MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bitsshft Structured version   Visualization version   GIF version

Theorem bitsshft 16383
Description: Shifting a bit sequence to the left (toward the more significant bits) causes the number to be multiplied by a power of two. (Contributed by Mario Carneiro, 22-Sep-2016.)
Assertion
Ref Expression
bitsshft ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → {𝑛 ∈ ℕ0 ∣ (𝑛𝑁) ∈ (bits‘𝐴)} = (bits‘(𝐴 · (2↑𝑁))))
Distinct variable groups:   𝐴,𝑛   𝑛,𝑁

Proof of Theorem bitsshft
StepHypRef Expression
1 simpll 766 . . . . . . . 8 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) → 𝐴 ∈ ℤ)
2 2nn 12195 . . . . . . . . . . 11 2 ∈ ℕ
32a1i 11 . . . . . . . . . 10 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) → 2 ∈ ℕ)
4 simplr 768 . . . . . . . . . 10 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) → 𝑁 ∈ ℕ0)
53, 4nnexpcld 14149 . . . . . . . . 9 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) → (2↑𝑁) ∈ ℕ)
65nnzd 12492 . . . . . . . 8 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) → (2↑𝑁) ∈ ℤ)
7 dvdsmul2 16186 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ (2↑𝑁) ∈ ℤ) → (2↑𝑁) ∥ (𝐴 · (2↑𝑁)))
81, 6, 7syl2anc 584 . . . . . . 7 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) → (2↑𝑁) ∥ (𝐴 · (2↑𝑁)))
91, 6zmulcld 12580 . . . . . . . 8 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) → (𝐴 · (2↑𝑁)) ∈ ℤ)
10 bitsuz 16382 . . . . . . . 8 (((𝐴 · (2↑𝑁)) ∈ ℤ ∧ 𝑁 ∈ ℕ0) → ((2↑𝑁) ∥ (𝐴 · (2↑𝑁)) ↔ (bits‘(𝐴 · (2↑𝑁))) ⊆ (ℤ𝑁)))
119, 4, 10syl2anc 584 . . . . . . 7 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) → ((2↑𝑁) ∥ (𝐴 · (2↑𝑁)) ↔ (bits‘(𝐴 · (2↑𝑁))) ⊆ (ℤ𝑁)))
128, 11mpbid 232 . . . . . 6 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) → (bits‘(𝐴 · (2↑𝑁))) ⊆ (ℤ𝑁))
1312sseld 3933 . . . . 5 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) → (𝑛 ∈ (bits‘(𝐴 · (2↑𝑁))) → 𝑛 ∈ (ℤ𝑁)))
14 uznn0sub 12768 . . . . 5 (𝑛 ∈ (ℤ𝑁) → (𝑛𝑁) ∈ ℕ0)
1513, 14syl6 35 . . . 4 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) → (𝑛 ∈ (bits‘(𝐴 · (2↑𝑁))) → (𝑛𝑁) ∈ ℕ0))
16 bitsss 16334 . . . . . 6 (bits‘𝐴) ⊆ ℕ0
1716a1i 11 . . . . 5 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) → (bits‘𝐴) ⊆ ℕ0)
1817sseld 3933 . . . 4 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) → ((𝑛𝑁) ∈ (bits‘𝐴) → (𝑛𝑁) ∈ ℕ0))
19 2cnd 12200 . . . . . . . . . . . 12 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ (𝑛 ∈ ℕ0 ∧ (𝑛𝑁) ∈ ℕ0)) → 2 ∈ ℂ)
202a1i 11 . . . . . . . . . . . . 13 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ (𝑛 ∈ ℕ0 ∧ (𝑛𝑁) ∈ ℕ0)) → 2 ∈ ℕ)
2120nnne0d 12172 . . . . . . . . . . . 12 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ (𝑛 ∈ ℕ0 ∧ (𝑛𝑁) ∈ ℕ0)) → 2 ≠ 0)
22 simplr 768 . . . . . . . . . . . . 13 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ (𝑛 ∈ ℕ0 ∧ (𝑛𝑁) ∈ ℕ0)) → 𝑁 ∈ ℕ0)
2322nn0zd 12491 . . . . . . . . . . . 12 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ (𝑛 ∈ ℕ0 ∧ (𝑛𝑁) ∈ ℕ0)) → 𝑁 ∈ ℤ)
24 simprl 770 . . . . . . . . . . . . 13 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ (𝑛 ∈ ℕ0 ∧ (𝑛𝑁) ∈ ℕ0)) → 𝑛 ∈ ℕ0)
2524nn0zd 12491 . . . . . . . . . . . 12 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ (𝑛 ∈ ℕ0 ∧ (𝑛𝑁) ∈ ℕ0)) → 𝑛 ∈ ℤ)
2619, 21, 23, 25expsubd 14061 . . . . . . . . . . 11 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ (𝑛 ∈ ℕ0 ∧ (𝑛𝑁) ∈ ℕ0)) → (2↑(𝑛𝑁)) = ((2↑𝑛) / (2↑𝑁)))
2726oveq2d 7362 . . . . . . . . . 10 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ (𝑛 ∈ ℕ0 ∧ (𝑛𝑁) ∈ ℕ0)) → (𝐴 / (2↑(𝑛𝑁))) = (𝐴 / ((2↑𝑛) / (2↑𝑁))))
28 simpl 482 . . . . . . . . . . . . 13 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → 𝐴 ∈ ℤ)
2928zcnd 12575 . . . . . . . . . . . 12 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → 𝐴 ∈ ℂ)
3029adantr 480 . . . . . . . . . . 11 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ (𝑛 ∈ ℕ0 ∧ (𝑛𝑁) ∈ ℕ0)) → 𝐴 ∈ ℂ)
3120, 24nnexpcld 14149 . . . . . . . . . . . 12 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ (𝑛 ∈ ℕ0 ∧ (𝑛𝑁) ∈ ℕ0)) → (2↑𝑛) ∈ ℕ)
3231nncnd 12138 . . . . . . . . . . 11 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ (𝑛 ∈ ℕ0 ∧ (𝑛𝑁) ∈ ℕ0)) → (2↑𝑛) ∈ ℂ)
3320, 22nnexpcld 14149 . . . . . . . . . . . 12 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ (𝑛 ∈ ℕ0 ∧ (𝑛𝑁) ∈ ℕ0)) → (2↑𝑁) ∈ ℕ)
3433nncnd 12138 . . . . . . . . . . 11 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ (𝑛 ∈ ℕ0 ∧ (𝑛𝑁) ∈ ℕ0)) → (2↑𝑁) ∈ ℂ)
3531nnne0d 12172 . . . . . . . . . . 11 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ (𝑛 ∈ ℕ0 ∧ (𝑛𝑁) ∈ ℕ0)) → (2↑𝑛) ≠ 0)
3633nnne0d 12172 . . . . . . . . . . 11 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ (𝑛 ∈ ℕ0 ∧ (𝑛𝑁) ∈ ℕ0)) → (2↑𝑁) ≠ 0)
3730, 32, 34, 35, 36divdiv2d 11926 . . . . . . . . . 10 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ (𝑛 ∈ ℕ0 ∧ (𝑛𝑁) ∈ ℕ0)) → (𝐴 / ((2↑𝑛) / (2↑𝑁))) = ((𝐴 · (2↑𝑁)) / (2↑𝑛)))
3827, 37eqtr2d 2767 . . . . . . . . 9 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ (𝑛 ∈ ℕ0 ∧ (𝑛𝑁) ∈ ℕ0)) → ((𝐴 · (2↑𝑁)) / (2↑𝑛)) = (𝐴 / (2↑(𝑛𝑁))))
3938fveq2d 6826 . . . . . . . 8 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ (𝑛 ∈ ℕ0 ∧ (𝑛𝑁) ∈ ℕ0)) → (⌊‘((𝐴 · (2↑𝑁)) / (2↑𝑛))) = (⌊‘(𝐴 / (2↑(𝑛𝑁)))))
4039breq2d 5103 . . . . . . 7 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ (𝑛 ∈ ℕ0 ∧ (𝑛𝑁) ∈ ℕ0)) → (2 ∥ (⌊‘((𝐴 · (2↑𝑁)) / (2↑𝑛))) ↔ 2 ∥ (⌊‘(𝐴 / (2↑(𝑛𝑁))))))
4140notbid 318 . . . . . 6 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ (𝑛 ∈ ℕ0 ∧ (𝑛𝑁) ∈ ℕ0)) → (¬ 2 ∥ (⌊‘((𝐴 · (2↑𝑁)) / (2↑𝑛))) ↔ ¬ 2 ∥ (⌊‘(𝐴 / (2↑(𝑛𝑁))))))
429adantrr 717 . . . . . . 7 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ (𝑛 ∈ ℕ0 ∧ (𝑛𝑁) ∈ ℕ0)) → (𝐴 · (2↑𝑁)) ∈ ℤ)
43 bitsval2 16333 . . . . . . 7 (((𝐴 · (2↑𝑁)) ∈ ℤ ∧ 𝑛 ∈ ℕ0) → (𝑛 ∈ (bits‘(𝐴 · (2↑𝑁))) ↔ ¬ 2 ∥ (⌊‘((𝐴 · (2↑𝑁)) / (2↑𝑛)))))
4442, 24, 43syl2anc 584 . . . . . 6 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ (𝑛 ∈ ℕ0 ∧ (𝑛𝑁) ∈ ℕ0)) → (𝑛 ∈ (bits‘(𝐴 · (2↑𝑁))) ↔ ¬ 2 ∥ (⌊‘((𝐴 · (2↑𝑁)) / (2↑𝑛)))))
45 bitsval2 16333 . . . . . . 7 ((𝐴 ∈ ℤ ∧ (𝑛𝑁) ∈ ℕ0) → ((𝑛𝑁) ∈ (bits‘𝐴) ↔ ¬ 2 ∥ (⌊‘(𝐴 / (2↑(𝑛𝑁))))))
4645ad2ant2rl 749 . . . . . 6 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ (𝑛 ∈ ℕ0 ∧ (𝑛𝑁) ∈ ℕ0)) → ((𝑛𝑁) ∈ (bits‘𝐴) ↔ ¬ 2 ∥ (⌊‘(𝐴 / (2↑(𝑛𝑁))))))
4741, 44, 463bitr4d 311 . . . . 5 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ (𝑛 ∈ ℕ0 ∧ (𝑛𝑁) ∈ ℕ0)) → (𝑛 ∈ (bits‘(𝐴 · (2↑𝑁))) ↔ (𝑛𝑁) ∈ (bits‘𝐴)))
4847expr 456 . . . 4 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) → ((𝑛𝑁) ∈ ℕ0 → (𝑛 ∈ (bits‘(𝐴 · (2↑𝑁))) ↔ (𝑛𝑁) ∈ (bits‘𝐴))))
4915, 18, 48pm5.21ndd 379 . . 3 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) → (𝑛 ∈ (bits‘(𝐴 · (2↑𝑁))) ↔ (𝑛𝑁) ∈ (bits‘𝐴)))
5049rabbi2dva 4176 . 2 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (ℕ0 ∩ (bits‘(𝐴 · (2↑𝑁)))) = {𝑛 ∈ ℕ0 ∣ (𝑛𝑁) ∈ (bits‘𝐴)})
51 bitsss 16334 . . 3 (bits‘(𝐴 · (2↑𝑁))) ⊆ ℕ0
52 sseqin2 4173 . . 3 ((bits‘(𝐴 · (2↑𝑁))) ⊆ ℕ0 ↔ (ℕ0 ∩ (bits‘(𝐴 · (2↑𝑁)))) = (bits‘(𝐴 · (2↑𝑁))))
5351, 52mpbi 230 . 2 (ℕ0 ∩ (bits‘(𝐴 · (2↑𝑁)))) = (bits‘(𝐴 · (2↑𝑁)))
5450, 53eqtr3di 2781 1 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → {𝑛 ∈ ℕ0 ∣ (𝑛𝑁) ∈ (bits‘𝐴)} = (bits‘(𝐴 · (2↑𝑁))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  {crab 3395  cin 3901  wss 3902   class class class wbr 5091  cfv 6481  (class class class)co 7346  cc 11001   · cmul 11008  cmin 11341   / cdiv 11771  cn 12122  2c2 12177  0cn0 12378  cz 12465  cuz 12729  cfl 13691  cexp 13965  cdvds 16160  bitscbits 16327
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-inf2 9531  ax-cnex 11059  ax-resscn 11060  ax-1cn 11061  ax-icn 11062  ax-addcl 11063  ax-addrcl 11064  ax-mulcl 11065  ax-mulrcl 11066  ax-mulcom 11067  ax-addass 11068  ax-mulass 11069  ax-distr 11070  ax-i2m1 11071  ax-1ne0 11072  ax-1rid 11073  ax-rnegex 11074  ax-rrecex 11075  ax-cnre 11076  ax-pre-lttri 11077  ax-pre-lttrn 11078  ax-pre-ltadd 11079  ax-pre-mulgt0 11080  ax-pre-sup 11081
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-xor 1513  df-tru 1544  df-fal 1554  df-had 1595  df-cad 1608  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-int 4898  df-iun 4943  df-disj 5059  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-se 5570  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-2o 8386  df-oadd 8389  df-er 8622  df-map 8752  df-pm 8753  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-sup 9326  df-inf 9327  df-oi 9396  df-dju 9791  df-card 9829  df-pnf 11145  df-mnf 11146  df-xr 11147  df-ltxr 11148  df-le 11149  df-sub 11343  df-neg 11344  df-div 11772  df-nn 12123  df-2 12185  df-3 12186  df-n0 12379  df-xnn0 12452  df-z 12466  df-uz 12730  df-rp 12888  df-fz 13405  df-fzo 13552  df-fl 13693  df-mod 13771  df-seq 13906  df-exp 13966  df-hash 14235  df-cj 15003  df-re 15004  df-im 15005  df-sqrt 15139  df-abs 15140  df-clim 15392  df-sum 15591  df-dvds 16161  df-bits 16330  df-sad 16359
This theorem is referenced by:  smumullem  16400
  Copyright terms: Public domain W3C validator