![]() |
Metamath
Proof Explorer Theorem List (p. 324 of 489) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | ![]() (1-30950) |
![]() (30951-32473) |
![]() (32474-48899) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | jplem2 32301* | Lemma for Jauch-Piron theorem. (Contributed by NM, 8-Apr-2001.) (New usage is discouraged.) |
⊢ 𝑆 = (𝑥 ∈ Cℋ ↦ ((normℎ‘((projℎ‘𝑥)‘𝑢))↑2)) & ⊢ 𝐴 ∈ Cℋ ⇒ ⊢ ((𝑢 ∈ ℋ ∧ (normℎ‘𝑢) = 1) → (𝑢 ∈ 𝐴 ↔ (𝑆‘𝐴) = 1)) | ||
Theorem | jpi 32302* | The function 𝑆, that maps a closed subspace to the square of the norm of its projection onto a unit vector, is a Jauch-Piron state. Remark in [Mayet] p. 370. (See strlem3a 32284 for the proof that 𝑆 is a state.) (Contributed by NM, 8-Apr-2001.) (New usage is discouraged.) |
⊢ 𝑆 = (𝑥 ∈ Cℋ ↦ ((normℎ‘((projℎ‘𝑥)‘𝑢))↑2)) & ⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Cℋ ⇒ ⊢ ((𝑢 ∈ ℋ ∧ (normℎ‘𝑢) = 1) → (((𝑆‘𝐴) = 1 ∧ (𝑆‘𝐵) = 1) ↔ (𝑆‘(𝐴 ∩ 𝐵)) = 1)) | ||
Theorem | golem1 32303 | Lemma for Godowski's equation. (Contributed by NM, 10-Nov-2002.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Cℋ & ⊢ 𝐶 ∈ Cℋ & ⊢ 𝐹 = ((⊥‘𝐴) ∨ℋ (𝐴 ∩ 𝐵)) & ⊢ 𝐺 = ((⊥‘𝐵) ∨ℋ (𝐵 ∩ 𝐶)) & ⊢ 𝐻 = ((⊥‘𝐶) ∨ℋ (𝐶 ∩ 𝐴)) & ⊢ 𝐷 = ((⊥‘𝐵) ∨ℋ (𝐵 ∩ 𝐴)) & ⊢ 𝑅 = ((⊥‘𝐶) ∨ℋ (𝐶 ∩ 𝐵)) & ⊢ 𝑆 = ((⊥‘𝐴) ∨ℋ (𝐴 ∩ 𝐶)) ⇒ ⊢ (𝑓 ∈ States → (((𝑓‘𝐹) + (𝑓‘𝐺)) + (𝑓‘𝐻)) = (((𝑓‘𝐷) + (𝑓‘𝑅)) + (𝑓‘𝑆))) | ||
Theorem | golem2 32304 | Lemma for Godowski's equation. (Contributed by NM, 13-Nov-1999.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Cℋ & ⊢ 𝐶 ∈ Cℋ & ⊢ 𝐹 = ((⊥‘𝐴) ∨ℋ (𝐴 ∩ 𝐵)) & ⊢ 𝐺 = ((⊥‘𝐵) ∨ℋ (𝐵 ∩ 𝐶)) & ⊢ 𝐻 = ((⊥‘𝐶) ∨ℋ (𝐶 ∩ 𝐴)) & ⊢ 𝐷 = ((⊥‘𝐵) ∨ℋ (𝐵 ∩ 𝐴)) & ⊢ 𝑅 = ((⊥‘𝐶) ∨ℋ (𝐶 ∩ 𝐵)) & ⊢ 𝑆 = ((⊥‘𝐴) ∨ℋ (𝐴 ∩ 𝐶)) ⇒ ⊢ (𝑓 ∈ States → ((𝑓‘((𝐹 ∩ 𝐺) ∩ 𝐻)) = 1 → (𝑓‘𝐷) = 1)) | ||
Theorem | goeqi 32305 | Godowski's equation, shown here as a variant equivalent to Equation SF of [Godowski] p. 730. (Contributed by NM, 10-Nov-2002.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Cℋ & ⊢ 𝐶 ∈ Cℋ & ⊢ 𝐹 = ((⊥‘𝐴) ∨ℋ (𝐴 ∩ 𝐵)) & ⊢ 𝐺 = ((⊥‘𝐵) ∨ℋ (𝐵 ∩ 𝐶)) & ⊢ 𝐻 = ((⊥‘𝐶) ∨ℋ (𝐶 ∩ 𝐴)) & ⊢ 𝐷 = ((⊥‘𝐵) ∨ℋ (𝐵 ∩ 𝐴)) ⇒ ⊢ ((𝐹 ∩ 𝐺) ∩ 𝐻) ⊆ 𝐷 | ||
Theorem | stcltr1i 32306* | Property of a strong classical state. (Contributed by NM, 24-Oct-1999.) (New usage is discouraged.) |
⊢ (𝜑 ↔ (𝑆 ∈ States ∧ ∀𝑥 ∈ Cℋ ∀𝑦 ∈ Cℋ (((𝑆‘𝑥) = 1 → (𝑆‘𝑦) = 1) → 𝑥 ⊆ 𝑦))) & ⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Cℋ ⇒ ⊢ (𝜑 → (((𝑆‘𝐴) = 1 → (𝑆‘𝐵) = 1) → 𝐴 ⊆ 𝐵)) | ||
Theorem | stcltr2i 32307* | Property of a strong classical state. (Contributed by NM, 24-Oct-1999.) (New usage is discouraged.) |
⊢ (𝜑 ↔ (𝑆 ∈ States ∧ ∀𝑥 ∈ Cℋ ∀𝑦 ∈ Cℋ (((𝑆‘𝑥) = 1 → (𝑆‘𝑦) = 1) → 𝑥 ⊆ 𝑦))) & ⊢ 𝐴 ∈ Cℋ ⇒ ⊢ (𝜑 → ((𝑆‘𝐴) = 1 → 𝐴 = ℋ)) | ||
Theorem | stcltrlem1 32308* | Lemma for strong classical state theorem. (Contributed by NM, 24-Oct-1999.) (New usage is discouraged.) |
⊢ (𝜑 ↔ (𝑆 ∈ States ∧ ∀𝑥 ∈ Cℋ ∀𝑦 ∈ Cℋ (((𝑆‘𝑥) = 1 → (𝑆‘𝑦) = 1) → 𝑥 ⊆ 𝑦))) & ⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Cℋ ⇒ ⊢ (𝜑 → ((𝑆‘𝐵) = 1 → (𝑆‘((⊥‘𝐴) ∨ℋ (𝐴 ∩ 𝐵))) = 1)) | ||
Theorem | stcltrlem2 32309* | Lemma for strong classical state theorem. (Contributed by NM, 24-Oct-1999.) (New usage is discouraged.) |
⊢ (𝜑 ↔ (𝑆 ∈ States ∧ ∀𝑥 ∈ Cℋ ∀𝑦 ∈ Cℋ (((𝑆‘𝑥) = 1 → (𝑆‘𝑦) = 1) → 𝑥 ⊆ 𝑦))) & ⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Cℋ ⇒ ⊢ (𝜑 → 𝐵 ⊆ ((⊥‘𝐴) ∨ℋ (𝐴 ∩ 𝐵))) | ||
Theorem | stcltrthi 32310* | Theorem for classically strong set of states. If there exists a "classically strong set of states" on lattice Cℋ (or actually any ortholattice, which would have an identical proof), then any two elements of the lattice commute, i.e., the lattice is distributive. (Proof due to Mladen Pavicic.) Theorem 3.3 of [MegPav2000] p. 2344. (Contributed by NM, 24-Oct-1999.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Cℋ & ⊢ ∃𝑠 ∈ States ∀𝑥 ∈ Cℋ ∀𝑦 ∈ Cℋ (((𝑠‘𝑥) = 1 → (𝑠‘𝑦) = 1) → 𝑥 ⊆ 𝑦) ⇒ ⊢ 𝐵 ⊆ ((⊥‘𝐴) ∨ℋ (𝐴 ∩ 𝐵)) | ||
Definition | df-cv 32311* | Define the covers relation (on the Hilbert lattice). Definition 3.2.18 of [PtakPulmannova] p. 68, whose notation we use. Ptak/Pulmannova's notation 𝐴 ⋖ℋ 𝐵 is read "𝐵 covers 𝐴 " or "𝐴 is covered by 𝐵 " , and it means that 𝐵 is larger than 𝐴 and there is nothing in between. See cvbr 32314 and cvbr2 32315 for membership relations. (Contributed by NM, 4-Jun-2004.) (New usage is discouraged.) |
⊢ ⋖ℋ = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ Cℋ ∧ 𝑦 ∈ Cℋ ) ∧ (𝑥 ⊊ 𝑦 ∧ ¬ ∃𝑧 ∈ Cℋ (𝑥 ⊊ 𝑧 ∧ 𝑧 ⊊ 𝑦)))} | ||
Definition | df-md 32312* | Define the modular pair relation (on the Hilbert lattice). Definition 1.1 of [MaedaMaeda] p. 1, who use the notation (x,y)M for "the ordered pair <x,y> is a modular pair." See mdbr 32326 for membership relation. (Contributed by NM, 14-Jun-2004.) (New usage is discouraged.) |
⊢ 𝑀ℋ = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ Cℋ ∧ 𝑦 ∈ Cℋ ) ∧ ∀𝑧 ∈ Cℋ (𝑧 ⊆ 𝑦 → ((𝑧 ∨ℋ 𝑥) ∩ 𝑦) = (𝑧 ∨ℋ (𝑥 ∩ 𝑦))))} | ||
Definition | df-dmd 32313* | Define the dual modular pair relation (on the Hilbert lattice). Definition 1.1 of [MaedaMaeda] p. 1, who use the notation (x,y)M* for "the ordered pair <x,y> is a dual modular pair." See dmdbr 32331 for membership relation. (Contributed by NM, 27-Apr-2006.) (New usage is discouraged.) |
⊢ 𝑀ℋ* = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ Cℋ ∧ 𝑦 ∈ Cℋ ) ∧ ∀𝑧 ∈ Cℋ (𝑦 ⊆ 𝑧 → ((𝑧 ∩ 𝑥) ∨ℋ 𝑦) = (𝑧 ∩ (𝑥 ∨ℋ 𝑦))))} | ||
Theorem | cvbr 32314* | Binary relation expressing 𝐵 covers 𝐴, which means that 𝐵 is larger than 𝐴 and there is nothing in between. Definition 3.2.18 of [PtakPulmannova] p. 68. (Contributed by NM, 4-Jun-2004.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → (𝐴 ⋖ℋ 𝐵 ↔ (𝐴 ⊊ 𝐵 ∧ ¬ ∃𝑥 ∈ Cℋ (𝐴 ⊊ 𝑥 ∧ 𝑥 ⊊ 𝐵)))) | ||
Theorem | cvbr2 32315* | Binary relation expressing 𝐵 covers 𝐴. Definition of covers in [Kalmbach] p. 15. (Contributed by NM, 9-Jun-2004.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → (𝐴 ⋖ℋ 𝐵 ↔ (𝐴 ⊊ 𝐵 ∧ ∀𝑥 ∈ Cℋ ((𝐴 ⊊ 𝑥 ∧ 𝑥 ⊆ 𝐵) → 𝑥 = 𝐵)))) | ||
Theorem | cvcon3 32316 | Contraposition law for the covers relation. (Contributed by NM, 12-Jun-2004.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → (𝐴 ⋖ℋ 𝐵 ↔ (⊥‘𝐵) ⋖ℋ (⊥‘𝐴))) | ||
Theorem | cvpss 32317 | The covers relation implies proper subset. (Contributed by NM, 10-Jun-2004.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → (𝐴 ⋖ℋ 𝐵 → 𝐴 ⊊ 𝐵)) | ||
Theorem | cvnbtwn 32318 | The covers relation implies no in-betweenness. (Contributed by NM, 12-Jun-2004.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ∧ 𝐶 ∈ Cℋ ) → (𝐴 ⋖ℋ 𝐵 → ¬ (𝐴 ⊊ 𝐶 ∧ 𝐶 ⊊ 𝐵))) | ||
Theorem | cvnbtwn2 32319 | The covers relation implies no in-betweenness. (Contributed by NM, 12-Jun-2004.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ∧ 𝐶 ∈ Cℋ ) → (𝐴 ⋖ℋ 𝐵 → ((𝐴 ⊊ 𝐶 ∧ 𝐶 ⊆ 𝐵) → 𝐶 = 𝐵))) | ||
Theorem | cvnbtwn3 32320 | The covers relation implies no in-betweenness. (Contributed by NM, 12-Jun-2004.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ∧ 𝐶 ∈ Cℋ ) → (𝐴 ⋖ℋ 𝐵 → ((𝐴 ⊆ 𝐶 ∧ 𝐶 ⊊ 𝐵) → 𝐶 = 𝐴))) | ||
Theorem | cvnbtwn4 32321 | The covers relation implies no in-betweenness. Part of proof of Lemma 7.5.1 of [MaedaMaeda] p. 31. (Contributed by NM, 12-Jun-2004.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ∧ 𝐶 ∈ Cℋ ) → (𝐴 ⋖ℋ 𝐵 → ((𝐴 ⊆ 𝐶 ∧ 𝐶 ⊆ 𝐵) → (𝐶 = 𝐴 ∨ 𝐶 = 𝐵)))) | ||
Theorem | cvnsym 32322 | The covers relation is not symmetric. (Contributed by NM, 26-Jun-2004.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → (𝐴 ⋖ℋ 𝐵 → ¬ 𝐵 ⋖ℋ 𝐴)) | ||
Theorem | cvnref 32323 | The covers relation is not reflexive. (Contributed by NM, 26-Jun-2004.) (New usage is discouraged.) |
⊢ (𝐴 ∈ Cℋ → ¬ 𝐴 ⋖ℋ 𝐴) | ||
Theorem | cvntr 32324 | The covers relation is not transitive. (Contributed by NM, 26-Jun-2004.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ∧ 𝐶 ∈ Cℋ ) → ((𝐴 ⋖ℋ 𝐵 ∧ 𝐵 ⋖ℋ 𝐶) → ¬ 𝐴 ⋖ℋ 𝐶)) | ||
Theorem | spansncv2 32325 | Hilbert space has the covering property (using spans of singletons to represent atoms). Proposition 1(ii) of [Kalmbach] p. 153. (Contributed by NM, 9-Jun-2004.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ ℋ) → (¬ (span‘{𝐵}) ⊆ 𝐴 → 𝐴 ⋖ℋ (𝐴 ∨ℋ (span‘{𝐵})))) | ||
Theorem | mdbr 32326* | Binary relation expressing 〈𝐴, 𝐵〉 is a modular pair. Definition 1.1 of [MaedaMaeda] p. 1. (Contributed by NM, 14-Jun-2004.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → (𝐴 𝑀ℋ 𝐵 ↔ ∀𝑥 ∈ Cℋ (𝑥 ⊆ 𝐵 → ((𝑥 ∨ℋ 𝐴) ∩ 𝐵) = (𝑥 ∨ℋ (𝐴 ∩ 𝐵))))) | ||
Theorem | mdi 32327 | Consequence of the modular pair property. (Contributed by NM, 22-Jun-2004.) (New usage is discouraged.) |
⊢ (((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ∧ 𝐶 ∈ Cℋ ) ∧ (𝐴 𝑀ℋ 𝐵 ∧ 𝐶 ⊆ 𝐵)) → ((𝐶 ∨ℋ 𝐴) ∩ 𝐵) = (𝐶 ∨ℋ (𝐴 ∩ 𝐵))) | ||
Theorem | mdbr2 32328* | Binary relation expressing the modular pair property. This version has a weaker constraint than mdbr 32326. (Contributed by NM, 15-Jun-2004.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → (𝐴 𝑀ℋ 𝐵 ↔ ∀𝑥 ∈ Cℋ (𝑥 ⊆ 𝐵 → ((𝑥 ∨ℋ 𝐴) ∩ 𝐵) ⊆ (𝑥 ∨ℋ (𝐴 ∩ 𝐵))))) | ||
Theorem | mdbr3 32329* | Binary relation expressing the modular pair property. This version quantifies an equality instead of an inference. (Contributed by NM, 6-Jul-2004.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → (𝐴 𝑀ℋ 𝐵 ↔ ∀𝑥 ∈ Cℋ (((𝑥 ∩ 𝐵) ∨ℋ 𝐴) ∩ 𝐵) = ((𝑥 ∩ 𝐵) ∨ℋ (𝐴 ∩ 𝐵)))) | ||
Theorem | mdbr4 32330* | Binary relation expressing the modular pair property. This version quantifies an ordering instead of an inference. (Contributed by NM, 6-Jul-2004.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → (𝐴 𝑀ℋ 𝐵 ↔ ∀𝑥 ∈ Cℋ (((𝑥 ∩ 𝐵) ∨ℋ 𝐴) ∩ 𝐵) ⊆ ((𝑥 ∩ 𝐵) ∨ℋ (𝐴 ∩ 𝐵)))) | ||
Theorem | dmdbr 32331* | Binary relation expressing the dual modular pair property. (Contributed by NM, 27-Apr-2006.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → (𝐴 𝑀ℋ* 𝐵 ↔ ∀𝑥 ∈ Cℋ (𝐵 ⊆ 𝑥 → ((𝑥 ∩ 𝐴) ∨ℋ 𝐵) = (𝑥 ∩ (𝐴 ∨ℋ 𝐵))))) | ||
Theorem | dmdmd 32332 | The dual modular pair property expressed in terms of the modular pair property, that hold in Hilbert lattices. Remark 29.6 of [MaedaMaeda] p. 130. (Contributed by NM, 27-Apr-2006.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → (𝐴 𝑀ℋ* 𝐵 ↔ (⊥‘𝐴) 𝑀ℋ (⊥‘𝐵))) | ||
Theorem | mddmd 32333 | The modular pair property expressed in terms of the dual modular pair property. (Contributed by NM, 27-Apr-2006.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → (𝐴 𝑀ℋ 𝐵 ↔ (⊥‘𝐴) 𝑀ℋ* (⊥‘𝐵))) | ||
Theorem | dmdi 32334 | Consequence of the dual modular pair property. (Contributed by NM, 27-Apr-2006.) (New usage is discouraged.) |
⊢ (((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ∧ 𝐶 ∈ Cℋ ) ∧ (𝐴 𝑀ℋ* 𝐵 ∧ 𝐵 ⊆ 𝐶)) → ((𝐶 ∩ 𝐴) ∨ℋ 𝐵) = (𝐶 ∩ (𝐴 ∨ℋ 𝐵))) | ||
Theorem | dmdbr2 32335* | Binary relation expressing the dual modular pair property. This version has a weaker constraint than dmdbr 32331. (Contributed by NM, 30-Jun-2004.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → (𝐴 𝑀ℋ* 𝐵 ↔ ∀𝑥 ∈ Cℋ (𝐵 ⊆ 𝑥 → (𝑥 ∩ (𝐴 ∨ℋ 𝐵)) ⊆ ((𝑥 ∩ 𝐴) ∨ℋ 𝐵)))) | ||
Theorem | dmdi2 32336 | Consequence of the dual modular pair property. (Contributed by NM, 14-Jan-2005.) (New usage is discouraged.) |
⊢ (((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ∧ 𝐶 ∈ Cℋ ) ∧ (𝐴 𝑀ℋ* 𝐵 ∧ 𝐵 ⊆ 𝐶)) → (𝐶 ∩ (𝐴 ∨ℋ 𝐵)) ⊆ ((𝐶 ∩ 𝐴) ∨ℋ 𝐵)) | ||
Theorem | dmdbr3 32337* | Binary relation expressing the dual modular pair property. This version quantifies an equality instead of an inference. (Contributed by NM, 6-Jul-2004.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → (𝐴 𝑀ℋ* 𝐵 ↔ ∀𝑥 ∈ Cℋ (((𝑥 ∨ℋ 𝐵) ∩ 𝐴) ∨ℋ 𝐵) = ((𝑥 ∨ℋ 𝐵) ∩ (𝐴 ∨ℋ 𝐵)))) | ||
Theorem | dmdbr4 32338* | Binary relation expressing the dual modular pair property. This version quantifies an ordering instead of an inference. (Contributed by NM, 6-Jul-2004.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → (𝐴 𝑀ℋ* 𝐵 ↔ ∀𝑥 ∈ Cℋ ((𝑥 ∨ℋ 𝐵) ∩ (𝐴 ∨ℋ 𝐵)) ⊆ (((𝑥 ∨ℋ 𝐵) ∩ 𝐴) ∨ℋ 𝐵))) | ||
Theorem | dmdi4 32339 | Consequence of the dual modular pair property. (Contributed by NM, 14-Jan-2005.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ∧ 𝐶 ∈ Cℋ ) → (𝐴 𝑀ℋ* 𝐵 → ((𝐶 ∨ℋ 𝐵) ∩ (𝐴 ∨ℋ 𝐵)) ⊆ (((𝐶 ∨ℋ 𝐵) ∩ 𝐴) ∨ℋ 𝐵))) | ||
Theorem | dmdbr5 32340* | Binary relation expressing the dual modular pair property. (Contributed by NM, 15-Jan-2005.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → (𝐴 𝑀ℋ* 𝐵 ↔ ∀𝑥 ∈ Cℋ (𝑥 ⊆ (𝐴 ∨ℋ 𝐵) → 𝑥 ⊆ (((𝑥 ∨ℋ 𝐵) ∩ 𝐴) ∨ℋ 𝐵)))) | ||
Theorem | mddmd2 32341* | Relationship between modular pairs and dual-modular pairs. Lemma 1.2 of [MaedaMaeda] p. 1. (Contributed by NM, 21-Jun-2004.) (New usage is discouraged.) |
⊢ (𝐴 ∈ Cℋ → (∀𝑥 ∈ Cℋ 𝐴 𝑀ℋ 𝑥 ↔ ∀𝑥 ∈ Cℋ 𝐴 𝑀ℋ* 𝑥)) | ||
Theorem | mdsl0 32342 | A sublattice condition that transfers the modular pair property. Exercise 12 of [Kalmbach] p. 103. Also Lemma 1.5.3 of [MaedaMaeda] p. 2. (Contributed by NM, 22-Jun-2004.) (New usage is discouraged.) |
⊢ (((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) ∧ (𝐶 ∈ Cℋ ∧ 𝐷 ∈ Cℋ )) → ((((𝐶 ⊆ 𝐴 ∧ 𝐷 ⊆ 𝐵) ∧ (𝐴 ∩ 𝐵) = 0ℋ) ∧ 𝐴 𝑀ℋ 𝐵) → 𝐶 𝑀ℋ 𝐷)) | ||
Theorem | ssmd1 32343 | Ordering implies the modular pair property. Remark in [MaedaMaeda] p. 1. (Contributed by NM, 21-Jun-2004.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ∧ 𝐴 ⊆ 𝐵) → 𝐴 𝑀ℋ 𝐵) | ||
Theorem | ssmd2 32344 | Ordering implies the modular pair property. Remark in [MaedaMaeda] p. 1. (Contributed by NM, 21-Jun-2004.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ∧ 𝐴 ⊆ 𝐵) → 𝐵 𝑀ℋ 𝐴) | ||
Theorem | ssdmd1 32345 | Ordering implies the dual modular pair property. Remark in [MaedaMaeda] p. 1. (Contributed by NM, 22-Jun-2004.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ∧ 𝐴 ⊆ 𝐵) → 𝐴 𝑀ℋ* 𝐵) | ||
Theorem | ssdmd2 32346 | Ordering implies the dual modular pair property. Remark in [MaedaMaeda] p. 1. (Contributed by NM, 22-Jun-2004.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ∧ 𝐴 ⊆ 𝐵) → (⊥‘𝐵) 𝑀ℋ (⊥‘𝐴)) | ||
Theorem | dmdsl3 32347 | Sublattice mapping for a dual-modular pair. Part of Theorem 1.3 of [MaedaMaeda] p. 2. (Contributed by NM, 26-Apr-2006.) (New usage is discouraged.) |
⊢ (((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ∧ 𝐶 ∈ Cℋ ) ∧ (𝐵 𝑀ℋ* 𝐴 ∧ 𝐴 ⊆ 𝐶 ∧ 𝐶 ⊆ (𝐴 ∨ℋ 𝐵))) → ((𝐶 ∩ 𝐵) ∨ℋ 𝐴) = 𝐶) | ||
Theorem | mdsl3 32348 | Sublattice mapping for a modular pair. Part of Theorem 1.3 of [MaedaMaeda] p. 2. (Contributed by NM, 26-Apr-2006.) (New usage is discouraged.) |
⊢ (((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ∧ 𝐶 ∈ Cℋ ) ∧ (𝐴 𝑀ℋ 𝐵 ∧ (𝐴 ∩ 𝐵) ⊆ 𝐶 ∧ 𝐶 ⊆ 𝐵)) → ((𝐶 ∨ℋ 𝐴) ∩ 𝐵) = 𝐶) | ||
Theorem | mdslle1i 32349 | Order preservation of the one-to-one onto mapping between the two sublattices in Lemma 1.3 of [MaedaMaeda] p. 2. (Contributed by NM, 27-Apr-2006.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Cℋ & ⊢ 𝐶 ∈ Cℋ & ⊢ 𝐷 ∈ Cℋ ⇒ ⊢ ((𝐵 𝑀ℋ* 𝐴 ∧ 𝐴 ⊆ (𝐶 ∩ 𝐷) ∧ (𝐶 ∨ℋ 𝐷) ⊆ (𝐴 ∨ℋ 𝐵)) → (𝐶 ⊆ 𝐷 ↔ (𝐶 ∩ 𝐵) ⊆ (𝐷 ∩ 𝐵))) | ||
Theorem | mdslle2i 32350 | Order preservation of the one-to-one onto mapping between the two sublattices in Lemma 1.3 of [MaedaMaeda] p. 2. (Contributed by NM, 27-Apr-2006.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Cℋ & ⊢ 𝐶 ∈ Cℋ & ⊢ 𝐷 ∈ Cℋ ⇒ ⊢ ((𝐴 𝑀ℋ 𝐵 ∧ (𝐴 ∩ 𝐵) ⊆ (𝐶 ∩ 𝐷) ∧ (𝐶 ∨ℋ 𝐷) ⊆ 𝐵) → (𝐶 ⊆ 𝐷 ↔ (𝐶 ∨ℋ 𝐴) ⊆ (𝐷 ∨ℋ 𝐴))) | ||
Theorem | mdslj1i 32351 | Join preservation of the one-to-one onto mapping between the two sublattices in Lemma 1.3 of [MaedaMaeda] p. 2. (Contributed by NM, 27-Apr-2006.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Cℋ & ⊢ 𝐶 ∈ Cℋ & ⊢ 𝐷 ∈ Cℋ ⇒ ⊢ (((𝐴 𝑀ℋ 𝐵 ∧ 𝐵 𝑀ℋ* 𝐴) ∧ (𝐴 ⊆ (𝐶 ∩ 𝐷) ∧ (𝐶 ∨ℋ 𝐷) ⊆ (𝐴 ∨ℋ 𝐵))) → ((𝐶 ∨ℋ 𝐷) ∩ 𝐵) = ((𝐶 ∩ 𝐵) ∨ℋ (𝐷 ∩ 𝐵))) | ||
Theorem | mdslj2i 32352 | Meet preservation of the reverse mapping between the two sublattices in Lemma 1.3 of [MaedaMaeda] p. 2. (Contributed by NM, 27-Apr-2006.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Cℋ & ⊢ 𝐶 ∈ Cℋ & ⊢ 𝐷 ∈ Cℋ ⇒ ⊢ (((𝐴 𝑀ℋ 𝐵 ∧ 𝐵 𝑀ℋ* 𝐴) ∧ ((𝐴 ∩ 𝐵) ⊆ (𝐶 ∩ 𝐷) ∧ (𝐶 ∨ℋ 𝐷) ⊆ 𝐵)) → ((𝐶 ∩ 𝐷) ∨ℋ 𝐴) = ((𝐶 ∨ℋ 𝐴) ∩ (𝐷 ∨ℋ 𝐴))) | ||
Theorem | mdsl1i 32353* | If the modular pair property holds in a sublattice, it holds in the whole lattice. Lemma 1.4 of [MaedaMaeda] p. 2. (Contributed by NM, 27-Apr-2006.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Cℋ ⇒ ⊢ (∀𝑥 ∈ Cℋ (((𝐴 ∩ 𝐵) ⊆ 𝑥 ∧ 𝑥 ⊆ (𝐴 ∨ℋ 𝐵)) → (𝑥 ⊆ 𝐵 → ((𝑥 ∨ℋ 𝐴) ∩ 𝐵) = (𝑥 ∨ℋ (𝐴 ∩ 𝐵)))) ↔ 𝐴 𝑀ℋ 𝐵) | ||
Theorem | mdsl2i 32354* | If the modular pair property holds in a sublattice, it holds in the whole lattice. Lemma 1.4 of [MaedaMaeda] p. 2. (Contributed by NM, 28-Apr-2006.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Cℋ ⇒ ⊢ (𝐴 𝑀ℋ 𝐵 ↔ ∀𝑥 ∈ Cℋ (((𝐴 ∩ 𝐵) ⊆ 𝑥 ∧ 𝑥 ⊆ 𝐵) → ((𝑥 ∨ℋ 𝐴) ∩ 𝐵) ⊆ (𝑥 ∨ℋ (𝐴 ∩ 𝐵)))) | ||
Theorem | mdsl2bi 32355* | If the modular pair property holds in a sublattice, it holds in the whole lattice. Lemma 1.4 of [MaedaMaeda] p. 2. (Contributed by NM, 24-Dec-2006.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Cℋ ⇒ ⊢ (𝐴 𝑀ℋ 𝐵 ↔ ∀𝑥 ∈ Cℋ (((𝐴 ∩ 𝐵) ⊆ 𝑥 ∧ 𝑥 ⊆ 𝐵) → ((𝑥 ∨ℋ 𝐴) ∩ 𝐵) = (𝑥 ∨ℋ (𝐴 ∩ 𝐵)))) | ||
Theorem | cvmdi 32356 | The covering property implies the modular pair property. Lemma 7.5.1 of [MaedaMaeda] p. 31. (Contributed by NM, 16-Jun-2004.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Cℋ ⇒ ⊢ ((𝐴 ∩ 𝐵) ⋖ℋ 𝐵 → 𝐴 𝑀ℋ 𝐵) | ||
Theorem | mdslmd1lem1 32357 | Lemma for mdslmd1i 32361. (Contributed by NM, 29-Apr-2006.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Cℋ & ⊢ 𝐶 ∈ Cℋ & ⊢ 𝐷 ∈ Cℋ & ⊢ 𝑅 ∈ Cℋ ⇒ ⊢ (((𝐴 𝑀ℋ 𝐵 ∧ 𝐵 𝑀ℋ* 𝐴) ∧ ((𝐴 ⊆ 𝐶 ∧ 𝐴 ⊆ 𝐷) ∧ (𝐶 ⊆ (𝐴 ∨ℋ 𝐵) ∧ 𝐷 ⊆ (𝐴 ∨ℋ 𝐵)))) → (((𝑅 ∨ℋ 𝐴) ⊆ 𝐷 → (((𝑅 ∨ℋ 𝐴) ∨ℋ 𝐶) ∩ 𝐷) ⊆ ((𝑅 ∨ℋ 𝐴) ∨ℋ (𝐶 ∩ 𝐷))) → ((((𝐶 ∩ 𝐵) ∩ (𝐷 ∩ 𝐵)) ⊆ 𝑅 ∧ 𝑅 ⊆ (𝐷 ∩ 𝐵)) → ((𝑅 ∨ℋ (𝐶 ∩ 𝐵)) ∩ (𝐷 ∩ 𝐵)) ⊆ (𝑅 ∨ℋ ((𝐶 ∩ 𝐵) ∩ (𝐷 ∩ 𝐵)))))) | ||
Theorem | mdslmd1lem2 32358 | Lemma for mdslmd1i 32361. (Contributed by NM, 29-Apr-2006.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Cℋ & ⊢ 𝐶 ∈ Cℋ & ⊢ 𝐷 ∈ Cℋ & ⊢ 𝑅 ∈ Cℋ ⇒ ⊢ (((𝐴 𝑀ℋ 𝐵 ∧ 𝐵 𝑀ℋ* 𝐴) ∧ ((𝐴 ⊆ 𝐶 ∧ 𝐴 ⊆ 𝐷) ∧ (𝐶 ⊆ (𝐴 ∨ℋ 𝐵) ∧ 𝐷 ⊆ (𝐴 ∨ℋ 𝐵)))) → (((𝑅 ∩ 𝐵) ⊆ (𝐷 ∩ 𝐵) → (((𝑅 ∩ 𝐵) ∨ℋ (𝐶 ∩ 𝐵)) ∩ (𝐷 ∩ 𝐵)) ⊆ ((𝑅 ∩ 𝐵) ∨ℋ ((𝐶 ∩ 𝐵) ∩ (𝐷 ∩ 𝐵)))) → (((𝐶 ∩ 𝐷) ⊆ 𝑅 ∧ 𝑅 ⊆ 𝐷) → ((𝑅 ∨ℋ 𝐶) ∩ 𝐷) ⊆ (𝑅 ∨ℋ (𝐶 ∩ 𝐷))))) | ||
Theorem | mdslmd1lem3 32359* | Lemma for mdslmd1i 32361. (Contributed by NM, 29-Apr-2006.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Cℋ & ⊢ 𝐶 ∈ Cℋ & ⊢ 𝐷 ∈ Cℋ ⇒ ⊢ ((𝑥 ∈ Cℋ ∧ ((𝐴 𝑀ℋ 𝐵 ∧ 𝐵 𝑀ℋ* 𝐴) ∧ ((𝐴 ⊆ 𝐶 ∧ 𝐴 ⊆ 𝐷) ∧ (𝐶 ⊆ (𝐴 ∨ℋ 𝐵) ∧ 𝐷 ⊆ (𝐴 ∨ℋ 𝐵))))) → (((𝑥 ∨ℋ 𝐴) ⊆ 𝐷 → (((𝑥 ∨ℋ 𝐴) ∨ℋ 𝐶) ∩ 𝐷) ⊆ ((𝑥 ∨ℋ 𝐴) ∨ℋ (𝐶 ∩ 𝐷))) → ((((𝐶 ∩ 𝐵) ∩ (𝐷 ∩ 𝐵)) ⊆ 𝑥 ∧ 𝑥 ⊆ (𝐷 ∩ 𝐵)) → ((𝑥 ∨ℋ (𝐶 ∩ 𝐵)) ∩ (𝐷 ∩ 𝐵)) ⊆ (𝑥 ∨ℋ ((𝐶 ∩ 𝐵) ∩ (𝐷 ∩ 𝐵)))))) | ||
Theorem | mdslmd1lem4 32360* | Lemma for mdslmd1i 32361. (Contributed by NM, 29-Apr-2006.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Cℋ & ⊢ 𝐶 ∈ Cℋ & ⊢ 𝐷 ∈ Cℋ ⇒ ⊢ ((𝑥 ∈ Cℋ ∧ ((𝐴 𝑀ℋ 𝐵 ∧ 𝐵 𝑀ℋ* 𝐴) ∧ ((𝐴 ⊆ 𝐶 ∧ 𝐴 ⊆ 𝐷) ∧ (𝐶 ⊆ (𝐴 ∨ℋ 𝐵) ∧ 𝐷 ⊆ (𝐴 ∨ℋ 𝐵))))) → (((𝑥 ∩ 𝐵) ⊆ (𝐷 ∩ 𝐵) → (((𝑥 ∩ 𝐵) ∨ℋ (𝐶 ∩ 𝐵)) ∩ (𝐷 ∩ 𝐵)) ⊆ ((𝑥 ∩ 𝐵) ∨ℋ ((𝐶 ∩ 𝐵) ∩ (𝐷 ∩ 𝐵)))) → (((𝐶 ∩ 𝐷) ⊆ 𝑥 ∧ 𝑥 ⊆ 𝐷) → ((𝑥 ∨ℋ 𝐶) ∩ 𝐷) ⊆ (𝑥 ∨ℋ (𝐶 ∩ 𝐷))))) | ||
Theorem | mdslmd1i 32361 | Preservation of the modular pair property in the one-to-one onto mapping between the two sublattices in Lemma 1.3 of [MaedaMaeda] p. 2 (meet version). (Contributed by NM, 27-Apr-2006.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Cℋ & ⊢ 𝐶 ∈ Cℋ & ⊢ 𝐷 ∈ Cℋ ⇒ ⊢ (((𝐴 𝑀ℋ 𝐵 ∧ 𝐵 𝑀ℋ* 𝐴) ∧ (𝐴 ⊆ (𝐶 ∩ 𝐷) ∧ (𝐶 ∨ℋ 𝐷) ⊆ (𝐴 ∨ℋ 𝐵))) → (𝐶 𝑀ℋ 𝐷 ↔ (𝐶 ∩ 𝐵) 𝑀ℋ (𝐷 ∩ 𝐵))) | ||
Theorem | mdslmd2i 32362 | Preservation of the modular pair property in the one-to-one onto mapping between the two sublattices in Lemma 1.3 of [MaedaMaeda] p. 2 (join version). (Contributed by NM, 29-Apr-2006.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Cℋ & ⊢ 𝐶 ∈ Cℋ & ⊢ 𝐷 ∈ Cℋ ⇒ ⊢ (((𝐴 𝑀ℋ 𝐵 ∧ 𝐵 𝑀ℋ* 𝐴) ∧ ((𝐴 ∩ 𝐵) ⊆ (𝐶 ∩ 𝐷) ∧ (𝐶 ∨ℋ 𝐷) ⊆ 𝐵)) → (𝐶 𝑀ℋ 𝐷 ↔ (𝐶 ∨ℋ 𝐴) 𝑀ℋ (𝐷 ∨ℋ 𝐴))) | ||
Theorem | mdsldmd1i 32363 | Preservation of the dual modular pair property in the one-to-one onto mapping between the two sublattices in Lemma 1.3 of [MaedaMaeda] p. 2. (Contributed by NM, 29-Apr-2006.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Cℋ & ⊢ 𝐶 ∈ Cℋ & ⊢ 𝐷 ∈ Cℋ ⇒ ⊢ (((𝐴 𝑀ℋ 𝐵 ∧ 𝐵 𝑀ℋ* 𝐴) ∧ (𝐴 ⊆ (𝐶 ∩ 𝐷) ∧ (𝐶 ∨ℋ 𝐷) ⊆ (𝐴 ∨ℋ 𝐵))) → (𝐶 𝑀ℋ* 𝐷 ↔ (𝐶 ∩ 𝐵) 𝑀ℋ* (𝐷 ∩ 𝐵))) | ||
Theorem | mdslmd3i 32364 | Modular pair conditions that imply the modular pair property in a sublattice. Lemma 1.5.1 of [MaedaMaeda] p. 2. (Contributed by NM, 23-Dec-2006.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Cℋ & ⊢ 𝐶 ∈ Cℋ & ⊢ 𝐷 ∈ Cℋ ⇒ ⊢ (((𝐴 𝑀ℋ 𝐵 ∧ (𝐴 ∩ 𝐵) 𝑀ℋ 𝐶) ∧ ((𝐴 ∩ 𝐶) ⊆ 𝐷 ∧ 𝐷 ⊆ 𝐴)) → 𝐷 𝑀ℋ (𝐵 ∩ 𝐶)) | ||
Theorem | mdslmd4i 32365 | Modular pair condition that implies the modular pair property in a sublattice. Lemma 1.5.2 of [MaedaMaeda] p. 2. (Contributed by NM, 24-Dec-2006.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Cℋ & ⊢ 𝐶 ∈ Cℋ & ⊢ 𝐷 ∈ Cℋ ⇒ ⊢ ((𝐴 𝑀ℋ 𝐵 ∧ ((𝐴 ∩ 𝐵) ⊆ 𝐶 ∧ 𝐶 ⊆ 𝐴) ∧ ((𝐴 ∩ 𝐵) ⊆ 𝐷 ∧ 𝐷 ⊆ 𝐵)) → 𝐶 𝑀ℋ 𝐷) | ||
Theorem | csmdsymi 32366* | Cross-symmetry implies M-symmetry. Theorem 1.9.1 of [MaedaMaeda] p. 3. (Contributed by NM, 24-Dec-2006.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Cℋ ⇒ ⊢ ((∀𝑐 ∈ Cℋ (𝑐 𝑀ℋ 𝐵 → 𝐵 𝑀ℋ* 𝑐) ∧ 𝐴 𝑀ℋ 𝐵) → 𝐵 𝑀ℋ 𝐴) | ||
Theorem | mdexchi 32367 | An exchange lemma for modular pairs. Lemma 1.6 of [MaedaMaeda] p. 2. (Contributed by NM, 22-Jun-2004.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Cℋ & ⊢ 𝐶 ∈ Cℋ ⇒ ⊢ ((𝐴 𝑀ℋ 𝐵 ∧ 𝐶 𝑀ℋ (𝐴 ∨ℋ 𝐵) ∧ (𝐶 ∩ (𝐴 ∨ℋ 𝐵)) ⊆ 𝐴) → ((𝐶 ∨ℋ 𝐴) 𝑀ℋ 𝐵 ∧ ((𝐶 ∨ℋ 𝐴) ∩ 𝐵) = (𝐴 ∩ 𝐵))) | ||
Theorem | cvmd 32368 | The covering property implies the modular pair property. Lemma 7.5.1 of [MaedaMaeda] p. 31. (Contributed by NM, 21-Jun-2004.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ∧ (𝐴 ∩ 𝐵) ⋖ℋ 𝐵) → 𝐴 𝑀ℋ 𝐵) | ||
Theorem | cvdmd 32369 | The covering property implies the dual modular pair property. Lemma 7.5.2 of [MaedaMaeda] p. 31. (Contributed by NM, 21-Jun-2004.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ∧ 𝐵 ⋖ℋ (𝐴 ∨ℋ 𝐵)) → 𝐴 𝑀ℋ* 𝐵) | ||
Definition | df-at 32370 | Define the set of atoms in a Hilbert lattice. An atom is a nonzero element of a lattice such that anything less than it is zero, i.e. it is the smallest nonzero element of the lattice. Definition of atom in [Kalmbach] p. 15. See ela 32371 and elat2 32372 for membership relations. (Contributed by NM, 14-Aug-2002.) (New usage is discouraged.) |
⊢ HAtoms = {𝑥 ∈ Cℋ ∣ 0ℋ ⋖ℋ 𝑥} | ||
Theorem | ela 32371 | Atoms in a Hilbert lattice are the elements that cover the zero subspace. Definition of atom in [Kalmbach] p. 15. (Contributed by NM, 9-Jun-2004.) (New usage is discouraged.) |
⊢ (𝐴 ∈ HAtoms ↔ (𝐴 ∈ Cℋ ∧ 0ℋ ⋖ℋ 𝐴)) | ||
Theorem | elat2 32372* | Expanded membership relation for the set of atoms, i.e. the predicate "is an atom (of the Hilbert lattice)." An atom is a nonzero element of a lattice such that anything less than it is zero, i.e. it is the smallest nonzero element of the lattice. (Contributed by NM, 9-Jun-2004.) (New usage is discouraged.) |
⊢ (𝐴 ∈ HAtoms ↔ (𝐴 ∈ Cℋ ∧ (𝐴 ≠ 0ℋ ∧ ∀𝑥 ∈ Cℋ (𝑥 ⊆ 𝐴 → (𝑥 = 𝐴 ∨ 𝑥 = 0ℋ))))) | ||
Theorem | elatcv0 32373 | A Hilbert lattice element is an atom iff it covers the zero subspace. (Contributed by NM, 26-Jun-2004.) (New usage is discouraged.) |
⊢ (𝐴 ∈ Cℋ → (𝐴 ∈ HAtoms ↔ 0ℋ ⋖ℋ 𝐴)) | ||
Theorem | atcv0 32374 | An atom covers the zero subspace. (Contributed by NM, 26-Jun-2004.) (New usage is discouraged.) |
⊢ (𝐴 ∈ HAtoms → 0ℋ ⋖ℋ 𝐴) | ||
Theorem | atssch 32375 | Atoms are a subset of the Hilbert lattice. (Contributed by NM, 14-Aug-2002.) (New usage is discouraged.) |
⊢ HAtoms ⊆ Cℋ | ||
Theorem | atelch 32376 | An atom is a Hilbert lattice element. (Contributed by NM, 22-Jun-2004.) (New usage is discouraged.) |
⊢ (𝐴 ∈ HAtoms → 𝐴 ∈ Cℋ ) | ||
Theorem | atne0 32377 | An atom is not the Hilbert lattice zero. (Contributed by NM, 13-Aug-2002.) (New usage is discouraged.) |
⊢ (𝐴 ∈ HAtoms → 𝐴 ≠ 0ℋ) | ||
Theorem | atss 32378 | A lattice element smaller than an atom is either the atom or zero. (Contributed by NM, 25-Jun-2004.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ HAtoms) → (𝐴 ⊆ 𝐵 → (𝐴 = 𝐵 ∨ 𝐴 = 0ℋ))) | ||
Theorem | atsseq 32379 | Two atoms in a subset relationship are equal. (Contributed by NM, 26-Jun-2004.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ HAtoms ∧ 𝐵 ∈ HAtoms) → (𝐴 ⊆ 𝐵 ↔ 𝐴 = 𝐵)) | ||
Theorem | atcveq0 32380 | A Hilbert lattice element covered by an atom must be the zero subspace. (Contributed by NM, 11-Jun-2004.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ HAtoms) → (𝐴 ⋖ℋ 𝐵 ↔ 𝐴 = 0ℋ)) | ||
Theorem | h1da 32381 | A 1-dimensional subspace is an atom. (Contributed by NM, 22-Jul-2001.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ) → (⊥‘(⊥‘{𝐴})) ∈ HAtoms) | ||
Theorem | spansna 32382 | The span of the singleton of a vector is an atom. (Contributed by NM, 18-Dec-2004.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ) → (span‘{𝐴}) ∈ HAtoms) | ||
Theorem | sh1dle 32383 | A 1-dimensional subspace is less than or equal to any subspace containing its generating vector. (Contributed by NM, 24-Nov-2004.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ Sℋ ∧ 𝐵 ∈ 𝐴) → (⊥‘(⊥‘{𝐵})) ⊆ 𝐴) | ||
Theorem | ch1dle 32384 | A 1-dimensional subspace is less than or equal to any member of Cℋ containing its generating vector. (Contributed by NM, 30-May-2004.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ 𝐴) → (⊥‘(⊥‘{𝐵})) ⊆ 𝐴) | ||
Theorem | atom1d 32385* | The 1-dimensional subspaces of Hilbert space are its atoms. Part of Remark 10.3.5 of [BeltramettiCassinelli] p. 107. (Contributed by NM, 4-Jun-2004.) (New usage is discouraged.) |
⊢ (𝐴 ∈ HAtoms ↔ ∃𝑥 ∈ ℋ (𝑥 ≠ 0ℎ ∧ 𝐴 = (span‘{𝑥}))) | ||
Theorem | superpos 32386* | Superposition Principle. If 𝐴 and 𝐵 are distinct atoms, there exists a third atom, distinct from 𝐴 and 𝐵, that is the superposition of 𝐴 and 𝐵. Definition 3.4-3(a) in [MegPav2000] p. 2345 (PDF p. 8). (Contributed by NM, 9-Jun-2006.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ HAtoms ∧ 𝐵 ∈ HAtoms ∧ 𝐴 ≠ 𝐵) → ∃𝑥 ∈ HAtoms (𝑥 ≠ 𝐴 ∧ 𝑥 ≠ 𝐵 ∧ 𝑥 ⊆ (𝐴 ∨ℋ 𝐵))) | ||
Theorem | chcv1 32387 | The Hilbert lattice has the covering property. Proposition 1(ii) of [Kalmbach] p. 140 (and its converse). (Contributed by NM, 11-Jun-2004.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ HAtoms) → (¬ 𝐵 ⊆ 𝐴 ↔ 𝐴 ⋖ℋ (𝐴 ∨ℋ 𝐵))) | ||
Theorem | chcv2 32388 | The Hilbert lattice has the covering property. (Contributed by NM, 11-Jun-2004.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ HAtoms) → (𝐴 ⊊ (𝐴 ∨ℋ 𝐵) ↔ 𝐴 ⋖ℋ (𝐴 ∨ℋ 𝐵))) | ||
Theorem | chjatom 32389 | The join of a closed subspace and an atom equals their subspace sum. Special case of remark in [Kalmbach] p. 65, stating that if 𝐴 or 𝐵 is finite-dimensional, then this equality holds. (Contributed by NM, 4-Jun-2004.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ HAtoms) → (𝐴 +ℋ 𝐵) = (𝐴 ∨ℋ 𝐵)) | ||
Theorem | shatomici 32390* | The lattice of Hilbert subspaces is atomic, i.e. any nonzero element is greater than or equal to some atom. Part of proof of Theorem 16.9 of [MaedaMaeda] p. 70. (Contributed by NM, 24-Nov-2004.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Sℋ ⇒ ⊢ (𝐴 ≠ 0ℋ → ∃𝑥 ∈ HAtoms 𝑥 ⊆ 𝐴) | ||
Theorem | hatomici 32391* | The Hilbert lattice is atomic, i.e. any nonzero element is greater than or equal to some atom. Remark in [Kalmbach] p. 140. (Contributed by NM, 22-Jul-2001.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Cℋ ⇒ ⊢ (𝐴 ≠ 0ℋ → ∃𝑥 ∈ HAtoms 𝑥 ⊆ 𝐴) | ||
Theorem | hatomic 32392* | A Hilbert lattice is atomic, i.e. any nonzero element is greater than or equal to some atom. Remark in [Kalmbach] p. 140. Also Definition 3.4-2 in [MegPav2000] p. 2345 (PDF p. 8). (Contributed by NM, 24-Jun-2004.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ Cℋ ∧ 𝐴 ≠ 0ℋ) → ∃𝑥 ∈ HAtoms 𝑥 ⊆ 𝐴) | ||
Theorem | shatomistici 32393* | The lattice of Hilbert subspaces is atomistic, i.e. any element is the supremum of its atoms. Part of proof of Theorem 16.9 of [MaedaMaeda] p. 70. (Contributed by NM, 26-Nov-2004.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Sℋ ⇒ ⊢ 𝐴 = (span‘∪ {𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴}) | ||
Theorem | hatomistici 32394* | Cℋ is atomistic, i.e. any element is the supremum of its atoms. Remark in [Kalmbach] p. 140. (Contributed by NM, 14-Aug-2002.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Cℋ ⇒ ⊢ 𝐴 = ( ∨ℋ ‘{𝑥 ∈ HAtoms ∣ 𝑥 ⊆ 𝐴}) | ||
Theorem | chpssati 32395* | Two Hilbert lattice elements in a proper subset relationship imply the existence of an atom less than or equal to one but not the other. (Contributed by NM, 10-Jun-2004.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Cℋ ⇒ ⊢ (𝐴 ⊊ 𝐵 → ∃𝑥 ∈ HAtoms (𝑥 ⊆ 𝐵 ∧ ¬ 𝑥 ⊆ 𝐴)) | ||
Theorem | chrelati 32396* | The Hilbert lattice is relatively atomic. Remark 2 of [Kalmbach] p. 149. (Contributed by NM, 11-Jun-2004.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Cℋ ⇒ ⊢ (𝐴 ⊊ 𝐵 → ∃𝑥 ∈ HAtoms (𝐴 ⊊ (𝐴 ∨ℋ 𝑥) ∧ (𝐴 ∨ℋ 𝑥) ⊆ 𝐵)) | ||
Theorem | chrelat2i 32397* | A consequence of relative atomicity. (Contributed by NM, 30-Jun-2004.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Cℋ ⇒ ⊢ (¬ 𝐴 ⊆ 𝐵 ↔ ∃𝑥 ∈ HAtoms (𝑥 ⊆ 𝐴 ∧ ¬ 𝑥 ⊆ 𝐵)) | ||
Theorem | cvati 32398* | If a Hilbert lattice element covers another, it equals the other joined with some atom. This is a consequence of the relative atomicity of Hilbert space. (Contributed by NM, 30-Nov-2004.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Cℋ ⇒ ⊢ (𝐴 ⋖ℋ 𝐵 → ∃𝑥 ∈ HAtoms (𝐴 ∨ℋ 𝑥) = 𝐵) | ||
Theorem | cvbr4i 32399* | An alternate way to express the covering property. (Contributed by NM, 30-Nov-2004.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Cℋ ⇒ ⊢ (𝐴 ⋖ℋ 𝐵 ↔ (𝐴 ⊊ 𝐵 ∧ ∃𝑥 ∈ HAtoms (𝐴 ∨ℋ 𝑥) = 𝐵)) | ||
Theorem | cvexchlem 32400 | Lemma for cvexchi 32401. (Contributed by NM, 10-Jun-2004.) (New usage is discouraged.) |
⊢ 𝐴 ∈ Cℋ & ⊢ 𝐵 ∈ Cℋ ⇒ ⊢ ((𝐴 ∩ 𝐵) ⋖ℋ 𝐵 → 𝐴 ⋖ℋ (𝐴 ∨ℋ 𝐵)) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |