| Metamath
Proof Explorer Theorem List (p. 165 of 498) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30880) |
(30881-32403) |
(32404-49778) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | sadeq 16401 | Any element of a sequence sum only depends on the values of the argument sequences up to and including that point. (Contributed by Mario Carneiro, 9-Sep-2016.) |
| ⊢ (𝜑 → 𝐴 ⊆ ℕ0) & ⊢ (𝜑 → 𝐵 ⊆ ℕ0) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) ⇒ ⊢ (𝜑 → ((𝐴 sadd 𝐵) ∩ (0..^𝑁)) = (((𝐴 ∩ (0..^𝑁)) sadd (𝐵 ∩ (0..^𝑁))) ∩ (0..^𝑁))) | ||
| Theorem | bitsres 16402 | Restrict the bits of a number to an upper integer set. (Contributed by Mario Carneiro, 5-Sep-2016.) |
| ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → ((bits‘𝐴) ∩ (ℤ≥‘𝑁)) = (bits‘((⌊‘(𝐴 / (2↑𝑁))) · (2↑𝑁)))) | ||
| Theorem | bitsuz 16403 | The bits of a number are all at least 𝑁 iff the number is divisible by 2↑𝑁. (Contributed by Mario Carneiro, 21-Sep-2016.) |
| ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → ((2↑𝑁) ∥ 𝐴 ↔ (bits‘𝐴) ⊆ (ℤ≥‘𝑁))) | ||
| Theorem | bitsshft 16404* | Shifting a bit sequence to the left (toward the more significant bits) causes the number to be multiplied by a power of two. (Contributed by Mario Carneiro, 22-Sep-2016.) |
| ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → {𝑛 ∈ ℕ0 ∣ (𝑛 − 𝑁) ∈ (bits‘𝐴)} = (bits‘(𝐴 · (2↑𝑁)))) | ||
| Definition | df-smu 16405* | Define the multiplication of two bit sequences, using repeated sequence addition. (Contributed by Mario Carneiro, 9-Sep-2016.) |
| ⊢ smul = (𝑥 ∈ 𝒫 ℕ0, 𝑦 ∈ 𝒫 ℕ0 ↦ {𝑘 ∈ ℕ0 ∣ 𝑘 ∈ (seq0((𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0 ↦ (𝑝 sadd {𝑛 ∈ ℕ0 ∣ (𝑚 ∈ 𝑥 ∧ (𝑛 − 𝑚) ∈ 𝑦)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))‘(𝑘 + 1))}) | ||
| Theorem | smufval 16406* | The multiplication of two bit sequences as repeated sequence addition. (Contributed by Mario Carneiro, 9-Sep-2016.) |
| ⊢ (𝜑 → 𝐴 ⊆ ℕ0) & ⊢ (𝜑 → 𝐵 ⊆ ℕ0) & ⊢ 𝑃 = seq0((𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0 ↦ (𝑝 sadd {𝑛 ∈ ℕ0 ∣ (𝑚 ∈ 𝐴 ∧ (𝑛 − 𝑚) ∈ 𝐵)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1)))) ⇒ ⊢ (𝜑 → (𝐴 smul 𝐵) = {𝑘 ∈ ℕ0 ∣ 𝑘 ∈ (𝑃‘(𝑘 + 1))}) | ||
| Theorem | smupf 16407* | The sequence of partial sums of the sequence multiplication. (Contributed by Mario Carneiro, 9-Sep-2016.) |
| ⊢ (𝜑 → 𝐴 ⊆ ℕ0) & ⊢ (𝜑 → 𝐵 ⊆ ℕ0) & ⊢ 𝑃 = seq0((𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0 ↦ (𝑝 sadd {𝑛 ∈ ℕ0 ∣ (𝑚 ∈ 𝐴 ∧ (𝑛 − 𝑚) ∈ 𝐵)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1)))) ⇒ ⊢ (𝜑 → 𝑃:ℕ0⟶𝒫 ℕ0) | ||
| Theorem | smup0 16408* | The initial element of the partial sum sequence. (Contributed by Mario Carneiro, 9-Sep-2016.) |
| ⊢ (𝜑 → 𝐴 ⊆ ℕ0) & ⊢ (𝜑 → 𝐵 ⊆ ℕ0) & ⊢ 𝑃 = seq0((𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0 ↦ (𝑝 sadd {𝑛 ∈ ℕ0 ∣ (𝑚 ∈ 𝐴 ∧ (𝑛 − 𝑚) ∈ 𝐵)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1)))) ⇒ ⊢ (𝜑 → (𝑃‘0) = ∅) | ||
| Theorem | smupp1 16409* | The initial element of the partial sum sequence. (Contributed by Mario Carneiro, 9-Sep-2016.) |
| ⊢ (𝜑 → 𝐴 ⊆ ℕ0) & ⊢ (𝜑 → 𝐵 ⊆ ℕ0) & ⊢ 𝑃 = seq0((𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0 ↦ (𝑝 sadd {𝑛 ∈ ℕ0 ∣ (𝑚 ∈ 𝐴 ∧ (𝑛 − 𝑚) ∈ 𝐵)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1)))) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) ⇒ ⊢ (𝜑 → (𝑃‘(𝑁 + 1)) = ((𝑃‘𝑁) sadd {𝑛 ∈ ℕ0 ∣ (𝑁 ∈ 𝐴 ∧ (𝑛 − 𝑁) ∈ 𝐵)})) | ||
| Theorem | smuval 16410* | Define the addition of two bit sequences, using df-had 1594 and df-cad 1607 bit operations. (Contributed by Mario Carneiro, 9-Sep-2016.) |
| ⊢ (𝜑 → 𝐴 ⊆ ℕ0) & ⊢ (𝜑 → 𝐵 ⊆ ℕ0) & ⊢ 𝑃 = seq0((𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0 ↦ (𝑝 sadd {𝑛 ∈ ℕ0 ∣ (𝑚 ∈ 𝐴 ∧ (𝑛 − 𝑚) ∈ 𝐵)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1)))) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) ⇒ ⊢ (𝜑 → (𝑁 ∈ (𝐴 smul 𝐵) ↔ 𝑁 ∈ (𝑃‘(𝑁 + 1)))) | ||
| Theorem | smuval2 16411* | The partial sum sequence stabilizes at 𝑁 after the 𝑁 + 1-th element of the sequence; this stable value is the value of the sequence multiplication. (Contributed by Mario Carneiro, 9-Sep-2016.) |
| ⊢ (𝜑 → 𝐴 ⊆ ℕ0) & ⊢ (𝜑 → 𝐵 ⊆ ℕ0) & ⊢ 𝑃 = seq0((𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0 ↦ (𝑝 sadd {𝑛 ∈ ℕ0 ∣ (𝑚 ∈ 𝐴 ∧ (𝑛 − 𝑚) ∈ 𝐵)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1)))) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ (𝜑 → 𝑀 ∈ (ℤ≥‘(𝑁 + 1))) ⇒ ⊢ (𝜑 → (𝑁 ∈ (𝐴 smul 𝐵) ↔ 𝑁 ∈ (𝑃‘𝑀))) | ||
| Theorem | smupvallem 16412* | If 𝐴 only has elements less than 𝑁, then all elements of the partial sum sequence past 𝑁 already equal the final value. (Contributed by Mario Carneiro, 20-Sep-2016.) |
| ⊢ (𝜑 → 𝐴 ⊆ ℕ0) & ⊢ (𝜑 → 𝐵 ⊆ ℕ0) & ⊢ 𝑃 = seq0((𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0 ↦ (𝑝 sadd {𝑛 ∈ ℕ0 ∣ (𝑚 ∈ 𝐴 ∧ (𝑛 − 𝑚) ∈ 𝐵)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1)))) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ (𝜑 → 𝐴 ⊆ (0..^𝑁)) & ⊢ (𝜑 → 𝑀 ∈ (ℤ≥‘𝑁)) ⇒ ⊢ (𝜑 → (𝑃‘𝑀) = (𝐴 smul 𝐵)) | ||
| Theorem | smucl 16413 | The product of two sequences is a sequence. (Contributed by Mario Carneiro, 19-Sep-2016.) |
| ⊢ ((𝐴 ⊆ ℕ0 ∧ 𝐵 ⊆ ℕ0) → (𝐴 smul 𝐵) ⊆ ℕ0) | ||
| Theorem | smu01lem 16414* | Lemma for smu01 16415 and smu02 16416. (Contributed by Mario Carneiro, 19-Sep-2016.) |
| ⊢ (𝜑 → 𝐴 ⊆ ℕ0) & ⊢ (𝜑 → 𝐵 ⊆ ℕ0) & ⊢ ((𝜑 ∧ (𝑘 ∈ ℕ0 ∧ 𝑛 ∈ ℕ0)) → ¬ (𝑘 ∈ 𝐴 ∧ (𝑛 − 𝑘) ∈ 𝐵)) ⇒ ⊢ (𝜑 → (𝐴 smul 𝐵) = ∅) | ||
| Theorem | smu01 16415 | Multiplication of a sequence by 0 on the right. (Contributed by Mario Carneiro, 19-Sep-2016.) |
| ⊢ (𝐴 ⊆ ℕ0 → (𝐴 smul ∅) = ∅) | ||
| Theorem | smu02 16416 | Multiplication of a sequence by 0 on the left. (Contributed by Mario Carneiro, 9-Sep-2016.) |
| ⊢ (𝐴 ⊆ ℕ0 → (∅ smul 𝐴) = ∅) | ||
| Theorem | smupval 16417* | Rewrite the elements of the partial sum sequence in terms of sequence multiplication. (Contributed by Mario Carneiro, 20-Sep-2016.) |
| ⊢ (𝜑 → 𝐴 ⊆ ℕ0) & ⊢ (𝜑 → 𝐵 ⊆ ℕ0) & ⊢ 𝑃 = seq0((𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0 ↦ (𝑝 sadd {𝑛 ∈ ℕ0 ∣ (𝑚 ∈ 𝐴 ∧ (𝑛 − 𝑚) ∈ 𝐵)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1)))) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) ⇒ ⊢ (𝜑 → (𝑃‘𝑁) = ((𝐴 ∩ (0..^𝑁)) smul 𝐵)) | ||
| Theorem | smup1 16418* | Rewrite smupp1 16409 using only smul instead of the internal recursive function 𝑃. (Contributed by Mario Carneiro, 20-Sep-2016.) |
| ⊢ (𝜑 → 𝐴 ⊆ ℕ0) & ⊢ (𝜑 → 𝐵 ⊆ ℕ0) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) ⇒ ⊢ (𝜑 → ((𝐴 ∩ (0..^(𝑁 + 1))) smul 𝐵) = (((𝐴 ∩ (0..^𝑁)) smul 𝐵) sadd {𝑛 ∈ ℕ0 ∣ (𝑁 ∈ 𝐴 ∧ (𝑛 − 𝑁) ∈ 𝐵)})) | ||
| Theorem | smueqlem 16419* | Any element of a sequence multiplication only depends on the values of the argument sequences up to and including that point. (Contributed by Mario Carneiro, 20-Sep-2016.) |
| ⊢ (𝜑 → 𝐴 ⊆ ℕ0) & ⊢ (𝜑 → 𝐵 ⊆ ℕ0) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ 𝑃 = seq0((𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0 ↦ (𝑝 sadd {𝑛 ∈ ℕ0 ∣ (𝑚 ∈ 𝐴 ∧ (𝑛 − 𝑚) ∈ 𝐵)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1)))) & ⊢ 𝑄 = seq0((𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0 ↦ (𝑝 sadd {𝑛 ∈ ℕ0 ∣ (𝑚 ∈ 𝐴 ∧ (𝑛 − 𝑚) ∈ (𝐵 ∩ (0..^𝑁)))})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1)))) ⇒ ⊢ (𝜑 → ((𝐴 smul 𝐵) ∩ (0..^𝑁)) = (((𝐴 ∩ (0..^𝑁)) smul (𝐵 ∩ (0..^𝑁))) ∩ (0..^𝑁))) | ||
| Theorem | smueq 16420 | Any element of a sequence multiplication only depends on the values of the argument sequences up to and including that point. (Contributed by Mario Carneiro, 20-Sep-2016.) |
| ⊢ (𝜑 → 𝐴 ⊆ ℕ0) & ⊢ (𝜑 → 𝐵 ⊆ ℕ0) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) ⇒ ⊢ (𝜑 → ((𝐴 smul 𝐵) ∩ (0..^𝑁)) = (((𝐴 ∩ (0..^𝑁)) smul (𝐵 ∩ (0..^𝑁))) ∩ (0..^𝑁))) | ||
| Theorem | smumullem 16421 | Lemma for smumul 16422. (Contributed by Mario Carneiro, 22-Sep-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℤ) & ⊢ (𝜑 → 𝐵 ∈ ℤ) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) ⇒ ⊢ (𝜑 → (((bits‘𝐴) ∩ (0..^𝑁)) smul (bits‘𝐵)) = (bits‘((𝐴 mod (2↑𝑁)) · 𝐵))) | ||
| Theorem | smumul 16422 |
For sequences that correspond to valid integers, the sequence
multiplication function produces the sequence for the product. This is
effectively a proof of the correctness of the multiplication process,
implemented in terms of logic gates for df-sad 16380, whose correctness is
verified in sadadd 16396.
Outside this range, the sequences cannot be representing integers, but the smul function still "works". This extended function is best interpreted in terms of the ring structure of the 2-adic integers. (Contributed by Mario Carneiro, 22-Sep-2016.) |
| ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((bits‘𝐴) smul (bits‘𝐵)) = (bits‘(𝐴 · 𝐵))) | ||
| Syntax | cgcd 16423 | Extend the definition of a class to include the greatest common divisor operator. |
| class gcd | ||
| Definition | df-gcd 16424* | Define the gcd operator. For example, (-6 gcd 9) = 3 (ex-gcd 30419). For an alternate definition, based on the definition in [ApostolNT] p. 15, see dfgcd2 16475. (Contributed by Paul Chapman, 21-Mar-2011.) |
| ⊢ gcd = (𝑥 ∈ ℤ, 𝑦 ∈ ℤ ↦ if((𝑥 = 0 ∧ 𝑦 = 0), 0, sup({𝑛 ∈ ℤ ∣ (𝑛 ∥ 𝑥 ∧ 𝑛 ∥ 𝑦)}, ℝ, < ))) | ||
| Theorem | gcdval 16425* | The value of the gcd operator. (𝑀 gcd 𝑁) is the greatest common divisor of 𝑀 and 𝑁. If 𝑀 and 𝑁 are both 0, the result is defined conventionally as 0. (Contributed by Paul Chapman, 21-Mar-2011.) (Revised by Mario Carneiro, 10-Nov-2013.) |
| ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 gcd 𝑁) = if((𝑀 = 0 ∧ 𝑁 = 0), 0, sup({𝑛 ∈ ℤ ∣ (𝑛 ∥ 𝑀 ∧ 𝑛 ∥ 𝑁)}, ℝ, < ))) | ||
| Theorem | gcd0val 16426 | The value, by convention, of the gcd operator when both operands are 0. (Contributed by Paul Chapman, 21-Mar-2011.) |
| ⊢ (0 gcd 0) = 0 | ||
| Theorem | gcdn0val 16427* | The value of the gcd operator when at least one operand is nonzero. (Contributed by Paul Chapman, 21-Mar-2011.) |
| ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0)) → (𝑀 gcd 𝑁) = sup({𝑛 ∈ ℤ ∣ (𝑛 ∥ 𝑀 ∧ 𝑛 ∥ 𝑁)}, ℝ, < )) | ||
| Theorem | gcdcllem1 16428* | Lemma for gcdn0cl 16431, gcddvds 16432 and dvdslegcd 16433. (Contributed by Paul Chapman, 21-Mar-2011.) |
| ⊢ 𝑆 = {𝑧 ∈ ℤ ∣ ∀𝑛 ∈ 𝐴 𝑧 ∥ 𝑛} ⇒ ⊢ ((𝐴 ⊆ ℤ ∧ ∃𝑛 ∈ 𝐴 𝑛 ≠ 0) → (𝑆 ≠ ∅ ∧ ∃𝑥 ∈ ℤ ∀𝑦 ∈ 𝑆 𝑦 ≤ 𝑥)) | ||
| Theorem | gcdcllem2 16429* | Lemma for gcdn0cl 16431, gcddvds 16432 and dvdslegcd 16433. (Contributed by Paul Chapman, 21-Mar-2011.) |
| ⊢ 𝑆 = {𝑧 ∈ ℤ ∣ ∀𝑛 ∈ {𝑀, 𝑁}𝑧 ∥ 𝑛} & ⊢ 𝑅 = {𝑧 ∈ ℤ ∣ (𝑧 ∥ 𝑀 ∧ 𝑧 ∥ 𝑁)} ⇒ ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑅 = 𝑆) | ||
| Theorem | gcdcllem3 16430* | Lemma for gcdn0cl 16431, gcddvds 16432 and dvdslegcd 16433. (Contributed by Paul Chapman, 21-Mar-2011.) |
| ⊢ 𝑆 = {𝑧 ∈ ℤ ∣ ∀𝑛 ∈ {𝑀, 𝑁}𝑧 ∥ 𝑛} & ⊢ 𝑅 = {𝑧 ∈ ℤ ∣ (𝑧 ∥ 𝑀 ∧ 𝑧 ∥ 𝑁)} ⇒ ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0)) → (sup(𝑅, ℝ, < ) ∈ ℕ ∧ (sup(𝑅, ℝ, < ) ∥ 𝑀 ∧ sup(𝑅, ℝ, < ) ∥ 𝑁) ∧ ((𝐾 ∈ ℤ ∧ 𝐾 ∥ 𝑀 ∧ 𝐾 ∥ 𝑁) → 𝐾 ≤ sup(𝑅, ℝ, < )))) | ||
| Theorem | gcdn0cl 16431 | Closure of the gcd operator. (Contributed by Paul Chapman, 21-Mar-2011.) |
| ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0)) → (𝑀 gcd 𝑁) ∈ ℕ) | ||
| Theorem | gcddvds 16432 | The gcd of two integers divides each of them. (Contributed by Paul Chapman, 21-Mar-2011.) |
| ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀 gcd 𝑁) ∥ 𝑀 ∧ (𝑀 gcd 𝑁) ∥ 𝑁)) | ||
| Theorem | dvdslegcd 16433 | An integer which divides both operands of the gcd operator is bounded by it. (Contributed by Paul Chapman, 21-Mar-2011.) |
| ⊢ (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0)) → ((𝐾 ∥ 𝑀 ∧ 𝐾 ∥ 𝑁) → 𝐾 ≤ (𝑀 gcd 𝑁))) | ||
| Theorem | nndvdslegcd 16434 | A positive integer which divides both positive operands of the gcd operator is bounded by it. (Contributed by AV, 9-Aug-2020.) |
| ⊢ ((𝐾 ∈ ℕ ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝐾 ∥ 𝑀 ∧ 𝐾 ∥ 𝑁) → 𝐾 ≤ (𝑀 gcd 𝑁))) | ||
| Theorem | gcdcl 16435 | Closure of the gcd operator. (Contributed by Paul Chapman, 21-Mar-2011.) |
| ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 gcd 𝑁) ∈ ℕ0) | ||
| Theorem | gcdnncl 16436 | Closure of the gcd operator. (Contributed by Thierry Arnoux, 2-Feb-2020.) |
| ⊢ ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑀 gcd 𝑁) ∈ ℕ) | ||
| Theorem | gcdcld 16437 | Closure of the gcd operator. (Contributed by Mario Carneiro, 29-May-2016.) |
| ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝑁 ∈ ℤ) ⇒ ⊢ (𝜑 → (𝑀 gcd 𝑁) ∈ ℕ0) | ||
| Theorem | gcd2n0cl 16438 | Closure of the gcd operator if the second operand is not 0. (Contributed by AV, 10-Jul-2021.) |
| ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → (𝑀 gcd 𝑁) ∈ ℕ) | ||
| Theorem | zeqzmulgcd 16439* | An integer is the product of an integer and the gcd of it and another integer. (Contributed by AV, 11-Jul-2021.) |
| ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ∃𝑛 ∈ ℤ 𝐴 = (𝑛 · (𝐴 gcd 𝐵))) | ||
| Theorem | divgcdz 16440 | An integer divided by the gcd of it and a nonzero integer is an integer. (Contributed by AV, 11-Jul-2021.) |
| ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) → (𝐴 / (𝐴 gcd 𝐵)) ∈ ℤ) | ||
| Theorem | gcdf 16441 | Domain and codomain of the gcd operator. (Contributed by Paul Chapman, 31-Mar-2011.) (Revised by Mario Carneiro, 16-Nov-2013.) |
| ⊢ gcd :(ℤ × ℤ)⟶ℕ0 | ||
| Theorem | gcdcom 16442 | The gcd operator is commutative. Theorem 1.4(a) in [ApostolNT] p. 16. (Contributed by Paul Chapman, 21-Mar-2011.) |
| ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 gcd 𝑁) = (𝑁 gcd 𝑀)) | ||
| Theorem | gcdcomd 16443 | The gcd operator is commutative, deduction version. (Contributed by SN, 24-Aug-2024.) |
| ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝑁 ∈ ℤ) ⇒ ⊢ (𝜑 → (𝑀 gcd 𝑁) = (𝑁 gcd 𝑀)) | ||
| Theorem | divgcdnn 16444 | A positive integer divided by the gcd of it and another integer is a positive integer. (Contributed by AV, 10-Jul-2021.) |
| ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ) → (𝐴 / (𝐴 gcd 𝐵)) ∈ ℕ) | ||
| Theorem | divgcdnnr 16445 | A positive integer divided by the gcd of it and another integer is a positive integer. (Contributed by AV, 10-Jul-2021.) |
| ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ) → (𝐴 / (𝐵 gcd 𝐴)) ∈ ℕ) | ||
| Theorem | gcdeq0 16446 | The gcd of two integers is zero iff they are both zero. (Contributed by Paul Chapman, 21-Mar-2011.) |
| ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀 gcd 𝑁) = 0 ↔ (𝑀 = 0 ∧ 𝑁 = 0))) | ||
| Theorem | gcdn0gt0 16447 | The gcd of two integers is positive (nonzero) iff they are not both zero. (Contributed by Paul Chapman, 22-Jun-2011.) |
| ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (¬ (𝑀 = 0 ∧ 𝑁 = 0) ↔ 0 < (𝑀 gcd 𝑁))) | ||
| Theorem | gcd0id 16448 | The gcd of 0 and an integer is the integer's absolute value. (Contributed by Paul Chapman, 21-Mar-2011.) |
| ⊢ (𝑁 ∈ ℤ → (0 gcd 𝑁) = (abs‘𝑁)) | ||
| Theorem | gcdid0 16449 | The gcd of an integer and 0 is the integer's absolute value. Theorem 1.4(d)2 in [ApostolNT] p. 16. (Contributed by Paul Chapman, 31-Mar-2011.) |
| ⊢ (𝑁 ∈ ℤ → (𝑁 gcd 0) = (abs‘𝑁)) | ||
| Theorem | nn0gcdid0 16450 | The gcd of a nonnegative integer with 0 is itself. (Contributed by Paul Chapman, 31-Mar-2011.) |
| ⊢ (𝑁 ∈ ℕ0 → (𝑁 gcd 0) = 𝑁) | ||
| Theorem | gcdneg 16451 | Negating one operand of the gcd operator does not alter the result. (Contributed by Paul Chapman, 21-Mar-2011.) |
| ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 gcd -𝑁) = (𝑀 gcd 𝑁)) | ||
| Theorem | neggcd 16452 | Negating one operand of the gcd operator does not alter the result. (Contributed by Paul Chapman, 22-Jun-2011.) |
| ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (-𝑀 gcd 𝑁) = (𝑀 gcd 𝑁)) | ||
| Theorem | gcdaddmlem 16453 | Lemma for gcdaddm 16454. (Contributed by Paul Chapman, 31-Mar-2011.) |
| ⊢ 𝐾 ∈ ℤ & ⊢ 𝑀 ∈ ℤ & ⊢ 𝑁 ∈ ℤ ⇒ ⊢ (𝑀 gcd 𝑁) = (𝑀 gcd ((𝐾 · 𝑀) + 𝑁)) | ||
| Theorem | gcdaddm 16454 | Adding a multiple of one operand of the gcd operator to the other does not alter the result. (Contributed by Paul Chapman, 31-Mar-2011.) |
| ⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 gcd 𝑁) = (𝑀 gcd (𝑁 + (𝐾 · 𝑀)))) | ||
| Theorem | gcdadd 16455 | The GCD of two numbers is the same as the GCD of the left and their sum. (Contributed by Scott Fenton, 20-Apr-2014.) |
| ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 gcd 𝑁) = (𝑀 gcd (𝑁 + 𝑀))) | ||
| Theorem | gcdid 16456 | The gcd of a number and itself is its absolute value. (Contributed by Paul Chapman, 31-Mar-2011.) |
| ⊢ (𝑁 ∈ ℤ → (𝑁 gcd 𝑁) = (abs‘𝑁)) | ||
| Theorem | gcd1 16457 | The gcd of a number with 1 is 1. Theorem 1.4(d)1 in [ApostolNT] p. 16. (Contributed by Mario Carneiro, 19-Feb-2014.) |
| ⊢ (𝑀 ∈ ℤ → (𝑀 gcd 1) = 1) | ||
| Theorem | gcdabs1 16458 | gcd of the absolute value of the first operator. (Contributed by Scott Fenton, 2-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) |
| ⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ) → ((abs‘𝑁) gcd 𝑀) = (𝑁 gcd 𝑀)) | ||
| Theorem | gcdabs2 16459 | gcd of the absolute value of the second operator. (Contributed by Scott Fenton, 2-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) |
| ⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑁 gcd (abs‘𝑀)) = (𝑁 gcd 𝑀)) | ||
| Theorem | gcdabs 16460 | The gcd of two integers is the same as that of their absolute values. (Contributed by Paul Chapman, 31-Mar-2011.) (Proof shortened by SN, 15-Sep-2024.) |
| ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((abs‘𝑀) gcd (abs‘𝑁)) = (𝑀 gcd 𝑁)) | ||
| Theorem | modgcd 16461 | The gcd remains unchanged if one operand is replaced with its remainder modulo the other. (Contributed by Paul Chapman, 31-Mar-2011.) |
| ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → ((𝑀 mod 𝑁) gcd 𝑁) = (𝑀 gcd 𝑁)) | ||
| Theorem | 1gcd 16462 | The GCD of one and an integer is one. (Contributed by Scott Fenton, 17-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) |
| ⊢ (𝑀 ∈ ℤ → (1 gcd 𝑀) = 1) | ||
| Theorem | gcdmultipled 16463 | The greatest common divisor of a nonnegative integer 𝑀 and a multiple of it is 𝑀 itself. (Contributed by Rohan Ridenour, 3-Aug-2023.) |
| ⊢ (𝜑 → 𝑀 ∈ ℕ0) & ⊢ (𝜑 → 𝑁 ∈ ℤ) ⇒ ⊢ (𝜑 → (𝑀 gcd (𝑁 · 𝑀)) = 𝑀) | ||
| Theorem | gcdmultiplez 16464 | The GCD of a multiple of an integer is the integer itself. (Contributed by Scott Fenton, 18-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) (Proof shortened by AV, 12-Jan-2023.) |
| ⊢ ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℤ) → (𝑀 gcd (𝑀 · 𝑁)) = 𝑀) | ||
| Theorem | gcdmultiple 16465 | The GCD of a multiple of a positive integer is the positive integer itself. (Contributed by Scott Fenton, 12-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) (Proof shortened by AV, 12-Jan-2023.) |
| ⊢ ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑀 gcd (𝑀 · 𝑁)) = 𝑀) | ||
| Theorem | dvdsgcdidd 16466 | The greatest common divisor of a positive integer and another integer it divides is itself. (Contributed by Rohan Ridenour, 3-Aug-2023.) |
| ⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → 𝑁 ∈ ℤ) & ⊢ (𝜑 → 𝑀 ∥ 𝑁) ⇒ ⊢ (𝜑 → (𝑀 gcd 𝑁) = 𝑀) | ||
| Theorem | 6gcd4e2 16467 | The greatest common divisor of six and four is two. To calculate this gcd, a simple form of Euclid's algorithm is used: (6 gcd 4) = ((4 + 2) gcd 4) = (2 gcd 4) and (2 gcd 4) = (2 gcd (2 + 2)) = (2 gcd 2) = 2. (Contributed by AV, 27-Aug-2020.) |
| ⊢ (6 gcd 4) = 2 | ||
| Theorem | bezoutlem1 16468* | Lemma for bezout 16472. (Contributed by Mario Carneiro, 15-Mar-2014.) |
| ⊢ 𝑀 = {𝑧 ∈ ℕ ∣ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑧 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))} & ⊢ (𝜑 → 𝐴 ∈ ℤ) & ⊢ (𝜑 → 𝐵 ∈ ℤ) ⇒ ⊢ (𝜑 → (𝐴 ≠ 0 → (abs‘𝐴) ∈ 𝑀)) | ||
| Theorem | bezoutlem2 16469* | Lemma for bezout 16472. (Contributed by Mario Carneiro, 15-Mar-2014.) ( Revised by AV, 30-Sep-2020.) |
| ⊢ 𝑀 = {𝑧 ∈ ℕ ∣ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑧 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))} & ⊢ (𝜑 → 𝐴 ∈ ℤ) & ⊢ (𝜑 → 𝐵 ∈ ℤ) & ⊢ 𝐺 = inf(𝑀, ℝ, < ) & ⊢ (𝜑 → ¬ (𝐴 = 0 ∧ 𝐵 = 0)) ⇒ ⊢ (𝜑 → 𝐺 ∈ 𝑀) | ||
| Theorem | bezoutlem3 16470* | Lemma for bezout 16472. (Contributed by Mario Carneiro, 22-Feb-2014.) ( Revised by AV, 30-Sep-2020.) |
| ⊢ 𝑀 = {𝑧 ∈ ℕ ∣ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑧 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))} & ⊢ (𝜑 → 𝐴 ∈ ℤ) & ⊢ (𝜑 → 𝐵 ∈ ℤ) & ⊢ 𝐺 = inf(𝑀, ℝ, < ) & ⊢ (𝜑 → ¬ (𝐴 = 0 ∧ 𝐵 = 0)) ⇒ ⊢ (𝜑 → (𝐶 ∈ 𝑀 → 𝐺 ∥ 𝐶)) | ||
| Theorem | bezoutlem4 16471* | Lemma for bezout 16472. (Contributed by Mario Carneiro, 22-Feb-2014.) |
| ⊢ 𝑀 = {𝑧 ∈ ℕ ∣ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ 𝑧 = ((𝐴 · 𝑥) + (𝐵 · 𝑦))} & ⊢ (𝜑 → 𝐴 ∈ ℤ) & ⊢ (𝜑 → 𝐵 ∈ ℤ) & ⊢ 𝐺 = inf(𝑀, ℝ, < ) & ⊢ (𝜑 → ¬ (𝐴 = 0 ∧ 𝐵 = 0)) ⇒ ⊢ (𝜑 → (𝐴 gcd 𝐵) ∈ 𝑀) | ||
| Theorem | bezout 16472* | Bézout's identity: For any integers 𝐴 and 𝐵, there are integers 𝑥, 𝑦 such that (𝐴 gcd 𝐵) = 𝐴 · 𝑥 + 𝐵 · 𝑦. This is Metamath 100 proof #60. (Contributed by Mario Carneiro, 22-Feb-2014.) |
| ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ (𝐴 gcd 𝐵) = ((𝐴 · 𝑥) + (𝐵 · 𝑦))) | ||
| Theorem | dvdsgcd 16473 | An integer which divides each of two others also divides their gcd. (Contributed by Paul Chapman, 22-Jun-2011.) (Revised by Mario Carneiro, 30-May-2014.) |
| ⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐾 ∥ 𝑀 ∧ 𝐾 ∥ 𝑁) → 𝐾 ∥ (𝑀 gcd 𝑁))) | ||
| Theorem | dvdsgcdb 16474 | Biconditional form of dvdsgcd 16473. (Contributed by Scott Fenton, 2-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) |
| ⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐾 ∥ 𝑀 ∧ 𝐾 ∥ 𝑁) ↔ 𝐾 ∥ (𝑀 gcd 𝑁))) | ||
| Theorem | dfgcd2 16475* | Alternate definition of the gcd operator, see definition in [ApostolNT] p. 15. (Contributed by AV, 8-Aug-2021.) |
| ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐷 = (𝑀 gcd 𝑁) ↔ (0 ≤ 𝐷 ∧ (𝐷 ∥ 𝑀 ∧ 𝐷 ∥ 𝑁) ∧ ∀𝑒 ∈ ℤ ((𝑒 ∥ 𝑀 ∧ 𝑒 ∥ 𝑁) → 𝑒 ∥ 𝐷)))) | ||
| Theorem | gcdass 16476 | Associative law for gcd operator. Theorem 1.4(b) in [ApostolNT] p. 16. (Contributed by Scott Fenton, 2-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) |
| ⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ) → ((𝑁 gcd 𝑀) gcd 𝑃) = (𝑁 gcd (𝑀 gcd 𝑃))) | ||
| Theorem | mulgcd 16477 | Distribute multiplication by a nonnegative integer over gcd. (Contributed by Paul Chapman, 22-Jun-2011.) (Proof shortened by Mario Carneiro, 30-May-2014.) |
| ⊢ ((𝐾 ∈ ℕ0 ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐾 · 𝑀) gcd (𝐾 · 𝑁)) = (𝐾 · (𝑀 gcd 𝑁))) | ||
| Theorem | absmulgcd 16478 | Distribute absolute value of multiplication over gcd. Theorem 1.4(c) in [ApostolNT] p. 16. (Contributed by Paul Chapman, 22-Jun-2011.) |
| ⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐾 · 𝑀) gcd (𝐾 · 𝑁)) = (abs‘(𝐾 · (𝑀 gcd 𝑁)))) | ||
| Theorem | mulgcdr 16479 | Reverse distribution law for the gcd operator. (Contributed by Scott Fenton, 2-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) |
| ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ0) → ((𝐴 · 𝐶) gcd (𝐵 · 𝐶)) = ((𝐴 gcd 𝐵) · 𝐶)) | ||
| Theorem | gcddiv 16480 | Division law for GCD. (Contributed by Scott Fenton, 18-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) |
| ⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℕ) ∧ (𝐶 ∥ 𝐴 ∧ 𝐶 ∥ 𝐵)) → ((𝐴 gcd 𝐵) / 𝐶) = ((𝐴 / 𝐶) gcd (𝐵 / 𝐶))) | ||
| Theorem | gcdzeq 16481 | A positive integer 𝐴 is equal to its gcd with an integer 𝐵 if and only if 𝐴 divides 𝐵. Generalization of gcdeq 16482. (Contributed by AV, 1-Jul-2020.) |
| ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ) → ((𝐴 gcd 𝐵) = 𝐴 ↔ 𝐴 ∥ 𝐵)) | ||
| Theorem | gcdeq 16482 | 𝐴 is equal to its gcd with 𝐵 if and only if 𝐴 divides 𝐵. (Contributed by Mario Carneiro, 23-Feb-2014.) (Proof shortened by AV, 8-Aug-2021.) |
| ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → ((𝐴 gcd 𝐵) = 𝐴 ↔ 𝐴 ∥ 𝐵)) | ||
| Theorem | dvdssqim 16483 | Unidirectional form of dvdssq 16496. (Contributed by Scott Fenton, 19-Apr-2014.) |
| ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 ∥ 𝑁 → (𝑀↑2) ∥ (𝑁↑2))) | ||
| Theorem | dvdsexpim 16484 | If two numbers are divisible, so are their nonnegative exponents. Similar to dvdssqim 16483 for nonnegative exponents. (Contributed by Steven Nguyen, 2-Apr-2023.) |
| ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (𝐴 ∥ 𝐵 → (𝐴↑𝑁) ∥ (𝐵↑𝑁))) | ||
| Theorem | dvdsmulgcd 16485 | A divisibility equivalent for odmulg 19453. (Contributed by Stefan O'Rear, 6-Sep-2015.) |
| ⊢ ((𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (𝐴 ∥ (𝐵 · 𝐶) ↔ 𝐴 ∥ (𝐵 · (𝐶 gcd 𝐴)))) | ||
| Theorem | rpmulgcd 16486 | If 𝐾 and 𝑀 are relatively prime, then the GCD of 𝐾 and 𝑀 · 𝑁 is the GCD of 𝐾 and 𝑁. (Contributed by Scott Fenton, 12-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) |
| ⊢ (((𝐾 ∈ ℕ ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) ∧ (𝐾 gcd 𝑀) = 1) → (𝐾 gcd (𝑀 · 𝑁)) = (𝐾 gcd 𝑁)) | ||
| Theorem | rplpwr 16487 | If 𝐴 and 𝐵 are relatively prime, then so are 𝐴↑𝑁 and 𝐵. (Contributed by Scott Fenton, 12-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) |
| ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝐴 gcd 𝐵) = 1 → ((𝐴↑𝑁) gcd 𝐵) = 1)) | ||
| Theorem | rprpwr 16488 | If 𝐴 and 𝐵 are relatively prime, then so are 𝐴 and 𝐵↑𝑁. Originally a subproof of rppwr 16489. (Contributed by SN, 21-Aug-2024.) |
| ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝐴 gcd 𝐵) = 1 → (𝐴 gcd (𝐵↑𝑁)) = 1)) | ||
| Theorem | rppwr 16489 | If 𝐴 and 𝐵 are relatively prime, then so are 𝐴↑𝑁 and 𝐵↑𝑁. (Contributed by Scott Fenton, 12-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) |
| ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝐴 gcd 𝐵) = 1 → ((𝐴↑𝑁) gcd (𝐵↑𝑁)) = 1)) | ||
| Theorem | nn0rppwr 16490 | If 𝐴 and 𝐵 are relatively prime, then so are 𝐴↑𝑁 and 𝐵↑𝑁. rppwr 16489 extended to nonnegative integers. Less general than rpexp12i 16653. (Contributed by Steven Nguyen, 4-Apr-2023.) |
| ⊢ ((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0) → ((𝐴 gcd 𝐵) = 1 → ((𝐴↑𝑁) gcd (𝐵↑𝑁)) = 1)) | ||
| Theorem | sqgcd 16491 | Square distributes over gcd. (Contributed by Scott Fenton, 18-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) |
| ⊢ ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝑀 gcd 𝑁)↑2) = ((𝑀↑2) gcd (𝑁↑2))) | ||
| Theorem | expgcd 16492 | Exponentiation distributes over GCD. sqgcd 16491 extended to nonnegative exponents. (Contributed by Steven Nguyen, 4-Apr-2023.) |
| ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → ((𝐴 gcd 𝐵)↑𝑁) = ((𝐴↑𝑁) gcd (𝐵↑𝑁))) | ||
| Theorem | nn0expgcd 16493 | Exponentiation distributes over GCD. nn0gcdsq 16681 extended to nonnegative exponents. expgcd 16492 extended to nonnegative bases. (Contributed by Steven Nguyen, 5-Apr-2023.) |
| ⊢ ((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0) → ((𝐴 gcd 𝐵)↑𝑁) = ((𝐴↑𝑁) gcd (𝐵↑𝑁))) | ||
| Theorem | zexpgcd 16494 | Exponentiation distributes over GCD. zgcdsq 16682 extended to nonnegative exponents. nn0expgcd 16493 extended to integer bases by symmetry. (Contributed by Steven Nguyen, 5-Apr-2023.) |
| ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → ((𝐴 gcd 𝐵)↑𝑁) = ((𝐴↑𝑁) gcd (𝐵↑𝑁))) | ||
| Theorem | dvdssqlem 16495 | Lemma for dvdssq 16496. (Contributed by Scott Fenton, 18-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) |
| ⊢ ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑀 ∥ 𝑁 ↔ (𝑀↑2) ∥ (𝑁↑2))) | ||
| Theorem | dvdssq 16496 | Two numbers are divisible iff their squares are. (Contributed by Scott Fenton, 18-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) |
| ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 ∥ 𝑁 ↔ (𝑀↑2) ∥ (𝑁↑2))) | ||
| Theorem | bezoutr 16497 | Partial converse to bezout 16472. Existence of a linear combination does not set the GCD, but it does upper bound it. (Contributed by Stefan O'Rear, 23-Sep-2014.) |
| ⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ)) → (𝐴 gcd 𝐵) ∥ ((𝐴 · 𝑋) + (𝐵 · 𝑌))) | ||
| Theorem | bezoutr1 16498 | Converse of bezout 16472 for when the greater common divisor is one (sufficient condition for relative primality). (Contributed by Stefan O'Rear, 23-Sep-2014.) |
| ⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ)) → (((𝐴 · 𝑋) + (𝐵 · 𝑌)) = 1 → (𝐴 gcd 𝐵) = 1)) | ||
| Theorem | nn0seqcvgd 16499* | A strictly-decreasing nonnegative integer sequence with initial term 𝑁 reaches zero by the 𝑁 th term. Deduction version. (Contributed by Paul Chapman, 31-Mar-2011.) |
| ⊢ (𝜑 → 𝐹:ℕ0⟶ℕ0) & ⊢ (𝜑 → 𝑁 = (𝐹‘0)) & ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → ((𝐹‘(𝑘 + 1)) ≠ 0 → (𝐹‘(𝑘 + 1)) < (𝐹‘𝑘))) ⇒ ⊢ (𝜑 → (𝐹‘𝑁) = 0) | ||
| Theorem | seq1st 16500 | A sequence whose iteration function ignores the second argument is only affected by the first point of the initial value function. (Contributed by Mario Carneiro, 11-Feb-2015.) |
| ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ 𝑅 = seq𝑀((𝐹 ∘ 1st ), (𝑍 × {𝐴})) ⇒ ⊢ ((𝑀 ∈ ℤ ∧ 𝐴 ∈ 𝑉) → 𝑅 = seq𝑀((𝐹 ∘ 1st ), {〈𝑀, 𝐴〉})) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |