, and is based on the proof of Theorem 1(d) to (e) of [Maeda] p. 167. (Contributed by NM, 2-Jul-2004.) (New usage is discouraged.) |
| ⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Cℋ & ⊢ 𝐶 = (𝐴 ∨ℋ 𝑝) ⇒ ⊢ (∀𝑝 ∈ HAtoms (𝑝 ⊆ (𝐴 ∨ℋ 𝐵) → ∃𝑞 ∈ HAtoms ∃𝑟 ∈ HAtoms (𝑝 ⊆ (𝑞 ∨ℋ 𝑟) ∧ (𝑞 ⊆ 𝐴 ∧ 𝑟 ⊆ 𝐵))) → 𝐵 𝑀ℋ* 𝐴) | ||
| Theorem | mdsymlem7 32336* | Lemma for mdsymi 32338. Lemma 4(i) of [Maeda] p. 168. Note that Maeda's 1965 definition of dual modular pair has reversed arguments compared to the later (1970) definition given in Remark 29.6 of [MaedaMaeda] p. 130, which is the one that we use. (Contributed by NM, 3-Jul-2004.) (New usage is discouraged.) |
| ⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Cℋ & ⊢ 𝐶 = (𝐴 ∨ℋ 𝑝) ⇒ ⊢ ((𝐴 ≠ 0ℋ ∧ 𝐵 ≠ 0ℋ) → (𝐵 𝑀ℋ* 𝐴 ↔ ∀𝑝 ∈ HAtoms (𝑝 ⊆ (𝐴 ∨ℋ 𝐵) → ∃𝑞 ∈ HAtoms ∃𝑟 ∈ HAtoms (𝑝 ⊆ (𝑞 ∨ℋ 𝑟) ∧ (𝑞 ⊆ 𝐴 ∧ 𝑟 ⊆ 𝐵))))) | ||
| Theorem | mdsymlem8 32337* | Lemma for mdsymi 32338. Lemma 4(ii) of [Maeda] p. 168. (Contributed by NM, 3-Jul-2004.) (New usage is discouraged.) |
| ⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Cℋ & ⊢ 𝐶 = (𝐴 ∨ℋ 𝑝) ⇒ ⊢ ((𝐴 ≠ 0ℋ ∧ 𝐵 ≠ 0ℋ) → (𝐵 𝑀ℋ* 𝐴 ↔ 𝐴 𝑀ℋ* 𝐵)) | ||
| Theorem | mdsymi 32338 | M-symmetry of the Hilbert lattice. Lemma 5 of [Maeda] p. 168. (Contributed by NM, 3-Jul-2004.) (New usage is discouraged.) |
| ⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Cℋ ⇒ ⊢ (𝐴 𝑀ℋ 𝐵 ↔ 𝐵 𝑀ℋ 𝐴) | ||
| Theorem | mdsym 32339 | M-symmetry of the Hilbert lattice. Lemma 5 of [Maeda] p. 168. (Contributed by NM, 6-Jul-2004.) (New usage is discouraged.) |
| ⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → (𝐴 𝑀ℋ 𝐵 ↔ 𝐵 𝑀ℋ 𝐴)) | ||
| Theorem | dmdsym 32340 | Dual M-symmetry of the Hilbert lattice. (Contributed by NM, 25-Jul-2007.) (New usage is discouraged.) |
| ⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → (𝐴 𝑀ℋ* 𝐵 ↔ 𝐵 𝑀ℋ* 𝐴)) | ||
| Theorem | atdmd2 32341 | Two Hilbert lattice elements have the dual modular pair property if the second is an atom. (Contributed by NM, 6-Jul-2004.) (New usage is discouraged.) |
| ⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ HAtoms) → 𝐴 𝑀ℋ* 𝐵) | ||
| Theorem | sumdmdii 32342 | If the subspace sum of two Hilbert lattice elements is closed, then the elements are a dual modular pair. Remark in [MaedaMaeda] p. 139. (Contributed by NM, 12-Jul-2004.) (New usage is discouraged.) |
| ⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Cℋ ⇒ ⊢ ((𝐴 +ℋ 𝐵) = (𝐴 ∨ℋ 𝐵) → 𝐴 𝑀ℋ* 𝐵) | ||
| Theorem | cmmdi 32343 | Commuting subspaces form a modular pair. (Contributed by NM, 16-Jan-2005.) (New usage is discouraged.) |
| ⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Cℋ ⇒ ⊢ (𝐴 𝐶ℋ 𝐵 → 𝐴 𝑀ℋ 𝐵) | ||
| Theorem | cmdmdi 32344 | Commuting subspaces form a dual modular pair. (Contributed by NM, 25-Apr-2006.) (New usage is discouraged.) |
| ⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Cℋ ⇒ ⊢ (𝐴 𝐶ℋ 𝐵 → 𝐴 𝑀ℋ* 𝐵) | ||
| Theorem | sumdmdlem 32345 | Lemma for sumdmdi 32347. The span of vector 𝐶 not in the subspace sum is "trimmed off." (Contributed by NM, 18-Dec-2004.) (New usage is discouraged.) |
| ⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Cℋ ⇒ ⊢ ((𝐶 ∈ ℋ ∧ ¬ 𝐶 ∈ (𝐴 +ℋ 𝐵)) → ((𝐵 +ℋ (span‘{𝐶})) ∩ 𝐴) = (𝐵 ∩ 𝐴)) | ||
| Theorem | sumdmdlem2 32346* | Lemma for sumdmdi 32347. (Contributed by NM, 23-Dec-2004.) (New usage is discouraged.) |
| ⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Cℋ ⇒ ⊢ (∀𝑥 ∈ HAtoms ((𝑥 ∨ℋ 𝐵) ∩ (𝐴 ∨ℋ 𝐵)) ⊆ (((𝑥 ∨ℋ 𝐵) ∩ 𝐴) ∨ℋ 𝐵) → (𝐴 +ℋ 𝐵) = (𝐴 ∨ℋ 𝐵)) | ||
| Theorem | sumdmdi 32347 | The subspace sum of two Hilbert lattice elements is closed iff the elements are a dual modular pair. Theorem 2 of [Holland] p. 1519. (Contributed by NM, 14-Dec-2004.) (New usage is discouraged.) |
| ⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Cℋ ⇒ ⊢ ((𝐴 +ℋ 𝐵) = (𝐴 ∨ℋ 𝐵) ↔ 𝐴 𝑀ℋ* 𝐵) | ||
| Theorem | dmdbr4ati 32348* | Dual modular pair property in terms of atoms. (Contributed by NM, 15-Jan-2005.) (New usage is discouraged.) |
| ⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Cℋ ⇒ ⊢ (𝐴 𝑀ℋ* 𝐵 ↔ ∀𝑥 ∈ HAtoms ((𝑥 ∨ℋ 𝐵) ∩ (𝐴 ∨ℋ 𝐵)) ⊆ (((𝑥 ∨ℋ 𝐵) ∩ 𝐴) ∨ℋ 𝐵)) | ||
| Theorem | dmdbr5ati 32349* | Dual modular pair property in terms of atoms. (Contributed by NM, 14-Jan-2005.) (New usage is discouraged.) |
| ⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Cℋ ⇒ ⊢ (𝐴 𝑀ℋ* 𝐵 ↔ ∀𝑥 ∈ HAtoms (𝑥 ⊆ (𝐴 ∨ℋ 𝐵) → 𝑥 ⊆ (((𝑥 ∨ℋ 𝐵) ∩ 𝐴) ∨ℋ 𝐵))) | ||
| Theorem | dmdbr6ati 32350* | Dual modular pair property in terms of atoms. The modular law takes the form of the shearing identity. (Contributed by NM, 18-Jan-2005.) (New usage is discouraged.) |
| ⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Cℋ ⇒ ⊢ (𝐴 𝑀ℋ* 𝐵 ↔ ∀𝑥 ∈ HAtoms ((𝐴 ∨ℋ 𝐵) ∩ 𝑥) = ((((𝑥 ∨ℋ 𝐵) ∩ 𝐴) ∨ℋ 𝐵) ∩ 𝑥)) | ||
| Theorem | dmdbr7ati 32351* | Dual modular pair property in terms of atoms. (Contributed by NM, 18-Jan-2005.) (New usage is discouraged.) |
| ⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Cℋ ⇒ ⊢ (𝐴 𝑀ℋ* 𝐵 ↔ ∀𝑥 ∈ HAtoms ((𝐴 ∨ℋ 𝐵) ∩ 𝑥) ⊆ (((𝑥 ∨ℋ 𝐵) ∩ 𝐴) ∨ℋ 𝐵)) | ||
| Theorem | mdoc1i 32352 | Orthocomplements form a modular pair. (Contributed by NM, 29-Apr-2006.) (New usage is discouraged.) |
| ⊢ 𝐴 ∈ Cℋ ⇒ ⊢ 𝐴 𝑀ℋ (⊥‘𝐴) | ||
| Theorem | mdoc2i 32353 | Orthocomplements form a modular pair. (Contributed by NM, 29-Apr-2006.) (New usage is discouraged.) |
| ⊢ 𝐴 ∈ Cℋ ⇒ ⊢ (⊥‘𝐴) 𝑀ℋ 𝐴 | ||
| Theorem | dmdoc1i 32354 | Orthocomplements form a dual modular pair. (Contributed by NM, 29-Apr-2006.) (New usage is discouraged.) |
| ⊢ 𝐴 ∈ Cℋ ⇒ ⊢ 𝐴 𝑀ℋ* (⊥‘𝐴) | ||
| Theorem | dmdoc2i 32355 | Orthocomplements form a dual modular pair. (Contributed by NM, 29-Apr-2006.) (New usage is discouraged.) |
| ⊢ 𝐴 ∈ Cℋ ⇒ ⊢ (⊥‘𝐴) 𝑀ℋ* 𝐴 | ||
| Theorem | mdcompli 32356 | A condition equivalent to the modular pair property. Part of proof of Theorem 1.14 of [MaedaMaeda] p. 4. (Contributed by NM, 29-Apr-2006.) (New usage is discouraged.) |
| ⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Cℋ ⇒ ⊢ (𝐴 𝑀ℋ 𝐵 ↔ (𝐴 ∩ (⊥‘(𝐴 ∩ 𝐵))) 𝑀ℋ (𝐵 ∩ (⊥‘(𝐴 ∩ 𝐵)))) | ||
| Theorem | dmdcompli 32357 | A condition equivalent to the dual modular pair property. (Contributed by NM, 29-Apr-2006.) (New usage is discouraged.) |
| ⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Cℋ ⇒ ⊢ (𝐴 𝑀ℋ* 𝐵 ↔ (𝐴 ∩ (⊥‘(𝐴 ∩ 𝐵))) 𝑀ℋ* (𝐵 ∩ (⊥‘(𝐴 ∩ 𝐵)))) | ||
| Theorem | mddmdin0i 32358* | If dual modular implies modular whenever meet is zero, then dual modular implies modular for arbitrary lattice elements. This theorem is needed for the remark after Lemma 7 of [Holland] p. 1524 to hold. (Contributed by NM, 29-Apr-2006.) (New usage is discouraged.) |
| ⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Cℋ & ⊢ ∀𝑥 ∈ Cℋ ∀𝑦 ∈ Cℋ ((𝑥 𝑀ℋ* 𝑦 ∧ (𝑥 ∩ 𝑦) = 0ℋ) → 𝑥 𝑀ℋ 𝑦) ⇒ ⊢ (𝐴 𝑀ℋ* 𝐵 → 𝐴 𝑀ℋ 𝐵) | ||
| Theorem | cdjreui 32359* | A member of the sum of disjoint subspaces has a unique decomposition. Part of Lemma 5 of [Holland] p. 1520. (Contributed by NM, 20-May-2005.) (New usage is discouraged.) |
| ⊢ 𝐴 ∈ Sℋ & ⊢ 𝐵 ∈ Sℋ ⇒ ⊢ ((𝐶 ∈ (𝐴 +ℋ 𝐵) ∧ (𝐴 ∩ 𝐵) = 0ℋ) → ∃!𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝐶 = (𝑥 +ℎ 𝑦)) | ||
| Theorem | cdj1i 32360* | Two ways to express "𝐴 and 𝐵 are completely disjoint subspaces." (1) => (2) in Lemma 5 of [Holland] p. 1520. (Contributed by NM, 21-May-2005.) (New usage is discouraged.) |
| ⊢ 𝐴 ∈ Sℋ & ⊢ 𝐵 ∈ Sℋ ⇒ ⊢ (∃𝑤 ∈ ℝ (0 < 𝑤 ∧ ∀𝑦 ∈ 𝐴 ∀𝑣 ∈ 𝐵 ((normℎ‘𝑦) + (normℎ‘𝑣)) ≤ (𝑤 · (normℎ‘(𝑦 +ℎ 𝑣)))) → ∃𝑥 ∈ ℝ (0 < 𝑥 ∧ ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐵 ((normℎ‘𝑦) = 1 → 𝑥 ≤ (normℎ‘(𝑦 −ℎ 𝑧))))) | ||
| Theorem | cdj3lem1 32361* | A property of "𝐴 and 𝐵 are completely disjoint subspaces." Part of Lemma 5 of [Holland] p. 1520. (Contributed by NM, 23-May-2005.) (New usage is discouraged.) |
| ⊢ 𝐴 ∈ Sℋ & ⊢ 𝐵 ∈ Sℋ ⇒ ⊢ (∃𝑥 ∈ ℝ (0 < 𝑥 ∧ ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐵 ((normℎ‘𝑦) + (normℎ‘𝑧)) ≤ (𝑥 · (normℎ‘(𝑦 +ℎ 𝑧)))) → (𝐴 ∩ 𝐵) = 0ℋ) | ||
| Theorem | cdj3lem2 32362* | Lemma for cdj3i 32368. Value of the first-component function 𝑆. (Contributed by NM, 23-May-2005.) (New usage is discouraged.) |
| ⊢ 𝐴 ∈ Sℋ & ⊢ 𝐵 ∈ Sℋ & ⊢ 𝑆 = (𝑥 ∈ (𝐴 +ℋ 𝐵) ↦ (℩𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝐵 𝑥 = (𝑧 +ℎ 𝑤))) ⇒ ⊢ ((𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵 ∧ (𝐴 ∩ 𝐵) = 0ℋ) → (𝑆‘(𝐶 +ℎ 𝐷)) = 𝐶) | ||
| Theorem | cdj3lem2a 32363* | Lemma for cdj3i 32368. Closure of the first-component function 𝑆. (Contributed by NM, 25-May-2005.) (New usage is discouraged.) |
| ⊢ 𝐴 ∈ Sℋ & ⊢ 𝐵 ∈ Sℋ & ⊢ 𝑆 = (𝑥 ∈ (𝐴 +ℋ 𝐵) ↦ (℩𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝐵 𝑥 = (𝑧 +ℎ 𝑤))) ⇒ ⊢ ((𝐶 ∈ (𝐴 +ℋ 𝐵) ∧ (𝐴 ∩ 𝐵) = 0ℋ) → (𝑆‘𝐶) ∈ 𝐴) | ||
| Theorem | cdj3lem2b 32364* | Lemma for cdj3i 32368. The first-component function 𝑆 is bounded if the subspaces are completely disjoint. (Contributed by NM, 26-May-2005.) (New usage is discouraged.) |
| ⊢ 𝐴 ∈ Sℋ & ⊢ 𝐵 ∈ Sℋ & ⊢ 𝑆 = (𝑥 ∈ (𝐴 +ℋ 𝐵) ↦ (℩𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝐵 𝑥 = (𝑧 +ℎ 𝑤))) ⇒ ⊢ (∃𝑣 ∈ ℝ (0 < 𝑣 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ((normℎ‘𝑥) + (normℎ‘𝑦)) ≤ (𝑣 · (normℎ‘(𝑥 +ℎ 𝑦)))) → ∃𝑣 ∈ ℝ (0 < 𝑣 ∧ ∀𝑢 ∈ (𝐴 +ℋ 𝐵)(normℎ‘(𝑆‘𝑢)) ≤ (𝑣 · (normℎ‘𝑢)))) | ||
| Theorem | cdj3lem3 32365* | Lemma for cdj3i 32368. Value of the second-component function 𝑇. (Contributed by NM, 23-May-2005.) (New usage is discouraged.) |
| ⊢ 𝐴 ∈ Sℋ & ⊢ 𝐵 ∈ Sℋ & ⊢ 𝑇 = (𝑥 ∈ (𝐴 +ℋ 𝐵) ↦ (℩𝑤 ∈ 𝐵 ∃𝑧 ∈ 𝐴 𝑥 = (𝑧 +ℎ 𝑤))) ⇒ ⊢ ((𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵 ∧ (𝐴 ∩ 𝐵) = 0ℋ) → (𝑇‘(𝐶 +ℎ 𝐷)) = 𝐷) | ||
| Theorem | cdj3lem3a 32366* | Lemma for cdj3i 32368. Closure of the second-component function 𝑇. (Contributed by NM, 26-May-2005.) (New usage is discouraged.) |
| ⊢ 𝐴 ∈ Sℋ & ⊢ 𝐵 ∈ Sℋ & ⊢ 𝑇 = (𝑥 ∈ (𝐴 +ℋ 𝐵) ↦ (℩𝑤 ∈ 𝐵 ∃𝑧 ∈ 𝐴 𝑥 = (𝑧 +ℎ 𝑤))) ⇒ ⊢ ((𝐶 ∈ (𝐴 +ℋ 𝐵) ∧ (𝐴 ∩ 𝐵) = 0ℋ) → (𝑇‘𝐶) ∈ 𝐵) | ||
| Theorem | cdj3lem3b 32367* | Lemma for cdj3i 32368. The second-component function 𝑇 is bounded if the subspaces are completely disjoint. (Contributed by NM, 31-May-2005.) (New usage is discouraged.) |
| ⊢ 𝐴 ∈ Sℋ & ⊢ 𝐵 ∈ Sℋ & ⊢ 𝑇 = (𝑥 ∈ (𝐴 +ℋ 𝐵) ↦ (℩𝑤 ∈ 𝐵 ∃𝑧 ∈ 𝐴 𝑥 = (𝑧 +ℎ 𝑤))) ⇒ ⊢ (∃𝑣 ∈ ℝ (0 < 𝑣 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ((normℎ‘𝑥) + (normℎ‘𝑦)) ≤ (𝑣 · (normℎ‘(𝑥 +ℎ 𝑦)))) → ∃𝑣 ∈ ℝ (0 < 𝑣 ∧ ∀𝑢 ∈ (𝐴 +ℋ 𝐵)(normℎ‘(𝑇‘𝑢)) ≤ (𝑣 · (normℎ‘𝑢)))) | ||
| Theorem | cdj3i 32368* | Two ways to express "𝐴 and 𝐵 are completely disjoint subspaces." (1) <=> (3) in Lemma 5 of [Holland] p. 1520. (Contributed by NM, 1-Jun-2005.) (New usage is discouraged.) |
| ⊢ 𝐴 ∈ Sℋ & ⊢ 𝐵 ∈ Sℋ & ⊢ 𝑆 = (𝑥 ∈ (𝐴 +ℋ 𝐵) ↦ (℩𝑧 ∈ 𝐴 ∃𝑤 ∈ 𝐵 𝑥 = (𝑧 +ℎ 𝑤))) & ⊢ 𝑇 = (𝑥 ∈ (𝐴 +ℋ 𝐵) ↦ (℩𝑤 ∈ 𝐵 ∃𝑧 ∈ 𝐴 𝑥 = (𝑧 +ℎ 𝑤))) & ⊢ (𝜑 ↔ ∃𝑣 ∈ ℝ (0 < 𝑣 ∧ ∀𝑢 ∈ (𝐴 +ℋ 𝐵)(normℎ‘(𝑆‘𝑢)) ≤ (𝑣 · (normℎ‘𝑢)))) & ⊢ (𝜓 ↔ ∃𝑣 ∈ ℝ (0 < 𝑣 ∧ ∀𝑢 ∈ (𝐴 +ℋ 𝐵)(normℎ‘(𝑇‘𝑢)) ≤ (𝑣 · (normℎ‘𝑢)))) ⇒ ⊢ (∃𝑣 ∈ ℝ (0 < 𝑣 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ((normℎ‘𝑥) + (normℎ‘𝑦)) ≤ (𝑣 · (normℎ‘(𝑥 +ℎ 𝑦)))) ↔ ((𝐴 ∩ 𝐵) = 0ℋ ∧ 𝜑 ∧ 𝜓)) | ||
| Theorem | mathbox 32369 |
(This theorem is a dummy placeholder for these guidelines. The label
of this theorem, "mathbox", is hard-coded into the Metamath
program to
identify the start of the mathbox section for web page generation.)
A "mathbox" is a user-contributed section that is maintained by its contributor independently from the main part of set.mm. For contributors: By making a contribution, you agree to release it into the public domain, according to the statement at the beginning of set.mm. Mathboxes are provided to help keep your work synchronized with changes in set.mm while allowing you to work independently without affecting other contributors. Even though in a sense your mathbox belongs to you, it is still part of the shared body of knowledge contained in set.mm, and occasionally other people may make maintenance edits to your mathbox for things like keeping it synchronized with the rest of set.mm, reducing proof lengths, moving your theorems to the main part of set.mm when needed, and fixing typos or other errors. If you want to preserve it the way you left it, you can keep a local copy or keep track of the GitHub commit number. Guidelines: 1. See conventions 30327 for our general style guidelines. For contributing via GitHub, see https://github.com/metamath/set.mm/blob/develop/CONTRIBUTING.md 30327. The Metamath program command "verify markup *" will check that you have followed many of the conventions we use. 2. If at all possible, please use only nullary class constants for new definitions, for example as in df-div 11893. 3. Each $p and $a statement must be immediately preceded with the comment that will be shown on its web page description. The Metamath program "MM> WRITE SOURCE set.mm / REWRAP" command will take care of indentation conventions and line wrapping. 4. All mathbox content will be on public display and should hopefully reflect the overall quality of the website. 5. Mathboxes must be independent from one another (checked by "verify markup *"). If you need a theorem from another mathbox, typically it is moved to the main part of set.mm. New users should consult with more experienced users before doing this. 6. If a contributor is no longer active, we will continue the usual maintenance edits. As time goes on, often theorems will be moved to main or removed in favor of similar replacements. But we are also willing to maintain mathboxes in place, as work by others from years ago may form the foundation of future work; you could even argue that all of mathematics is like that. 7. For theorems of importance (for example, a Metamath 100 theorem or a dependency of one), we prefer to eventually move them out of mathboxes (although a mathbox is perfectly appropriate as proofs are being developed and refined). (Contributed by NM, 20-Feb-2007.) (Revised by the Metamath team, 9-Sep-2023.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ 𝜑 ⇒ ⊢ 𝜑 | ||
| Theorem | sa-abvi 32370 | A theorem about the universal class. Inference associated with bj-abv 36870 (which is proved from fewer axioms). (Contributed by Stefan Allan, 9-Dec-2008.) |
| ⊢ 𝜑 ⇒ ⊢ V = {𝑥 ∣ 𝜑} | ||
| Theorem | xfree 32371 | A partial converse to 19.9t 2204. (Contributed by Stefan Allan, 21-Dec-2008.) (Revised by Mario Carneiro, 11-Dec-2016.) |
| ⊢ (∀𝑥(𝜑 → ∀𝑥𝜑) ↔ ∀𝑥(∃𝑥𝜑 → 𝜑)) | ||
| Theorem | xfree2 32372 | A partial converse to 19.9t 2204. (Contributed by Stefan Allan, 21-Dec-2008.) |
| ⊢ (∀𝑥(𝜑 → ∀𝑥𝜑) ↔ ∀𝑥(¬ 𝜑 → ∀𝑥 ¬ 𝜑)) | ||
| Theorem | addltmulALT 32373 | A proof readability experiment for addltmul 12475. (Contributed by Stefan Allan, 30-Oct-2010.) (New usage is discouraged.) (Proof modification is discouraged.) |
| ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (2 < 𝐴 ∧ 2 < 𝐵)) → (𝐴 + 𝐵) < (𝐴 · 𝐵)) | ||
| Theorem | ad11antr 32374 | Deduction adding 11 conjuncts to antecedent. (Contributed by Thierry Arnoux, 27-Sep-2025.) |
| ⊢ (𝜑 → 𝜓) ⇒ ⊢ ((((((((((((𝜑 ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) ∧ 𝜁) ∧ 𝜎) ∧ 𝜌) ∧ 𝜇) ∧ 𝜆) ∧ 𝜅) ∧ 𝜈) → 𝜓) | ||
| Theorem | simp-12l 32375 | Simplification of a conjunction. (Contributed by Thierry Arnoux, 5-Oct-2025.) |
| ⊢ (((((((((((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) ∧ 𝜁) ∧ 𝜎) ∧ 𝜌) ∧ 𝜇) ∧ 𝜆) ∧ 𝜅) ∧ 𝜈) → 𝜑) | ||
| Theorem | simp-12r 32376 | Simplification of a conjunction. (Contributed by Thierry Arnoux, 5-Oct-2025.) |
| ⊢ (((((((((((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) ∧ 𝜁) ∧ 𝜎) ∧ 𝜌) ∧ 𝜇) ∧ 𝜆) ∧ 𝜅) ∧ 𝜈) → 𝜓) | ||
| Theorem | an42ds 32377 | Inference exchanging the last antecedent with the second one. See also an32s 652. (Contributed by Thierry Arnoux, 3-Jun-2025.) |
| ⊢ ((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) → 𝜏) ⇒ ⊢ ((((𝜑 ∧ 𝜃) ∧ 𝜒) ∧ 𝜓) → 𝜏) | ||
| Theorem | an52ds 32378 | Inference exchanging the last antecedent with the second. (Contributed by Thierry Arnoux, 3-Jun-2025.) |
| ⊢ (((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) → 𝜂) ⇒ ⊢ (((((𝜑 ∧ 𝜏) ∧ 𝜒) ∧ 𝜃) ∧ 𝜓) → 𝜂) | ||
| Theorem | an62ds 32379 | Inference exchanging the last antecedent with the second one. (Contributed by Thierry Arnoux, 3-Jun-2025.) |
| ⊢ ((((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) → 𝜁) ⇒ ⊢ ((((((𝜑 ∧ 𝜂) ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) ∧ 𝜓) → 𝜁) | ||
| Theorem | an72ds 32380 | Inference exchanging the last antecedent with the second one. (Contributed by Thierry Arnoux, 3-Jun-2025.) |
| ⊢ (((((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) ∧ 𝜁) → 𝜎) ⇒ ⊢ (((((((𝜑 ∧ 𝜁) ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) ∧ 𝜓) → 𝜎) | ||
| Theorem | an82ds 32381 | Inference exchanging the last antecedent with the second one. (Contributed by Thierry Arnoux, 3-Jun-2025.) |
| ⊢ ((((((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) ∧ 𝜁) ∧ 𝜎) → 𝜌) ⇒ ⊢ ((((((((𝜑 ∧ 𝜎) ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) ∧ 𝜁) ∧ 𝜓) → 𝜌) | ||
| Theorem | syl22anbrc 32382 | Syllogism inference. (Contributed by Thierry Arnoux, 19-Oct-2025.) |
| ⊢ (𝜑 → 𝜓) & ⊢ (𝜑 → 𝜒) & ⊢ (𝜑 → 𝜃) & ⊢ (𝜑 → 𝜏) & ⊢ (𝜂 ↔ ((𝜓 ∧ 𝜒) ∧ (𝜃 ∧ 𝜏))) ⇒ ⊢ (𝜑 → 𝜂) | ||
| Theorem | bian1d 32383 | Adding a superfluous conjunct in a biconditional. (Contributed by Thierry Arnoux, 26-Feb-2017.) (Proof shortened by Hongxiu Chen, 29-Jun-2025.) |
| ⊢ (𝜑 → (𝜓 ↔ (𝜒 ∧ 𝜃))) ⇒ ⊢ (𝜑 → ((𝜒 ∧ 𝜓) ↔ (𝜒 ∧ 𝜃))) | ||
| Theorem | bian1dOLD 32384 | Obsolete version of bian1d 32383 as of 29-Jun-2025. (Contributed by Thierry Arnoux, 26-Feb-2017.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ (𝜑 → (𝜓 ↔ (𝜒 ∧ 𝜃))) ⇒ ⊢ (𝜑 → ((𝜒 ∧ 𝜓) ↔ (𝜒 ∧ 𝜃))) | ||
| Theorem | orim12da 32385 | Deduce a disjunction from another one. Variation on orim12d 966. (Contributed by Thierry Arnoux, 18-May-2025.) |
| ⊢ ((𝜑 ∧ 𝜓) → 𝜃) & ⊢ ((𝜑 ∧ 𝜒) → 𝜏) & ⊢ (𝜑 → (𝜓 ∨ 𝜒)) ⇒ ⊢ (𝜑 → (𝜃 ∨ 𝜏)) | ||
| Theorem | or3di 32386 | Distributive law for disjunction. (Contributed by Thierry Arnoux, 3-Jul-2017.) |
| ⊢ ((𝜑 ∨ (𝜓 ∧ 𝜒 ∧ 𝜏)) ↔ ((𝜑 ∨ 𝜓) ∧ (𝜑 ∨ 𝜒) ∧ (𝜑 ∨ 𝜏))) | ||
| Theorem | or3dir 32387 | Distributive law for disjunction. (Contributed by Thierry Arnoux, 3-Jul-2017.) |
| ⊢ (((𝜑 ∧ 𝜓 ∧ 𝜒) ∨ 𝜏) ↔ ((𝜑 ∨ 𝜏) ∧ (𝜓 ∨ 𝜏) ∧ (𝜒 ∨ 𝜏))) | ||
| Theorem | 3o1cs 32388 | Deduction eliminating disjunct. (Contributed by Thierry Arnoux, 19-Dec-2016.) |
| ⊢ ((𝜑 ∨ 𝜓 ∨ 𝜒) → 𝜃) ⇒ ⊢ (𝜑 → 𝜃) | ||
| Theorem | 3o2cs 32389 | Deduction eliminating disjunct. (Contributed by Thierry Arnoux, 19-Dec-2016.) |
| ⊢ ((𝜑 ∨ 𝜓 ∨ 𝜒) → 𝜃) ⇒ ⊢ (𝜓 → 𝜃) | ||
| Theorem | 3o3cs 32390 | Deduction eliminating disjunct. (Contributed by Thierry Arnoux, 19-Dec-2016.) |
| ⊢ ((𝜑 ∨ 𝜓 ∨ 𝜒) → 𝜃) ⇒ ⊢ (𝜒 → 𝜃) | ||
| Theorem | 13an22anass 32391 | Associative law for four conjunctions with a triple conjunction. (Contributed by Thierry Arnoux, 21-Jan-2025.) |
| ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒 ∧ 𝜃)) ↔ ((𝜑 ∧ 𝜓) ∧ (𝜒 ∧ 𝜃))) | ||
| Theorem | sbc2iedf 32392* | Conversion of implicit substitution to explicit class substitution. (Contributed by Thierry Arnoux, 4-Jul-2023.) |
| ⊢ Ⅎ𝑥𝜑 & ⊢ Ⅎ𝑦𝜑 & ⊢ Ⅎ𝑥𝜒 & ⊢ Ⅎ𝑦𝜒 & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 ∈ 𝑊) & ⊢ ((𝜑 ∧ (𝑥 = 𝐴 ∧ 𝑦 = 𝐵)) → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → ([𝐴 / 𝑥][𝐵 / 𝑦]𝜓 ↔ 𝜒)) | ||
| Theorem | rspc2daf 32393* | Double restricted specialization, using implicit substitution. (Contributed by Thierry Arnoux, 4-Jul-2023.) |
| ⊢ Ⅎ𝑥𝜑 & ⊢ Ⅎ𝑦𝜑 & ⊢ Ⅎ𝑥𝜒 & ⊢ Ⅎ𝑦𝜒 & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 ∈ 𝑊) & ⊢ ((𝜑 ∧ (𝑥 = 𝐴 ∧ 𝑦 = 𝐵)) → (𝜓 ↔ 𝜒)) & ⊢ (𝜑 → ∀𝑥 ∈ 𝑉 ∀𝑦 ∈ 𝑊 𝜓) ⇒ ⊢ (𝜑 → 𝜒) | ||
| Theorem | ralcom4f 32394* | Commutation of restricted and unrestricted universal quantifiers. (Contributed by NM, 26-Mar-2004.) (Proof shortened by Andrew Salmon, 8-Jun-2011.) (Revised by Thierry Arnoux, 8-Mar-2017.) |
| ⊢ Ⅎ𝑦𝐴 ⇒ ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦𝜑 ↔ ∀𝑦∀𝑥 ∈ 𝐴 𝜑) | ||
| Theorem | rexcom4f 32395* | Commutation of restricted and unrestricted existential quantifiers. (Contributed by NM, 12-Apr-2004.) (Proof shortened by Andrew Salmon, 8-Jun-2011.) (Revised by Thierry Arnoux, 8-Mar-2017.) |
| ⊢ Ⅎ𝑦𝐴 ⇒ ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦𝜑 ↔ ∃𝑦∃𝑥 ∈ 𝐴 𝜑) | ||
| Theorem | 19.9d2rf 32396 | A deduction version of one direction of 19.9 2205 with two variables. (Contributed by Thierry Arnoux, 20-Mar-2017.) |
| ⊢ Ⅎ𝑦𝜑 & ⊢ (𝜑 → Ⅎ𝑥𝜓) & ⊢ (𝜑 → Ⅎ𝑦𝜓) & ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜓) ⇒ ⊢ (𝜑 → 𝜓) | ||
| Theorem | 19.9d2r 32397* | A deduction version of one direction of 19.9 2205 with two variables. (Contributed by Thierry Arnoux, 30-Jan-2017.) |
| ⊢ (𝜑 → Ⅎ𝑥𝜓) & ⊢ (𝜑 → Ⅎ𝑦𝜓) & ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜓) ⇒ ⊢ (𝜑 → 𝜓) | ||
| Theorem | r19.29ffa 32398* | A commonly used pattern based on r19.29 3101, version with two restricted quantifiers. (Contributed by Thierry Arnoux, 26-Nov-2017.) |
| ⊢ ((((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐵) ∧ 𝜓) → 𝜒) ⇒ ⊢ ((𝜑 ∧ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜓) → 𝜒) | ||
| Theorem | n0limd 32399* | Deduction rule for nonempty classes. (Contributed by Thierry Arnoux, 3-Aug-2025.) |
| ⊢ (𝜑 → 𝐴 ≠ ∅) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝜓) ⇒ ⊢ (𝜑 → 𝜓) | ||
| Theorem | reu6dv 32400* | A condition which implies existential uniqueness. (Contributed by Thierry Arnoux, 13-Oct-2025.) |
| ⊢ (𝜑 → 𝐵 ∈ 𝐴) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 ↔ 𝑥 = 𝐵)) ⇒ ⊢ (𝜑 → ∃!𝑥 ∈ 𝐴 𝜓) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |