Detailed syntax breakdown of Definition df-smu
Step | Hyp | Ref
| Expression |
1 | | csmu 16056 |
. 2
class
smul |
2 | | vx |
. . 3
setvar 𝑥 |
3 | | vy |
. . 3
setvar 𝑦 |
4 | | cn0 12163 |
. . . 4
class
ℕ0 |
5 | 4 | cpw 4530 |
. . 3
class 𝒫
ℕ0 |
6 | | vk |
. . . . . 6
setvar 𝑘 |
7 | 6 | cv 1538 |
. . . . 5
class 𝑘 |
8 | | c1 10803 |
. . . . . . 7
class
1 |
9 | | caddc 10805 |
. . . . . . 7
class
+ |
10 | 7, 8, 9 | co 7255 |
. . . . . 6
class (𝑘 + 1) |
11 | | vp |
. . . . . . . 8
setvar 𝑝 |
12 | | vm |
. . . . . . . 8
setvar 𝑚 |
13 | 11 | cv 1538 |
. . . . . . . . 9
class 𝑝 |
14 | 12, 2 | wel 2109 |
. . . . . . . . . . 11
wff 𝑚 ∈ 𝑥 |
15 | | vn |
. . . . . . . . . . . . . 14
setvar 𝑛 |
16 | 15 | cv 1538 |
. . . . . . . . . . . . 13
class 𝑛 |
17 | 12 | cv 1538 |
. . . . . . . . . . . . 13
class 𝑚 |
18 | | cmin 11135 |
. . . . . . . . . . . . 13
class
− |
19 | 16, 17, 18 | co 7255 |
. . . . . . . . . . . 12
class (𝑛 − 𝑚) |
20 | 3 | cv 1538 |
. . . . . . . . . . . 12
class 𝑦 |
21 | 19, 20 | wcel 2108 |
. . . . . . . . . . 11
wff (𝑛 − 𝑚) ∈ 𝑦 |
22 | 14, 21 | wa 395 |
. . . . . . . . . 10
wff (𝑚 ∈ 𝑥 ∧ (𝑛 − 𝑚) ∈ 𝑦) |
23 | 22, 15, 4 | crab 3067 |
. . . . . . . . 9
class {𝑛 ∈ ℕ0
∣ (𝑚 ∈ 𝑥 ∧ (𝑛 − 𝑚) ∈ 𝑦)} |
24 | | csad 16055 |
. . . . . . . . 9
class
sadd |
25 | 13, 23, 24 | co 7255 |
. . . . . . . 8
class (𝑝 sadd {𝑛 ∈ ℕ0 ∣ (𝑚 ∈ 𝑥 ∧ (𝑛 − 𝑚) ∈ 𝑦)}) |
26 | 11, 12, 5, 4, 25 | cmpo 7257 |
. . . . . . 7
class (𝑝 ∈ 𝒫
ℕ0, 𝑚
∈ ℕ0 ↦ (𝑝 sadd {𝑛 ∈ ℕ0 ∣ (𝑚 ∈ 𝑥 ∧ (𝑛 − 𝑚) ∈ 𝑦)})) |
27 | | cc0 10802 |
. . . . . . . . . 10
class
0 |
28 | 16, 27 | wceq 1539 |
. . . . . . . . 9
wff 𝑛 = 0 |
29 | | c0 4253 |
. . . . . . . . 9
class
∅ |
30 | 16, 8, 18 | co 7255 |
. . . . . . . . 9
class (𝑛 − 1) |
31 | 28, 29, 30 | cif 4456 |
. . . . . . . 8
class if(𝑛 = 0, ∅, (𝑛 − 1)) |
32 | 15, 4, 31 | cmpt 5153 |
. . . . . . 7
class (𝑛 ∈ ℕ0
↦ if(𝑛 = 0, ∅,
(𝑛 −
1))) |
33 | 26, 32, 27 | cseq 13649 |
. . . . . 6
class
seq0((𝑝 ∈
𝒫 ℕ0, 𝑚 ∈ ℕ0 ↦ (𝑝 sadd {𝑛 ∈ ℕ0 ∣ (𝑚 ∈ 𝑥 ∧ (𝑛 − 𝑚) ∈ 𝑦)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1)))) |
34 | 10, 33 | cfv 6418 |
. . . . 5
class
(seq0((𝑝 ∈
𝒫 ℕ0, 𝑚 ∈ ℕ0 ↦ (𝑝 sadd {𝑛 ∈ ℕ0 ∣ (𝑚 ∈ 𝑥 ∧ (𝑛 − 𝑚) ∈ 𝑦)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))‘(𝑘 + 1)) |
35 | 7, 34 | wcel 2108 |
. . . 4
wff 𝑘 ∈ (seq0((𝑝 ∈ 𝒫
ℕ0, 𝑚
∈ ℕ0 ↦ (𝑝 sadd {𝑛 ∈ ℕ0 ∣ (𝑚 ∈ 𝑥 ∧ (𝑛 − 𝑚) ∈ 𝑦)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))‘(𝑘 + 1)) |
36 | 35, 6, 4 | crab 3067 |
. . 3
class {𝑘 ∈ ℕ0
∣ 𝑘 ∈
(seq0((𝑝 ∈ 𝒫
ℕ0, 𝑚
∈ ℕ0 ↦ (𝑝 sadd {𝑛 ∈ ℕ0 ∣ (𝑚 ∈ 𝑥 ∧ (𝑛 − 𝑚) ∈ 𝑦)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))‘(𝑘 + 1))} |
37 | 2, 3, 5, 5, 36 | cmpo 7257 |
. 2
class (𝑥 ∈ 𝒫
ℕ0, 𝑦
∈ 𝒫 ℕ0 ↦ {𝑘 ∈ ℕ0 ∣ 𝑘 ∈ (seq0((𝑝 ∈ 𝒫
ℕ0, 𝑚
∈ ℕ0 ↦ (𝑝 sadd {𝑛 ∈ ℕ0 ∣ (𝑚 ∈ 𝑥 ∧ (𝑛 − 𝑚) ∈ 𝑦)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))‘(𝑘 + 1))}) |
38 | 1, 37 | wceq 1539 |
1
wff smul =
(𝑥 ∈ 𝒫
ℕ0, 𝑦
∈ 𝒫 ℕ0 ↦ {𝑘 ∈ ℕ0 ∣ 𝑘 ∈ (seq0((𝑝 ∈ 𝒫
ℕ0, 𝑚
∈ ℕ0 ↦ (𝑝 sadd {𝑛 ∈ ℕ0 ∣ (𝑚 ∈ 𝑥 ∧ (𝑛 − 𝑚) ∈ 𝑦)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))‘(𝑘 + 1))}) |