Detailed syntax breakdown of Definition df-smu
| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | csmu 16458 | . 2
class 
smul | 
| 2 |  | vx | . . 3
setvar 𝑥 | 
| 3 |  | vy | . . 3
setvar 𝑦 | 
| 4 |  | cn0 12526 | . . . 4
class
ℕ0 | 
| 5 | 4 | cpw 4600 | . . 3
class 𝒫
ℕ0 | 
| 6 |  | vk | . . . . . 6
setvar 𝑘 | 
| 7 | 6 | cv 1539 | . . . . 5
class 𝑘 | 
| 8 |  | c1 11156 | . . . . . . 7
class
1 | 
| 9 |  | caddc 11158 | . . . . . . 7
class 
+ | 
| 10 | 7, 8, 9 | co 7431 | . . . . . 6
class (𝑘 + 1) | 
| 11 |  | vp | . . . . . . . 8
setvar 𝑝 | 
| 12 |  | vm | . . . . . . . 8
setvar 𝑚 | 
| 13 | 11 | cv 1539 | . . . . . . . . 9
class 𝑝 | 
| 14 | 12, 2 | wel 2109 | . . . . . . . . . . 11
wff 𝑚 ∈ 𝑥 | 
| 15 |  | vn | . . . . . . . . . . . . . 14
setvar 𝑛 | 
| 16 | 15 | cv 1539 | . . . . . . . . . . . . 13
class 𝑛 | 
| 17 | 12 | cv 1539 | . . . . . . . . . . . . 13
class 𝑚 | 
| 18 |  | cmin 11492 | . . . . . . . . . . . . 13
class 
− | 
| 19 | 16, 17, 18 | co 7431 | . . . . . . . . . . . 12
class (𝑛 − 𝑚) | 
| 20 | 3 | cv 1539 | . . . . . . . . . . . 12
class 𝑦 | 
| 21 | 19, 20 | wcel 2108 | . . . . . . . . . . 11
wff (𝑛 − 𝑚) ∈ 𝑦 | 
| 22 | 14, 21 | wa 395 | . . . . . . . . . 10
wff (𝑚 ∈ 𝑥 ∧ (𝑛 − 𝑚) ∈ 𝑦) | 
| 23 | 22, 15, 4 | crab 3436 | . . . . . . . . 9
class {𝑛 ∈ ℕ0
∣ (𝑚 ∈ 𝑥 ∧ (𝑛 − 𝑚) ∈ 𝑦)} | 
| 24 |  | csad 16457 | . . . . . . . . 9
class 
sadd | 
| 25 | 13, 23, 24 | co 7431 | . . . . . . . 8
class (𝑝 sadd {𝑛 ∈ ℕ0 ∣ (𝑚 ∈ 𝑥 ∧ (𝑛 − 𝑚) ∈ 𝑦)}) | 
| 26 | 11, 12, 5, 4, 25 | cmpo 7433 | . . . . . . 7
class (𝑝 ∈ 𝒫
ℕ0, 𝑚
∈ ℕ0 ↦ (𝑝 sadd {𝑛 ∈ ℕ0 ∣ (𝑚 ∈ 𝑥 ∧ (𝑛 − 𝑚) ∈ 𝑦)})) | 
| 27 |  | cc0 11155 | . . . . . . . . . 10
class
0 | 
| 28 | 16, 27 | wceq 1540 | . . . . . . . . 9
wff 𝑛 = 0 | 
| 29 |  | c0 4333 | . . . . . . . . 9
class
∅ | 
| 30 | 16, 8, 18 | co 7431 | . . . . . . . . 9
class (𝑛 − 1) | 
| 31 | 28, 29, 30 | cif 4525 | . . . . . . . 8
class if(𝑛 = 0, ∅, (𝑛 − 1)) | 
| 32 | 15, 4, 31 | cmpt 5225 | . . . . . . 7
class (𝑛 ∈ ℕ0
↦ if(𝑛 = 0, ∅,
(𝑛 −
1))) | 
| 33 | 26, 32, 27 | cseq 14042 | . . . . . 6
class
seq0((𝑝 ∈
𝒫 ℕ0, 𝑚 ∈ ℕ0 ↦ (𝑝 sadd {𝑛 ∈ ℕ0 ∣ (𝑚 ∈ 𝑥 ∧ (𝑛 − 𝑚) ∈ 𝑦)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1)))) | 
| 34 | 10, 33 | cfv 6561 | . . . . 5
class
(seq0((𝑝 ∈
𝒫 ℕ0, 𝑚 ∈ ℕ0 ↦ (𝑝 sadd {𝑛 ∈ ℕ0 ∣ (𝑚 ∈ 𝑥 ∧ (𝑛 − 𝑚) ∈ 𝑦)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))‘(𝑘 + 1)) | 
| 35 | 7, 34 | wcel 2108 | . . . 4
wff 𝑘 ∈ (seq0((𝑝 ∈ 𝒫
ℕ0, 𝑚
∈ ℕ0 ↦ (𝑝 sadd {𝑛 ∈ ℕ0 ∣ (𝑚 ∈ 𝑥 ∧ (𝑛 − 𝑚) ∈ 𝑦)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))‘(𝑘 + 1)) | 
| 36 | 35, 6, 4 | crab 3436 | . . 3
class {𝑘 ∈ ℕ0
∣ 𝑘 ∈
(seq0((𝑝 ∈ 𝒫
ℕ0, 𝑚
∈ ℕ0 ↦ (𝑝 sadd {𝑛 ∈ ℕ0 ∣ (𝑚 ∈ 𝑥 ∧ (𝑛 − 𝑚) ∈ 𝑦)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))‘(𝑘 + 1))} | 
| 37 | 2, 3, 5, 5, 36 | cmpo 7433 | . 2
class (𝑥 ∈ 𝒫
ℕ0, 𝑦
∈ 𝒫 ℕ0 ↦ {𝑘 ∈ ℕ0 ∣ 𝑘 ∈ (seq0((𝑝 ∈ 𝒫
ℕ0, 𝑚
∈ ℕ0 ↦ (𝑝 sadd {𝑛 ∈ ℕ0 ∣ (𝑚 ∈ 𝑥 ∧ (𝑛 − 𝑚) ∈ 𝑦)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))‘(𝑘 + 1))}) | 
| 38 | 1, 37 | wceq 1540 | 1
wff  smul =
(𝑥 ∈ 𝒫
ℕ0, 𝑦
∈ 𝒫 ℕ0 ↦ {𝑘 ∈ ℕ0 ∣ 𝑘 ∈ (seq0((𝑝 ∈ 𝒫
ℕ0, 𝑚
∈ ℕ0 ↦ (𝑝 sadd {𝑛 ∈ ℕ0 ∣ (𝑚 ∈ 𝑥 ∧ (𝑛 − 𝑚) ∈ 𝑦)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))‘(𝑘 + 1))}) |