MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bitsshft Structured version   Visualization version   GIF version

Theorem bitsshft 16515
Description: Shifting a bit sequence to the left (toward the more significant bits) causes the number to be multiplied by a power of two. (Contributed by Mario Carneiro, 22-Sep-2016.)
Assertion
Ref Expression
bitsshft ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → {𝑛 ∈ ℕ0 ∣ (𝑛𝑁) ∈ (bits‘𝐴)} = (bits‘(𝐴 · (2↑𝑁))))
Distinct variable groups:   𝐴,𝑛   𝑛,𝑁

Proof of Theorem bitsshft
StepHypRef Expression
1 simpll 767 . . . . . . . 8 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) → 𝐴 ∈ ℤ)
2 2nn 12343 . . . . . . . . . . 11 2 ∈ ℕ
32a1i 11 . . . . . . . . . 10 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) → 2 ∈ ℕ)
4 simplr 769 . . . . . . . . . 10 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) → 𝑁 ∈ ℕ0)
53, 4nnexpcld 14287 . . . . . . . . 9 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) → (2↑𝑁) ∈ ℕ)
65nnzd 12644 . . . . . . . 8 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) → (2↑𝑁) ∈ ℤ)
7 dvdsmul2 16319 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ (2↑𝑁) ∈ ℤ) → (2↑𝑁) ∥ (𝐴 · (2↑𝑁)))
81, 6, 7syl2anc 584 . . . . . . 7 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) → (2↑𝑁) ∥ (𝐴 · (2↑𝑁)))
91, 6zmulcld 12732 . . . . . . . 8 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) → (𝐴 · (2↑𝑁)) ∈ ℤ)
10 bitsuz 16514 . . . . . . . 8 (((𝐴 · (2↑𝑁)) ∈ ℤ ∧ 𝑁 ∈ ℕ0) → ((2↑𝑁) ∥ (𝐴 · (2↑𝑁)) ↔ (bits‘(𝐴 · (2↑𝑁))) ⊆ (ℤ𝑁)))
119, 4, 10syl2anc 584 . . . . . . 7 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) → ((2↑𝑁) ∥ (𝐴 · (2↑𝑁)) ↔ (bits‘(𝐴 · (2↑𝑁))) ⊆ (ℤ𝑁)))
128, 11mpbid 232 . . . . . 6 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) → (bits‘(𝐴 · (2↑𝑁))) ⊆ (ℤ𝑁))
1312sseld 3995 . . . . 5 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) → (𝑛 ∈ (bits‘(𝐴 · (2↑𝑁))) → 𝑛 ∈ (ℤ𝑁)))
14 uznn0sub 12921 . . . . 5 (𝑛 ∈ (ℤ𝑁) → (𝑛𝑁) ∈ ℕ0)
1513, 14syl6 35 . . . 4 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) → (𝑛 ∈ (bits‘(𝐴 · (2↑𝑁))) → (𝑛𝑁) ∈ ℕ0))
16 bitsss 16466 . . . . . 6 (bits‘𝐴) ⊆ ℕ0
1716a1i 11 . . . . 5 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) → (bits‘𝐴) ⊆ ℕ0)
1817sseld 3995 . . . 4 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) → ((𝑛𝑁) ∈ (bits‘𝐴) → (𝑛𝑁) ∈ ℕ0))
19 2cnd 12348 . . . . . . . . . . . 12 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ (𝑛 ∈ ℕ0 ∧ (𝑛𝑁) ∈ ℕ0)) → 2 ∈ ℂ)
202a1i 11 . . . . . . . . . . . . 13 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ (𝑛 ∈ ℕ0 ∧ (𝑛𝑁) ∈ ℕ0)) → 2 ∈ ℕ)
2120nnne0d 12320 . . . . . . . . . . . 12 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ (𝑛 ∈ ℕ0 ∧ (𝑛𝑁) ∈ ℕ0)) → 2 ≠ 0)
22 simplr 769 . . . . . . . . . . . . 13 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ (𝑛 ∈ ℕ0 ∧ (𝑛𝑁) ∈ ℕ0)) → 𝑁 ∈ ℕ0)
2322nn0zd 12643 . . . . . . . . . . . 12 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ (𝑛 ∈ ℕ0 ∧ (𝑛𝑁) ∈ ℕ0)) → 𝑁 ∈ ℤ)
24 simprl 771 . . . . . . . . . . . . 13 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ (𝑛 ∈ ℕ0 ∧ (𝑛𝑁) ∈ ℕ0)) → 𝑛 ∈ ℕ0)
2524nn0zd 12643 . . . . . . . . . . . 12 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ (𝑛 ∈ ℕ0 ∧ (𝑛𝑁) ∈ ℕ0)) → 𝑛 ∈ ℤ)
2619, 21, 23, 25expsubd 14200 . . . . . . . . . . 11 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ (𝑛 ∈ ℕ0 ∧ (𝑛𝑁) ∈ ℕ0)) → (2↑(𝑛𝑁)) = ((2↑𝑛) / (2↑𝑁)))
2726oveq2d 7451 . . . . . . . . . 10 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ (𝑛 ∈ ℕ0 ∧ (𝑛𝑁) ∈ ℕ0)) → (𝐴 / (2↑(𝑛𝑁))) = (𝐴 / ((2↑𝑛) / (2↑𝑁))))
28 simpl 482 . . . . . . . . . . . . 13 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → 𝐴 ∈ ℤ)
2928zcnd 12727 . . . . . . . . . . . 12 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → 𝐴 ∈ ℂ)
3029adantr 480 . . . . . . . . . . 11 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ (𝑛 ∈ ℕ0 ∧ (𝑛𝑁) ∈ ℕ0)) → 𝐴 ∈ ℂ)
3120, 24nnexpcld 14287 . . . . . . . . . . . 12 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ (𝑛 ∈ ℕ0 ∧ (𝑛𝑁) ∈ ℕ0)) → (2↑𝑛) ∈ ℕ)
3231nncnd 12286 . . . . . . . . . . 11 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ (𝑛 ∈ ℕ0 ∧ (𝑛𝑁) ∈ ℕ0)) → (2↑𝑛) ∈ ℂ)
3320, 22nnexpcld 14287 . . . . . . . . . . . 12 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ (𝑛 ∈ ℕ0 ∧ (𝑛𝑁) ∈ ℕ0)) → (2↑𝑁) ∈ ℕ)
3433nncnd 12286 . . . . . . . . . . 11 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ (𝑛 ∈ ℕ0 ∧ (𝑛𝑁) ∈ ℕ0)) → (2↑𝑁) ∈ ℂ)
3531nnne0d 12320 . . . . . . . . . . 11 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ (𝑛 ∈ ℕ0 ∧ (𝑛𝑁) ∈ ℕ0)) → (2↑𝑛) ≠ 0)
3633nnne0d 12320 . . . . . . . . . . 11 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ (𝑛 ∈ ℕ0 ∧ (𝑛𝑁) ∈ ℕ0)) → (2↑𝑁) ≠ 0)
3730, 32, 34, 35, 36divdiv2d 12079 . . . . . . . . . 10 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ (𝑛 ∈ ℕ0 ∧ (𝑛𝑁) ∈ ℕ0)) → (𝐴 / ((2↑𝑛) / (2↑𝑁))) = ((𝐴 · (2↑𝑁)) / (2↑𝑛)))
3827, 37eqtr2d 2777 . . . . . . . . 9 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ (𝑛 ∈ ℕ0 ∧ (𝑛𝑁) ∈ ℕ0)) → ((𝐴 · (2↑𝑁)) / (2↑𝑛)) = (𝐴 / (2↑(𝑛𝑁))))
3938fveq2d 6915 . . . . . . . 8 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ (𝑛 ∈ ℕ0 ∧ (𝑛𝑁) ∈ ℕ0)) → (⌊‘((𝐴 · (2↑𝑁)) / (2↑𝑛))) = (⌊‘(𝐴 / (2↑(𝑛𝑁)))))
4039breq2d 5161 . . . . . . 7 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ (𝑛 ∈ ℕ0 ∧ (𝑛𝑁) ∈ ℕ0)) → (2 ∥ (⌊‘((𝐴 · (2↑𝑁)) / (2↑𝑛))) ↔ 2 ∥ (⌊‘(𝐴 / (2↑(𝑛𝑁))))))
4140notbid 318 . . . . . 6 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ (𝑛 ∈ ℕ0 ∧ (𝑛𝑁) ∈ ℕ0)) → (¬ 2 ∥ (⌊‘((𝐴 · (2↑𝑁)) / (2↑𝑛))) ↔ ¬ 2 ∥ (⌊‘(𝐴 / (2↑(𝑛𝑁))))))
429adantrr 717 . . . . . . 7 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ (𝑛 ∈ ℕ0 ∧ (𝑛𝑁) ∈ ℕ0)) → (𝐴 · (2↑𝑁)) ∈ ℤ)
43 bitsval2 16465 . . . . . . 7 (((𝐴 · (2↑𝑁)) ∈ ℤ ∧ 𝑛 ∈ ℕ0) → (𝑛 ∈ (bits‘(𝐴 · (2↑𝑁))) ↔ ¬ 2 ∥ (⌊‘((𝐴 · (2↑𝑁)) / (2↑𝑛)))))
4442, 24, 43syl2anc 584 . . . . . 6 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ (𝑛 ∈ ℕ0 ∧ (𝑛𝑁) ∈ ℕ0)) → (𝑛 ∈ (bits‘(𝐴 · (2↑𝑁))) ↔ ¬ 2 ∥ (⌊‘((𝐴 · (2↑𝑁)) / (2↑𝑛)))))
45 bitsval2 16465 . . . . . . 7 ((𝐴 ∈ ℤ ∧ (𝑛𝑁) ∈ ℕ0) → ((𝑛𝑁) ∈ (bits‘𝐴) ↔ ¬ 2 ∥ (⌊‘(𝐴 / (2↑(𝑛𝑁))))))
4645ad2ant2rl 749 . . . . . 6 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ (𝑛 ∈ ℕ0 ∧ (𝑛𝑁) ∈ ℕ0)) → ((𝑛𝑁) ∈ (bits‘𝐴) ↔ ¬ 2 ∥ (⌊‘(𝐴 / (2↑(𝑛𝑁))))))
4741, 44, 463bitr4d 311 . . . . 5 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ (𝑛 ∈ ℕ0 ∧ (𝑛𝑁) ∈ ℕ0)) → (𝑛 ∈ (bits‘(𝐴 · (2↑𝑁))) ↔ (𝑛𝑁) ∈ (bits‘𝐴)))
4847expr 456 . . . 4 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) → ((𝑛𝑁) ∈ ℕ0 → (𝑛 ∈ (bits‘(𝐴 · (2↑𝑁))) ↔ (𝑛𝑁) ∈ (bits‘𝐴))))
4915, 18, 48pm5.21ndd 379 . . 3 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) → (𝑛 ∈ (bits‘(𝐴 · (2↑𝑁))) ↔ (𝑛𝑁) ∈ (bits‘𝐴)))
5049rabbi2dva 4235 . 2 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (ℕ0 ∩ (bits‘(𝐴 · (2↑𝑁)))) = {𝑛 ∈ ℕ0 ∣ (𝑛𝑁) ∈ (bits‘𝐴)})
51 bitsss 16466 . . 3 (bits‘(𝐴 · (2↑𝑁))) ⊆ ℕ0
52 sseqin2 4232 . . 3 ((bits‘(𝐴 · (2↑𝑁))) ⊆ ℕ0 ↔ (ℕ0 ∩ (bits‘(𝐴 · (2↑𝑁)))) = (bits‘(𝐴 · (2↑𝑁))))
5351, 52mpbi 230 . 2 (ℕ0 ∩ (bits‘(𝐴 · (2↑𝑁)))) = (bits‘(𝐴 · (2↑𝑁)))
5450, 53eqtr3di 2791 1 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → {𝑛 ∈ ℕ0 ∣ (𝑛𝑁) ∈ (bits‘𝐴)} = (bits‘(𝐴 · (2↑𝑁))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1538  wcel 2107  {crab 3434  cin 3963  wss 3964   class class class wbr 5149  cfv 6566  (class class class)co 7435  cc 11157   · cmul 11164  cmin 11496   / cdiv 11924  cn 12270  2c2 12325  0cn0 12530  cz 12617  cuz 12882  cfl 13833  cexp 14105  cdvds 16293  bitscbits 16459
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-rep 5286  ax-sep 5303  ax-nul 5313  ax-pow 5372  ax-pr 5439  ax-un 7758  ax-inf2 9685  ax-cnex 11215  ax-resscn 11216  ax-1cn 11217  ax-icn 11218  ax-addcl 11219  ax-addrcl 11220  ax-mulcl 11221  ax-mulrcl 11222  ax-mulcom 11223  ax-addass 11224  ax-mulass 11225  ax-distr 11226  ax-i2m1 11227  ax-1ne0 11228  ax-1rid 11229  ax-rnegex 11230  ax-rrecex 11231  ax-cnre 11232  ax-pre-lttri 11233  ax-pre-lttrn 11234  ax-pre-ltadd 11235  ax-pre-mulgt0 11236  ax-pre-sup 11237
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-xor 1510  df-tru 1541  df-fal 1551  df-had 1592  df-cad 1605  df-ex 1778  df-nf 1782  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3379  df-reu 3380  df-rab 3435  df-v 3481  df-sbc 3793  df-csb 3910  df-dif 3967  df-un 3969  df-in 3971  df-ss 3981  df-pss 3984  df-nul 4341  df-if 4533  df-pw 4608  df-sn 4633  df-pr 4635  df-op 4639  df-uni 4914  df-int 4953  df-iun 4999  df-disj 5117  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5584  df-eprel 5590  df-po 5598  df-so 5599  df-fr 5642  df-se 5643  df-we 5644  df-xp 5696  df-rel 5697  df-cnv 5698  df-co 5699  df-dm 5700  df-rn 5701  df-res 5702  df-ima 5703  df-pred 6326  df-ord 6392  df-on 6393  df-lim 6394  df-suc 6395  df-iota 6519  df-fun 6568  df-fn 6569  df-f 6570  df-f1 6571  df-fo 6572  df-f1o 6573  df-fv 6574  df-isom 6575  df-riota 7392  df-ov 7438  df-oprab 7439  df-mpo 7440  df-om 7892  df-1st 8019  df-2nd 8020  df-frecs 8311  df-wrecs 8342  df-recs 8416  df-rdg 8455  df-1o 8511  df-2o 8512  df-oadd 8515  df-er 8750  df-map 8873  df-pm 8874  df-en 8991  df-dom 8992  df-sdom 8993  df-fin 8994  df-sup 9486  df-inf 9487  df-oi 9554  df-dju 9945  df-card 9983  df-pnf 11301  df-mnf 11302  df-xr 11303  df-ltxr 11304  df-le 11305  df-sub 11498  df-neg 11499  df-div 11925  df-nn 12271  df-2 12333  df-3 12334  df-n0 12531  df-xnn0 12604  df-z 12618  df-uz 12883  df-rp 13039  df-fz 13551  df-fzo 13698  df-fl 13835  df-mod 13913  df-seq 14046  df-exp 14106  df-hash 14373  df-cj 15141  df-re 15142  df-im 15143  df-sqrt 15277  df-abs 15278  df-clim 15527  df-sum 15726  df-dvds 16294  df-bits 16462  df-sad 16491
This theorem is referenced by:  smumullem  16532
  Copyright terms: Public domain W3C validator