MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bitsshft Structured version   Visualization version   GIF version

Theorem bitsshft 16451
Description: Shifting a bit sequence to the left (toward the more significant bits) causes the number to be multiplied by a power of two. (Contributed by Mario Carneiro, 22-Sep-2016.)
Assertion
Ref Expression
bitsshft ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → {𝑛 ∈ ℕ0 ∣ (𝑛𝑁) ∈ (bits‘𝐴)} = (bits‘(𝐴 · (2↑𝑁))))
Distinct variable groups:   𝐴,𝑛   𝑛,𝑁

Proof of Theorem bitsshft
StepHypRef Expression
1 simpll 766 . . . . . . . 8 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) → 𝐴 ∈ ℤ)
2 2nn 12270 . . . . . . . . . . 11 2 ∈ ℕ
32a1i 11 . . . . . . . . . 10 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) → 2 ∈ ℕ)
4 simplr 768 . . . . . . . . . 10 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) → 𝑁 ∈ ℕ0)
53, 4nnexpcld 14220 . . . . . . . . 9 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) → (2↑𝑁) ∈ ℕ)
65nnzd 12572 . . . . . . . 8 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) → (2↑𝑁) ∈ ℤ)
7 dvdsmul2 16255 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ (2↑𝑁) ∈ ℤ) → (2↑𝑁) ∥ (𝐴 · (2↑𝑁)))
81, 6, 7syl2anc 584 . . . . . . 7 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) → (2↑𝑁) ∥ (𝐴 · (2↑𝑁)))
91, 6zmulcld 12660 . . . . . . . 8 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) → (𝐴 · (2↑𝑁)) ∈ ℤ)
10 bitsuz 16450 . . . . . . . 8 (((𝐴 · (2↑𝑁)) ∈ ℤ ∧ 𝑁 ∈ ℕ0) → ((2↑𝑁) ∥ (𝐴 · (2↑𝑁)) ↔ (bits‘(𝐴 · (2↑𝑁))) ⊆ (ℤ𝑁)))
119, 4, 10syl2anc 584 . . . . . . 7 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) → ((2↑𝑁) ∥ (𝐴 · (2↑𝑁)) ↔ (bits‘(𝐴 · (2↑𝑁))) ⊆ (ℤ𝑁)))
128, 11mpbid 232 . . . . . 6 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) → (bits‘(𝐴 · (2↑𝑁))) ⊆ (ℤ𝑁))
1312sseld 3953 . . . . 5 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) → (𝑛 ∈ (bits‘(𝐴 · (2↑𝑁))) → 𝑛 ∈ (ℤ𝑁)))
14 uznn0sub 12848 . . . . 5 (𝑛 ∈ (ℤ𝑁) → (𝑛𝑁) ∈ ℕ0)
1513, 14syl6 35 . . . 4 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) → (𝑛 ∈ (bits‘(𝐴 · (2↑𝑁))) → (𝑛𝑁) ∈ ℕ0))
16 bitsss 16402 . . . . . 6 (bits‘𝐴) ⊆ ℕ0
1716a1i 11 . . . . 5 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) → (bits‘𝐴) ⊆ ℕ0)
1817sseld 3953 . . . 4 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) → ((𝑛𝑁) ∈ (bits‘𝐴) → (𝑛𝑁) ∈ ℕ0))
19 2cnd 12275 . . . . . . . . . . . 12 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ (𝑛 ∈ ℕ0 ∧ (𝑛𝑁) ∈ ℕ0)) → 2 ∈ ℂ)
202a1i 11 . . . . . . . . . . . . 13 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ (𝑛 ∈ ℕ0 ∧ (𝑛𝑁) ∈ ℕ0)) → 2 ∈ ℕ)
2120nnne0d 12247 . . . . . . . . . . . 12 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ (𝑛 ∈ ℕ0 ∧ (𝑛𝑁) ∈ ℕ0)) → 2 ≠ 0)
22 simplr 768 . . . . . . . . . . . . 13 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ (𝑛 ∈ ℕ0 ∧ (𝑛𝑁) ∈ ℕ0)) → 𝑁 ∈ ℕ0)
2322nn0zd 12571 . . . . . . . . . . . 12 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ (𝑛 ∈ ℕ0 ∧ (𝑛𝑁) ∈ ℕ0)) → 𝑁 ∈ ℤ)
24 simprl 770 . . . . . . . . . . . . 13 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ (𝑛 ∈ ℕ0 ∧ (𝑛𝑁) ∈ ℕ0)) → 𝑛 ∈ ℕ0)
2524nn0zd 12571 . . . . . . . . . . . 12 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ (𝑛 ∈ ℕ0 ∧ (𝑛𝑁) ∈ ℕ0)) → 𝑛 ∈ ℤ)
2619, 21, 23, 25expsubd 14132 . . . . . . . . . . 11 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ (𝑛 ∈ ℕ0 ∧ (𝑛𝑁) ∈ ℕ0)) → (2↑(𝑛𝑁)) = ((2↑𝑛) / (2↑𝑁)))
2726oveq2d 7410 . . . . . . . . . 10 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ (𝑛 ∈ ℕ0 ∧ (𝑛𝑁) ∈ ℕ0)) → (𝐴 / (2↑(𝑛𝑁))) = (𝐴 / ((2↑𝑛) / (2↑𝑁))))
28 simpl 482 . . . . . . . . . . . . 13 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → 𝐴 ∈ ℤ)
2928zcnd 12655 . . . . . . . . . . . 12 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → 𝐴 ∈ ℂ)
3029adantr 480 . . . . . . . . . . 11 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ (𝑛 ∈ ℕ0 ∧ (𝑛𝑁) ∈ ℕ0)) → 𝐴 ∈ ℂ)
3120, 24nnexpcld 14220 . . . . . . . . . . . 12 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ (𝑛 ∈ ℕ0 ∧ (𝑛𝑁) ∈ ℕ0)) → (2↑𝑛) ∈ ℕ)
3231nncnd 12213 . . . . . . . . . . 11 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ (𝑛 ∈ ℕ0 ∧ (𝑛𝑁) ∈ ℕ0)) → (2↑𝑛) ∈ ℂ)
3320, 22nnexpcld 14220 . . . . . . . . . . . 12 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ (𝑛 ∈ ℕ0 ∧ (𝑛𝑁) ∈ ℕ0)) → (2↑𝑁) ∈ ℕ)
3433nncnd 12213 . . . . . . . . . . 11 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ (𝑛 ∈ ℕ0 ∧ (𝑛𝑁) ∈ ℕ0)) → (2↑𝑁) ∈ ℂ)
3531nnne0d 12247 . . . . . . . . . . 11 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ (𝑛 ∈ ℕ0 ∧ (𝑛𝑁) ∈ ℕ0)) → (2↑𝑛) ≠ 0)
3633nnne0d 12247 . . . . . . . . . . 11 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ (𝑛 ∈ ℕ0 ∧ (𝑛𝑁) ∈ ℕ0)) → (2↑𝑁) ≠ 0)
3730, 32, 34, 35, 36divdiv2d 12006 . . . . . . . . . 10 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ (𝑛 ∈ ℕ0 ∧ (𝑛𝑁) ∈ ℕ0)) → (𝐴 / ((2↑𝑛) / (2↑𝑁))) = ((𝐴 · (2↑𝑁)) / (2↑𝑛)))
3827, 37eqtr2d 2766 . . . . . . . . 9 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ (𝑛 ∈ ℕ0 ∧ (𝑛𝑁) ∈ ℕ0)) → ((𝐴 · (2↑𝑁)) / (2↑𝑛)) = (𝐴 / (2↑(𝑛𝑁))))
3938fveq2d 6869 . . . . . . . 8 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ (𝑛 ∈ ℕ0 ∧ (𝑛𝑁) ∈ ℕ0)) → (⌊‘((𝐴 · (2↑𝑁)) / (2↑𝑛))) = (⌊‘(𝐴 / (2↑(𝑛𝑁)))))
4039breq2d 5127 . . . . . . 7 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ (𝑛 ∈ ℕ0 ∧ (𝑛𝑁) ∈ ℕ0)) → (2 ∥ (⌊‘((𝐴 · (2↑𝑁)) / (2↑𝑛))) ↔ 2 ∥ (⌊‘(𝐴 / (2↑(𝑛𝑁))))))
4140notbid 318 . . . . . 6 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ (𝑛 ∈ ℕ0 ∧ (𝑛𝑁) ∈ ℕ0)) → (¬ 2 ∥ (⌊‘((𝐴 · (2↑𝑁)) / (2↑𝑛))) ↔ ¬ 2 ∥ (⌊‘(𝐴 / (2↑(𝑛𝑁))))))
429adantrr 717 . . . . . . 7 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ (𝑛 ∈ ℕ0 ∧ (𝑛𝑁) ∈ ℕ0)) → (𝐴 · (2↑𝑁)) ∈ ℤ)
43 bitsval2 16401 . . . . . . 7 (((𝐴 · (2↑𝑁)) ∈ ℤ ∧ 𝑛 ∈ ℕ0) → (𝑛 ∈ (bits‘(𝐴 · (2↑𝑁))) ↔ ¬ 2 ∥ (⌊‘((𝐴 · (2↑𝑁)) / (2↑𝑛)))))
4442, 24, 43syl2anc 584 . . . . . 6 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ (𝑛 ∈ ℕ0 ∧ (𝑛𝑁) ∈ ℕ0)) → (𝑛 ∈ (bits‘(𝐴 · (2↑𝑁))) ↔ ¬ 2 ∥ (⌊‘((𝐴 · (2↑𝑁)) / (2↑𝑛)))))
45 bitsval2 16401 . . . . . . 7 ((𝐴 ∈ ℤ ∧ (𝑛𝑁) ∈ ℕ0) → ((𝑛𝑁) ∈ (bits‘𝐴) ↔ ¬ 2 ∥ (⌊‘(𝐴 / (2↑(𝑛𝑁))))))
4645ad2ant2rl 749 . . . . . 6 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ (𝑛 ∈ ℕ0 ∧ (𝑛𝑁) ∈ ℕ0)) → ((𝑛𝑁) ∈ (bits‘𝐴) ↔ ¬ 2 ∥ (⌊‘(𝐴 / (2↑(𝑛𝑁))))))
4741, 44, 463bitr4d 311 . . . . 5 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ (𝑛 ∈ ℕ0 ∧ (𝑛𝑁) ∈ ℕ0)) → (𝑛 ∈ (bits‘(𝐴 · (2↑𝑁))) ↔ (𝑛𝑁) ∈ (bits‘𝐴)))
4847expr 456 . . . 4 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) → ((𝑛𝑁) ∈ ℕ0 → (𝑛 ∈ (bits‘(𝐴 · (2↑𝑁))) ↔ (𝑛𝑁) ∈ (bits‘𝐴))))
4915, 18, 48pm5.21ndd 379 . . 3 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) → (𝑛 ∈ (bits‘(𝐴 · (2↑𝑁))) ↔ (𝑛𝑁) ∈ (bits‘𝐴)))
5049rabbi2dva 4197 . 2 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (ℕ0 ∩ (bits‘(𝐴 · (2↑𝑁)))) = {𝑛 ∈ ℕ0 ∣ (𝑛𝑁) ∈ (bits‘𝐴)})
51 bitsss 16402 . . 3 (bits‘(𝐴 · (2↑𝑁))) ⊆ ℕ0
52 sseqin2 4194 . . 3 ((bits‘(𝐴 · (2↑𝑁))) ⊆ ℕ0 ↔ (ℕ0 ∩ (bits‘(𝐴 · (2↑𝑁)))) = (bits‘(𝐴 · (2↑𝑁))))
5351, 52mpbi 230 . 2 (ℕ0 ∩ (bits‘(𝐴 · (2↑𝑁)))) = (bits‘(𝐴 · (2↑𝑁)))
5450, 53eqtr3di 2780 1 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → {𝑛 ∈ ℕ0 ∣ (𝑛𝑁) ∈ (bits‘𝐴)} = (bits‘(𝐴 · (2↑𝑁))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  {crab 3411  cin 3921  wss 3922   class class class wbr 5115  cfv 6519  (class class class)co 7394  cc 11084   · cmul 11091  cmin 11423   / cdiv 11851  cn 12197  2c2 12252  0cn0 12458  cz 12545  cuz 12809  cfl 13764  cexp 14036  cdvds 16229  bitscbits 16395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5242  ax-sep 5259  ax-nul 5269  ax-pow 5328  ax-pr 5395  ax-un 7718  ax-inf2 9612  ax-cnex 11142  ax-resscn 11143  ax-1cn 11144  ax-icn 11145  ax-addcl 11146  ax-addrcl 11147  ax-mulcl 11148  ax-mulrcl 11149  ax-mulcom 11150  ax-addass 11151  ax-mulass 11152  ax-distr 11153  ax-i2m1 11154  ax-1ne0 11155  ax-1rid 11156  ax-rnegex 11157  ax-rrecex 11158  ax-cnre 11159  ax-pre-lttri 11160  ax-pre-lttrn 11161  ax-pre-ltadd 11162  ax-pre-mulgt0 11163  ax-pre-sup 11164
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-xor 1512  df-tru 1543  df-fal 1553  df-had 1594  df-cad 1607  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2880  df-ne 2928  df-nel 3032  df-ral 3047  df-rex 3056  df-rmo 3357  df-reu 3358  df-rab 3412  df-v 3457  df-sbc 3762  df-csb 3871  df-dif 3925  df-un 3927  df-in 3929  df-ss 3939  df-pss 3942  df-nul 4305  df-if 4497  df-pw 4573  df-sn 4598  df-pr 4600  df-op 4604  df-uni 4880  df-int 4919  df-iun 4965  df-disj 5083  df-br 5116  df-opab 5178  df-mpt 5197  df-tr 5223  df-id 5541  df-eprel 5546  df-po 5554  df-so 5555  df-fr 5599  df-se 5600  df-we 5601  df-xp 5652  df-rel 5653  df-cnv 5654  df-co 5655  df-dm 5656  df-rn 5657  df-res 5658  df-ima 5659  df-pred 6282  df-ord 6343  df-on 6344  df-lim 6345  df-suc 6346  df-iota 6472  df-fun 6521  df-fn 6522  df-f 6523  df-f1 6524  df-fo 6525  df-f1o 6526  df-fv 6527  df-isom 6528  df-riota 7351  df-ov 7397  df-oprab 7398  df-mpo 7399  df-om 7851  df-1st 7977  df-2nd 7978  df-frecs 8269  df-wrecs 8300  df-recs 8349  df-rdg 8387  df-1o 8443  df-2o 8444  df-oadd 8447  df-er 8682  df-map 8805  df-pm 8806  df-en 8923  df-dom 8924  df-sdom 8925  df-fin 8926  df-sup 9411  df-inf 9412  df-oi 9481  df-dju 9872  df-card 9910  df-pnf 11228  df-mnf 11229  df-xr 11230  df-ltxr 11231  df-le 11232  df-sub 11425  df-neg 11426  df-div 11852  df-nn 12198  df-2 12260  df-3 12261  df-n0 12459  df-xnn0 12532  df-z 12546  df-uz 12810  df-rp 12966  df-fz 13482  df-fzo 13629  df-fl 13766  df-mod 13844  df-seq 13977  df-exp 14037  df-hash 14306  df-cj 15075  df-re 15076  df-im 15077  df-sqrt 15211  df-abs 15212  df-clim 15461  df-sum 15660  df-dvds 16230  df-bits 16398  df-sad 16427
This theorem is referenced by:  smumullem  16468
  Copyright terms: Public domain W3C validator