MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bitsshft Structured version   Visualization version   GIF version

Theorem bitsshft 16182
Description: Shifting a bit sequence to the left (toward the more significant bits) causes the number to be multiplied by a power of two. (Contributed by Mario Carneiro, 22-Sep-2016.)
Assertion
Ref Expression
bitsshft ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → {𝑛 ∈ ℕ0 ∣ (𝑛𝑁) ∈ (bits‘𝐴)} = (bits‘(𝐴 · (2↑𝑁))))
Distinct variable groups:   𝐴,𝑛   𝑛,𝑁

Proof of Theorem bitsshft
StepHypRef Expression
1 simpll 764 . . . . . . . 8 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) → 𝐴 ∈ ℤ)
2 2nn 12046 . . . . . . . . . . 11 2 ∈ ℕ
32a1i 11 . . . . . . . . . 10 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) → 2 ∈ ℕ)
4 simplr 766 . . . . . . . . . 10 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) → 𝑁 ∈ ℕ0)
53, 4nnexpcld 13960 . . . . . . . . 9 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) → (2↑𝑁) ∈ ℕ)
65nnzd 12425 . . . . . . . 8 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) → (2↑𝑁) ∈ ℤ)
7 dvdsmul2 15988 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ (2↑𝑁) ∈ ℤ) → (2↑𝑁) ∥ (𝐴 · (2↑𝑁)))
81, 6, 7syl2anc 584 . . . . . . 7 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) → (2↑𝑁) ∥ (𝐴 · (2↑𝑁)))
91, 6zmulcld 12432 . . . . . . . 8 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) → (𝐴 · (2↑𝑁)) ∈ ℤ)
10 bitsuz 16181 . . . . . . . 8 (((𝐴 · (2↑𝑁)) ∈ ℤ ∧ 𝑁 ∈ ℕ0) → ((2↑𝑁) ∥ (𝐴 · (2↑𝑁)) ↔ (bits‘(𝐴 · (2↑𝑁))) ⊆ (ℤ𝑁)))
119, 4, 10syl2anc 584 . . . . . . 7 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) → ((2↑𝑁) ∥ (𝐴 · (2↑𝑁)) ↔ (bits‘(𝐴 · (2↑𝑁))) ⊆ (ℤ𝑁)))
128, 11mpbid 231 . . . . . 6 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) → (bits‘(𝐴 · (2↑𝑁))) ⊆ (ℤ𝑁))
1312sseld 3920 . . . . 5 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) → (𝑛 ∈ (bits‘(𝐴 · (2↑𝑁))) → 𝑛 ∈ (ℤ𝑁)))
14 uznn0sub 12617 . . . . 5 (𝑛 ∈ (ℤ𝑁) → (𝑛𝑁) ∈ ℕ0)
1513, 14syl6 35 . . . 4 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) → (𝑛 ∈ (bits‘(𝐴 · (2↑𝑁))) → (𝑛𝑁) ∈ ℕ0))
16 bitsss 16133 . . . . . 6 (bits‘𝐴) ⊆ ℕ0
1716a1i 11 . . . . 5 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) → (bits‘𝐴) ⊆ ℕ0)
1817sseld 3920 . . . 4 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) → ((𝑛𝑁) ∈ (bits‘𝐴) → (𝑛𝑁) ∈ ℕ0))
19 2cnd 12051 . . . . . . . . . . . 12 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ (𝑛 ∈ ℕ0 ∧ (𝑛𝑁) ∈ ℕ0)) → 2 ∈ ℂ)
202a1i 11 . . . . . . . . . . . . 13 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ (𝑛 ∈ ℕ0 ∧ (𝑛𝑁) ∈ ℕ0)) → 2 ∈ ℕ)
2120nnne0d 12023 . . . . . . . . . . . 12 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ (𝑛 ∈ ℕ0 ∧ (𝑛𝑁) ∈ ℕ0)) → 2 ≠ 0)
22 simplr 766 . . . . . . . . . . . . 13 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ (𝑛 ∈ ℕ0 ∧ (𝑛𝑁) ∈ ℕ0)) → 𝑁 ∈ ℕ0)
2322nn0zd 12424 . . . . . . . . . . . 12 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ (𝑛 ∈ ℕ0 ∧ (𝑛𝑁) ∈ ℕ0)) → 𝑁 ∈ ℤ)
24 simprl 768 . . . . . . . . . . . . 13 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ (𝑛 ∈ ℕ0 ∧ (𝑛𝑁) ∈ ℕ0)) → 𝑛 ∈ ℕ0)
2524nn0zd 12424 . . . . . . . . . . . 12 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ (𝑛 ∈ ℕ0 ∧ (𝑛𝑁) ∈ ℕ0)) → 𝑛 ∈ ℤ)
2619, 21, 23, 25expsubd 13875 . . . . . . . . . . 11 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ (𝑛 ∈ ℕ0 ∧ (𝑛𝑁) ∈ ℕ0)) → (2↑(𝑛𝑁)) = ((2↑𝑛) / (2↑𝑁)))
2726oveq2d 7291 . . . . . . . . . 10 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ (𝑛 ∈ ℕ0 ∧ (𝑛𝑁) ∈ ℕ0)) → (𝐴 / (2↑(𝑛𝑁))) = (𝐴 / ((2↑𝑛) / (2↑𝑁))))
28 simpl 483 . . . . . . . . . . . . 13 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → 𝐴 ∈ ℤ)
2928zcnd 12427 . . . . . . . . . . . 12 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → 𝐴 ∈ ℂ)
3029adantr 481 . . . . . . . . . . 11 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ (𝑛 ∈ ℕ0 ∧ (𝑛𝑁) ∈ ℕ0)) → 𝐴 ∈ ℂ)
3120, 24nnexpcld 13960 . . . . . . . . . . . 12 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ (𝑛 ∈ ℕ0 ∧ (𝑛𝑁) ∈ ℕ0)) → (2↑𝑛) ∈ ℕ)
3231nncnd 11989 . . . . . . . . . . 11 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ (𝑛 ∈ ℕ0 ∧ (𝑛𝑁) ∈ ℕ0)) → (2↑𝑛) ∈ ℂ)
3320, 22nnexpcld 13960 . . . . . . . . . . . 12 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ (𝑛 ∈ ℕ0 ∧ (𝑛𝑁) ∈ ℕ0)) → (2↑𝑁) ∈ ℕ)
3433nncnd 11989 . . . . . . . . . . 11 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ (𝑛 ∈ ℕ0 ∧ (𝑛𝑁) ∈ ℕ0)) → (2↑𝑁) ∈ ℂ)
3531nnne0d 12023 . . . . . . . . . . 11 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ (𝑛 ∈ ℕ0 ∧ (𝑛𝑁) ∈ ℕ0)) → (2↑𝑛) ≠ 0)
3633nnne0d 12023 . . . . . . . . . . 11 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ (𝑛 ∈ ℕ0 ∧ (𝑛𝑁) ∈ ℕ0)) → (2↑𝑁) ≠ 0)
3730, 32, 34, 35, 36divdiv2d 11783 . . . . . . . . . 10 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ (𝑛 ∈ ℕ0 ∧ (𝑛𝑁) ∈ ℕ0)) → (𝐴 / ((2↑𝑛) / (2↑𝑁))) = ((𝐴 · (2↑𝑁)) / (2↑𝑛)))
3827, 37eqtr2d 2779 . . . . . . . . 9 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ (𝑛 ∈ ℕ0 ∧ (𝑛𝑁) ∈ ℕ0)) → ((𝐴 · (2↑𝑁)) / (2↑𝑛)) = (𝐴 / (2↑(𝑛𝑁))))
3938fveq2d 6778 . . . . . . . 8 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ (𝑛 ∈ ℕ0 ∧ (𝑛𝑁) ∈ ℕ0)) → (⌊‘((𝐴 · (2↑𝑁)) / (2↑𝑛))) = (⌊‘(𝐴 / (2↑(𝑛𝑁)))))
4039breq2d 5086 . . . . . . 7 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ (𝑛 ∈ ℕ0 ∧ (𝑛𝑁) ∈ ℕ0)) → (2 ∥ (⌊‘((𝐴 · (2↑𝑁)) / (2↑𝑛))) ↔ 2 ∥ (⌊‘(𝐴 / (2↑(𝑛𝑁))))))
4140notbid 318 . . . . . 6 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ (𝑛 ∈ ℕ0 ∧ (𝑛𝑁) ∈ ℕ0)) → (¬ 2 ∥ (⌊‘((𝐴 · (2↑𝑁)) / (2↑𝑛))) ↔ ¬ 2 ∥ (⌊‘(𝐴 / (2↑(𝑛𝑁))))))
429adantrr 714 . . . . . . 7 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ (𝑛 ∈ ℕ0 ∧ (𝑛𝑁) ∈ ℕ0)) → (𝐴 · (2↑𝑁)) ∈ ℤ)
43 bitsval2 16132 . . . . . . 7 (((𝐴 · (2↑𝑁)) ∈ ℤ ∧ 𝑛 ∈ ℕ0) → (𝑛 ∈ (bits‘(𝐴 · (2↑𝑁))) ↔ ¬ 2 ∥ (⌊‘((𝐴 · (2↑𝑁)) / (2↑𝑛)))))
4442, 24, 43syl2anc 584 . . . . . 6 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ (𝑛 ∈ ℕ0 ∧ (𝑛𝑁) ∈ ℕ0)) → (𝑛 ∈ (bits‘(𝐴 · (2↑𝑁))) ↔ ¬ 2 ∥ (⌊‘((𝐴 · (2↑𝑁)) / (2↑𝑛)))))
45 bitsval2 16132 . . . . . . 7 ((𝐴 ∈ ℤ ∧ (𝑛𝑁) ∈ ℕ0) → ((𝑛𝑁) ∈ (bits‘𝐴) ↔ ¬ 2 ∥ (⌊‘(𝐴 / (2↑(𝑛𝑁))))))
4645ad2ant2rl 746 . . . . . 6 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ (𝑛 ∈ ℕ0 ∧ (𝑛𝑁) ∈ ℕ0)) → ((𝑛𝑁) ∈ (bits‘𝐴) ↔ ¬ 2 ∥ (⌊‘(𝐴 / (2↑(𝑛𝑁))))))
4741, 44, 463bitr4d 311 . . . . 5 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ (𝑛 ∈ ℕ0 ∧ (𝑛𝑁) ∈ ℕ0)) → (𝑛 ∈ (bits‘(𝐴 · (2↑𝑁))) ↔ (𝑛𝑁) ∈ (bits‘𝐴)))
4847expr 457 . . . 4 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) → ((𝑛𝑁) ∈ ℕ0 → (𝑛 ∈ (bits‘(𝐴 · (2↑𝑁))) ↔ (𝑛𝑁) ∈ (bits‘𝐴))))
4915, 18, 48pm5.21ndd 381 . . 3 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0) → (𝑛 ∈ (bits‘(𝐴 · (2↑𝑁))) ↔ (𝑛𝑁) ∈ (bits‘𝐴)))
5049rabbi2dva 4151 . 2 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (ℕ0 ∩ (bits‘(𝐴 · (2↑𝑁)))) = {𝑛 ∈ ℕ0 ∣ (𝑛𝑁) ∈ (bits‘𝐴)})
51 bitsss 16133 . . 3 (bits‘(𝐴 · (2↑𝑁))) ⊆ ℕ0
52 sseqin2 4149 . . 3 ((bits‘(𝐴 · (2↑𝑁))) ⊆ ℕ0 ↔ (ℕ0 ∩ (bits‘(𝐴 · (2↑𝑁)))) = (bits‘(𝐴 · (2↑𝑁))))
5351, 52mpbi 229 . 2 (ℕ0 ∩ (bits‘(𝐴 · (2↑𝑁)))) = (bits‘(𝐴 · (2↑𝑁)))
5450, 53eqtr3di 2793 1 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → {𝑛 ∈ ℕ0 ∣ (𝑛𝑁) ∈ (bits‘𝐴)} = (bits‘(𝐴 · (2↑𝑁))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106  {crab 3068  cin 3886  wss 3887   class class class wbr 5074  cfv 6433  (class class class)co 7275  cc 10869   · cmul 10876  cmin 11205   / cdiv 11632  cn 11973  2c2 12028  0cn0 12233  cz 12319  cuz 12582  cfl 13510  cexp 13782  cdvds 15963  bitscbits 16126
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-inf2 9399  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-xor 1507  df-tru 1542  df-fal 1552  df-had 1595  df-cad 1609  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-disj 5040  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-2o 8298  df-oadd 8301  df-er 8498  df-map 8617  df-pm 8618  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-sup 9201  df-inf 9202  df-oi 9269  df-dju 9659  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-n0 12234  df-xnn0 12306  df-z 12320  df-uz 12583  df-rp 12731  df-fz 13240  df-fzo 13383  df-fl 13512  df-mod 13590  df-seq 13722  df-exp 13783  df-hash 14045  df-cj 14810  df-re 14811  df-im 14812  df-sqrt 14946  df-abs 14947  df-clim 15197  df-sum 15398  df-dvds 15964  df-bits 16129  df-sad 16158
This theorem is referenced by:  smumullem  16199
  Copyright terms: Public domain W3C validator