| Metamath
Proof Explorer Theorem List (p. 165 of 497) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30899) |
(30900-32422) |
(32423-49669) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | nno 16401 | An alternate characterization of an odd integer greater than 1. (Contributed by AV, 2-Jun-2020.) (Proof shortened by AV, 10-Jul-2022.) |
| ⊢ ((𝑁 ∈ (ℤ≥‘2) ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → ((𝑁 − 1) / 2) ∈ ℕ) | ||
| Theorem | nn0o 16402 | An alternate characterization of an odd nonnegative integer. (Contributed by AV, 28-May-2020.) (Proof shortened by AV, 2-Jun-2020.) |
| ⊢ ((𝑁 ∈ ℕ0 ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → ((𝑁 − 1) / 2) ∈ ℕ0) | ||
| Theorem | nn0ob 16403 | Alternate characterizations of an odd nonnegative integer. (Contributed by AV, 4-Jun-2020.) |
| ⊢ (𝑁 ∈ ℕ0 → (((𝑁 + 1) / 2) ∈ ℕ0 ↔ ((𝑁 − 1) / 2) ∈ ℕ0)) | ||
| Theorem | nn0oddm1d2 16404 | A positive integer is odd iff its predecessor divided by 2 is a positive integer. (Contributed by AV, 28-Jun-2021.) (Proof shortened by AV, 10-Jul-2022.) |
| ⊢ (𝑁 ∈ ℕ0 → (¬ 2 ∥ 𝑁 ↔ ((𝑁 − 1) / 2) ∈ ℕ0)) | ||
| Theorem | nnoddm1d2 16405 | A positive integer is odd iff its successor divided by 2 is a positive integer. (Contributed by AV, 28-Jun-2021.) |
| ⊢ (𝑁 ∈ ℕ → (¬ 2 ∥ 𝑁 ↔ ((𝑁 + 1) / 2) ∈ ℕ)) | ||
| Theorem | sumeven 16406* | If every term in a sum is even, then so is the sum. (Contributed by AV, 14-Aug-2021.) |
| ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℤ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 2 ∥ 𝐵) ⇒ ⊢ (𝜑 → 2 ∥ Σ𝑘 ∈ 𝐴 𝐵) | ||
| Theorem | sumodd 16407* | If every term in a sum is odd, then the sum is even iff the number of terms in the sum is even. (Contributed by AV, 14-Aug-2021.) |
| ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℤ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → ¬ 2 ∥ 𝐵) ⇒ ⊢ (𝜑 → (2 ∥ (♯‘𝐴) ↔ 2 ∥ Σ𝑘 ∈ 𝐴 𝐵)) | ||
| Theorem | evensumodd 16408* | If every term in a sum with an even number of terms is odd, then the sum is even. (Contributed by AV, 14-Aug-2021.) |
| ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℤ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → ¬ 2 ∥ 𝐵) & ⊢ (𝜑 → 2 ∥ (♯‘𝐴)) ⇒ ⊢ (𝜑 → 2 ∥ Σ𝑘 ∈ 𝐴 𝐵) | ||
| Theorem | oddsumodd 16409* | If every term in a sum with an odd number of terms is odd, then the sum is odd. (Contributed by AV, 14-Aug-2021.) |
| ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℤ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → ¬ 2 ∥ 𝐵) & ⊢ (𝜑 → ¬ 2 ∥ (♯‘𝐴)) ⇒ ⊢ (𝜑 → ¬ 2 ∥ Σ𝑘 ∈ 𝐴 𝐵) | ||
| Theorem | pwp1fsum 16410* | The n-th power of a number increased by 1 expressed by a product with a finite sum. (Contributed by AV, 15-Aug-2021.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝑁 ∈ ℕ) ⇒ ⊢ (𝜑 → (((-1↑(𝑁 − 1)) · (𝐴↑𝑁)) + 1) = ((𝐴 + 1) · Σ𝑘 ∈ (0...(𝑁 − 1))((-1↑𝑘) · (𝐴↑𝑘)))) | ||
| Theorem | oddpwp1fsum 16411* | An odd power of a number increased by 1 expressed by a product with a finite sum. (Contributed by AV, 15-Aug-2021.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → ¬ 2 ∥ 𝑁) ⇒ ⊢ (𝜑 → ((𝐴↑𝑁) + 1) = ((𝐴 + 1) · Σ𝑘 ∈ (0...(𝑁 − 1))((-1↑𝑘) · (𝐴↑𝑘)))) | ||
| Theorem | divalglem0 16412 | Lemma for divalg 16422. (Contributed by Paul Chapman, 21-Mar-2011.) |
| ⊢ 𝑁 ∈ ℤ & ⊢ 𝐷 ∈ ℤ ⇒ ⊢ ((𝑅 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝐷 ∥ (𝑁 − 𝑅) → 𝐷 ∥ (𝑁 − (𝑅 − (𝐾 · (abs‘𝐷)))))) | ||
| Theorem | divalglem1 16413 | Lemma for divalg 16422. (Contributed by Paul Chapman, 21-Mar-2011.) |
| ⊢ 𝑁 ∈ ℤ & ⊢ 𝐷 ∈ ℤ & ⊢ 𝐷 ≠ 0 ⇒ ⊢ 0 ≤ (𝑁 + (abs‘(𝑁 · 𝐷))) | ||
| Theorem | divalglem2 16414* | Lemma for divalg 16422. (Contributed by Paul Chapman, 21-Mar-2011.) (Revised by AV, 2-Oct-2020.) |
| ⊢ 𝑁 ∈ ℤ & ⊢ 𝐷 ∈ ℤ & ⊢ 𝐷 ≠ 0 & ⊢ 𝑆 = {𝑟 ∈ ℕ0 ∣ 𝐷 ∥ (𝑁 − 𝑟)} ⇒ ⊢ inf(𝑆, ℝ, < ) ∈ 𝑆 | ||
| Theorem | divalglem4 16415* | Lemma for divalg 16422. (Contributed by Paul Chapman, 21-Mar-2011.) |
| ⊢ 𝑁 ∈ ℤ & ⊢ 𝐷 ∈ ℤ & ⊢ 𝐷 ≠ 0 & ⊢ 𝑆 = {𝑟 ∈ ℕ0 ∣ 𝐷 ∥ (𝑁 − 𝑟)} ⇒ ⊢ 𝑆 = {𝑟 ∈ ℕ0 ∣ ∃𝑞 ∈ ℤ 𝑁 = ((𝑞 · 𝐷) + 𝑟)} | ||
| Theorem | divalglem5 16416* | Lemma for divalg 16422. (Contributed by Paul Chapman, 21-Mar-2011.) (Revised by AV, 2-Oct-2020.) |
| ⊢ 𝑁 ∈ ℤ & ⊢ 𝐷 ∈ ℤ & ⊢ 𝐷 ≠ 0 & ⊢ 𝑆 = {𝑟 ∈ ℕ0 ∣ 𝐷 ∥ (𝑁 − 𝑟)} & ⊢ 𝑅 = inf(𝑆, ℝ, < ) ⇒ ⊢ (0 ≤ 𝑅 ∧ 𝑅 < (abs‘𝐷)) | ||
| Theorem | divalglem6 16417 | Lemma for divalg 16422. (Contributed by Paul Chapman, 21-Mar-2011.) |
| ⊢ 𝐴 ∈ ℕ & ⊢ 𝑋 ∈ (0...(𝐴 − 1)) & ⊢ 𝐾 ∈ ℤ ⇒ ⊢ (𝐾 ≠ 0 → ¬ (𝑋 + (𝐾 · 𝐴)) ∈ (0...(𝐴 − 1))) | ||
| Theorem | divalglem7 16418 | Lemma for divalg 16422. (Contributed by Paul Chapman, 21-Mar-2011.) |
| ⊢ 𝐷 ∈ ℤ & ⊢ 𝐷 ≠ 0 ⇒ ⊢ ((𝑋 ∈ (0...((abs‘𝐷) − 1)) ∧ 𝐾 ∈ ℤ) → (𝐾 ≠ 0 → ¬ (𝑋 + (𝐾 · (abs‘𝐷))) ∈ (0...((abs‘𝐷) − 1)))) | ||
| Theorem | divalglem8 16419* | Lemma for divalg 16422. (Contributed by Paul Chapman, 21-Mar-2011.) |
| ⊢ 𝑁 ∈ ℤ & ⊢ 𝐷 ∈ ℤ & ⊢ 𝐷 ≠ 0 & ⊢ 𝑆 = {𝑟 ∈ ℕ0 ∣ 𝐷 ∥ (𝑁 − 𝑟)} ⇒ ⊢ (((𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆) ∧ (𝑋 < (abs‘𝐷) ∧ 𝑌 < (abs‘𝐷))) → (𝐾 ∈ ℤ → ((𝐾 · (abs‘𝐷)) = (𝑌 − 𝑋) → 𝑋 = 𝑌))) | ||
| Theorem | divalglem9 16420* | Lemma for divalg 16422. (Contributed by Paul Chapman, 21-Mar-2011.) (Revised by AV, 2-Oct-2020.) |
| ⊢ 𝑁 ∈ ℤ & ⊢ 𝐷 ∈ ℤ & ⊢ 𝐷 ≠ 0 & ⊢ 𝑆 = {𝑟 ∈ ℕ0 ∣ 𝐷 ∥ (𝑁 − 𝑟)} & ⊢ 𝑅 = inf(𝑆, ℝ, < ) ⇒ ⊢ ∃!𝑥 ∈ 𝑆 𝑥 < (abs‘𝐷) | ||
| Theorem | divalglem10 16421* | Lemma for divalg 16422. (Contributed by Paul Chapman, 21-Mar-2011.) (Proof shortened by AV, 2-Oct-2020.) |
| ⊢ 𝑁 ∈ ℤ & ⊢ 𝐷 ∈ ℤ & ⊢ 𝐷 ≠ 0 & ⊢ 𝑆 = {𝑟 ∈ ℕ0 ∣ 𝐷 ∥ (𝑁 − 𝑟)} ⇒ ⊢ ∃!𝑟 ∈ ℤ ∃𝑞 ∈ ℤ (0 ≤ 𝑟 ∧ 𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟)) | ||
| Theorem | divalg 16422* | The division algorithm (theorem). Dividing an integer 𝑁 by a nonzero integer 𝐷 produces a (unique) quotient 𝑞 and a unique remainder 0 ≤ 𝑟 < (abs‘𝐷). Theorem 1.14 in [ApostolNT] p. 19. The proof does not use / or ⌊ or mod. (Contributed by Paul Chapman, 21-Mar-2011.) |
| ⊢ ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐷 ≠ 0) → ∃!𝑟 ∈ ℤ ∃𝑞 ∈ ℤ (0 ≤ 𝑟 ∧ 𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟))) | ||
| Theorem | divalgb 16423* | Express the division algorithm as stated in divalg 16422 in terms of ∥. (Contributed by Paul Chapman, 31-Mar-2011.) |
| ⊢ ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐷 ≠ 0) → (∃!𝑟 ∈ ℤ ∃𝑞 ∈ ℤ (0 ≤ 𝑟 ∧ 𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟)) ↔ ∃!𝑟 ∈ ℕ0 (𝑟 < (abs‘𝐷) ∧ 𝐷 ∥ (𝑁 − 𝑟)))) | ||
| Theorem | divalg2 16424* | The division algorithm (theorem) for a positive divisor. (Contributed by Paul Chapman, 21-Mar-2011.) |
| ⊢ ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) → ∃!𝑟 ∈ ℕ0 (𝑟 < 𝐷 ∧ 𝐷 ∥ (𝑁 − 𝑟))) | ||
| Theorem | divalgmod 16425 | The result of the mod operator satisfies the requirements for the remainder 𝑅 in the division algorithm for a positive divisor (compare divalg2 16424 and divalgb 16423). This demonstration theorem justifies the use of mod to yield an explicit remainder from this point forward. (Contributed by Paul Chapman, 31-Mar-2011.) (Revised by AV, 21-Aug-2021.) |
| ⊢ ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) → (𝑅 = (𝑁 mod 𝐷) ↔ (𝑅 ∈ ℕ0 ∧ (𝑅 < 𝐷 ∧ 𝐷 ∥ (𝑁 − 𝑅))))) | ||
| Theorem | divalgmodcl 16426 | The result of the mod operator satisfies the requirements for the remainder 𝑅 in the division algorithm for a positive divisor. Variant of divalgmod 16425. (Contributed by Stefan O'Rear, 17-Oct-2014.) (Proof shortened by AV, 21-Aug-2021.) |
| ⊢ ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ 𝑅 ∈ ℕ0) → (𝑅 = (𝑁 mod 𝐷) ↔ (𝑅 < 𝐷 ∧ 𝐷 ∥ (𝑁 − 𝑅)))) | ||
| Theorem | modremain 16427* | The result of the modulo operation is the remainder of the division algorithm. (Contributed by AV, 19-Aug-2021.) |
| ⊢ ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ (𝑅 ∈ ℕ0 ∧ 𝑅 < 𝐷)) → ((𝑁 mod 𝐷) = 𝑅 ↔ ∃𝑧 ∈ ℤ ((𝑧 · 𝐷) + 𝑅) = 𝑁)) | ||
| Theorem | ndvdssub 16428 | Corollary of the division algorithm. If an integer 𝐷 greater than 1 divides 𝑁, then it does not divide any of 𝑁 − 1, 𝑁 − 2... 𝑁 − (𝐷 − 1). (Contributed by Paul Chapman, 31-Mar-2011.) |
| ⊢ ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐾 < 𝐷)) → (𝐷 ∥ 𝑁 → ¬ 𝐷 ∥ (𝑁 − 𝐾))) | ||
| Theorem | ndvdsadd 16429 | Corollary of the division algorithm. If an integer 𝐷 greater than 1 divides 𝑁, then it does not divide any of 𝑁 + 1, 𝑁 + 2... 𝑁 + (𝐷 − 1). (Contributed by Paul Chapman, 31-Mar-2011.) |
| ⊢ ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐾 < 𝐷)) → (𝐷 ∥ 𝑁 → ¬ 𝐷 ∥ (𝑁 + 𝐾))) | ||
| Theorem | ndvdsp1 16430 | Special case of ndvdsadd 16429. If an integer 𝐷 greater than 1 divides 𝑁, it does not divide 𝑁 + 1. (Contributed by Paul Chapman, 31-Mar-2011.) |
| ⊢ ((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ 1 < 𝐷) → (𝐷 ∥ 𝑁 → ¬ 𝐷 ∥ (𝑁 + 1))) | ||
| Theorem | ndvdsi 16431 | A quick test for non-divisibility. (Contributed by Mario Carneiro, 18-Feb-2014.) |
| ⊢ 𝐴 ∈ ℕ & ⊢ 𝑄 ∈ ℕ0 & ⊢ 𝑅 ∈ ℕ & ⊢ ((𝐴 · 𝑄) + 𝑅) = 𝐵 & ⊢ 𝑅 < 𝐴 ⇒ ⊢ ¬ 𝐴 ∥ 𝐵 | ||
| Theorem | 5ndvds3 16432 | 5 does not divide 3. (Contributed by AV, 8-Sep-2025.) |
| ⊢ ¬ 5 ∥ 3 | ||
| Theorem | 5ndvds6 16433 | 5 does not divide 6. (Contributed by AV, 8-Sep-2025.) |
| ⊢ ¬ 5 ∥ 6 | ||
| Theorem | flodddiv4 16434 | The floor of an odd integer divided by 4. (Contributed by AV, 17-Jun-2021.) |
| ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 = ((2 · 𝑀) + 1)) → (⌊‘(𝑁 / 4)) = if(2 ∥ 𝑀, (𝑀 / 2), ((𝑀 − 1) / 2))) | ||
| Theorem | fldivndvdslt 16435 | The floor of an integer divided by a nonzero integer not dividing the first integer is less than the integer divided by the positive integer. (Contributed by AV, 4-Jul-2021.) |
| ⊢ ((𝐾 ∈ ℤ ∧ (𝐿 ∈ ℤ ∧ 𝐿 ≠ 0) ∧ ¬ 𝐿 ∥ 𝐾) → (⌊‘(𝐾 / 𝐿)) < (𝐾 / 𝐿)) | ||
| Theorem | flodddiv4lt 16436 | The floor of an odd number divided by 4 is less than the odd number divided by 4. (Contributed by AV, 4-Jul-2021.) |
| ⊢ ((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁) → (⌊‘(𝑁 / 4)) < (𝑁 / 4)) | ||
| Theorem | flodddiv4t2lthalf 16437 | The floor of an odd number divided by 4, multiplied by 2 is less than the half of the odd number. (Contributed by AV, 4-Jul-2021.) (Proof shortened by AV, 10-Jul-2022.) |
| ⊢ ((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁) → ((⌊‘(𝑁 / 4)) · 2) < (𝑁 / 2)) | ||
| Syntax | cbits 16438 | Define the binary bits of an integer. |
| class bits | ||
| Syntax | csad 16439 | Define the sequence addition on bit sequences. |
| class sadd | ||
| Syntax | csmu 16440 | Define the sequence multiplication on bit sequences. |
| class smul | ||
| Definition | df-bits 16441* | Define the binary bits of an integer. The expression 𝑀 ∈ (bits‘𝑁) means that the 𝑀-th bit of 𝑁 is 1 (and its negation means the bit is 0). (Contributed by Mario Carneiro, 4-Sep-2016.) |
| ⊢ bits = (𝑛 ∈ ℤ ↦ {𝑚 ∈ ℕ0 ∣ ¬ 2 ∥ (⌊‘(𝑛 / (2↑𝑚)))}) | ||
| Theorem | bitsfval 16442* | Expand the definition of the bits of an integer. (Contributed by Mario Carneiro, 5-Sep-2016.) |
| ⊢ (𝑁 ∈ ℤ → (bits‘𝑁) = {𝑚 ∈ ℕ0 ∣ ¬ 2 ∥ (⌊‘(𝑁 / (2↑𝑚)))}) | ||
| Theorem | bitsval 16443 | Expand the definition of the bits of an integer. (Contributed by Mario Carneiro, 5-Sep-2016.) |
| ⊢ (𝑀 ∈ (bits‘𝑁) ↔ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0 ∧ ¬ 2 ∥ (⌊‘(𝑁 / (2↑𝑀))))) | ||
| Theorem | bitsval2 16444 | Expand the definition of the bits of an integer. (Contributed by Mario Carneiro, 5-Sep-2016.) |
| ⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → (𝑀 ∈ (bits‘𝑁) ↔ ¬ 2 ∥ (⌊‘(𝑁 / (2↑𝑀))))) | ||
| Theorem | bitsss 16445 | The set of bits of an integer is a subset of ℕ0. (Contributed by Mario Carneiro, 5-Sep-2016.) |
| ⊢ (bits‘𝑁) ⊆ ℕ0 | ||
| Theorem | bitsf 16446 | The bits function is a function from integers to subsets of nonnegative integers. (Contributed by Mario Carneiro, 5-Sep-2016.) |
| ⊢ bits:ℤ⟶𝒫 ℕ0 | ||
| Theorem | bits0 16447 | Value of the zeroth bit. (Contributed by Mario Carneiro, 5-Sep-2016.) |
| ⊢ (𝑁 ∈ ℤ → (0 ∈ (bits‘𝑁) ↔ ¬ 2 ∥ 𝑁)) | ||
| Theorem | bits0e 16448 | The zeroth bit of an even number is zero. (Contributed by Mario Carneiro, 5-Sep-2016.) |
| ⊢ (𝑁 ∈ ℤ → ¬ 0 ∈ (bits‘(2 · 𝑁))) | ||
| Theorem | bits0o 16449 | The zeroth bit of an odd number is one. (Contributed by Mario Carneiro, 5-Sep-2016.) |
| ⊢ (𝑁 ∈ ℤ → 0 ∈ (bits‘((2 · 𝑁) + 1))) | ||
| Theorem | bitsp1 16450 | The 𝑀 + 1-th bit of 𝑁 is the 𝑀-th bit of ⌊(𝑁 / 2). (Contributed by Mario Carneiro, 5-Sep-2016.) |
| ⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → ((𝑀 + 1) ∈ (bits‘𝑁) ↔ 𝑀 ∈ (bits‘(⌊‘(𝑁 / 2))))) | ||
| Theorem | bitsp1e 16451 | The 𝑀 + 1-th bit of 2𝑁 is the 𝑀-th bit of 𝑁. (Contributed by Mario Carneiro, 5-Sep-2016.) |
| ⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → ((𝑀 + 1) ∈ (bits‘(2 · 𝑁)) ↔ 𝑀 ∈ (bits‘𝑁))) | ||
| Theorem | bitsp1o 16452 | The 𝑀 + 1-th bit of 2𝑁 + 1 is the 𝑀-th bit of 𝑁. (Contributed by Mario Carneiro, 5-Sep-2016.) |
| ⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → ((𝑀 + 1) ∈ (bits‘((2 · 𝑁) + 1)) ↔ 𝑀 ∈ (bits‘𝑁))) | ||
| Theorem | bitsfzolem 16453* | Lemma for bitsfzo 16454. (Contributed by Mario Carneiro, 5-Sep-2016.) (Revised by AV, 1-Oct-2020.) |
| ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ (𝜑 → 𝑀 ∈ ℕ0) & ⊢ (𝜑 → (bits‘𝑁) ⊆ (0..^𝑀)) & ⊢ 𝑆 = inf({𝑛 ∈ ℕ0 ∣ 𝑁 < (2↑𝑛)}, ℝ, < ) ⇒ ⊢ (𝜑 → 𝑁 ∈ (0..^(2↑𝑀))) | ||
| Theorem | bitsfzo 16454 | The bits of a number are all at positions less than 𝑀 iff the number is nonnegative and less than 2↑𝑀. (Contributed by Mario Carneiro, 5-Sep-2016.) (Proof shortened by AV, 1-Oct-2020.) |
| ⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → (𝑁 ∈ (0..^(2↑𝑀)) ↔ (bits‘𝑁) ⊆ (0..^𝑀))) | ||
| Theorem | bitsmod 16455 | Truncating the bit sequence after some 𝑀 is equivalent to reducing the argument mod 2↑𝑀. (Contributed by Mario Carneiro, 6-Sep-2016.) |
| ⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → (bits‘(𝑁 mod (2↑𝑀))) = ((bits‘𝑁) ∩ (0..^𝑀))) | ||
| Theorem | bitsfi 16456 | Every number is associated with a finite set of bits. (Contributed by Mario Carneiro, 5-Sep-2016.) |
| ⊢ (𝑁 ∈ ℕ0 → (bits‘𝑁) ∈ Fin) | ||
| Theorem | bitscmp 16457 | The bit complement of 𝑁 is -𝑁 − 1. (Thus, by bitsfi 16456, all negative numbers have cofinite bits representations.) (Contributed by Mario Carneiro, 5-Sep-2016.) |
| ⊢ (𝑁 ∈ ℤ → (ℕ0 ∖ (bits‘𝑁)) = (bits‘(-𝑁 − 1))) | ||
| Theorem | 0bits 16458 | The bits of zero. (Contributed by Mario Carneiro, 6-Sep-2016.) |
| ⊢ (bits‘0) = ∅ | ||
| Theorem | m1bits 16459 | The bits of negative one. (Contributed by Mario Carneiro, 5-Sep-2016.) |
| ⊢ (bits‘-1) = ℕ0 | ||
| Theorem | bitsinv1lem 16460 | Lemma for bitsinv1 16461. (Contributed by Mario Carneiro, 22-Sep-2016.) |
| ⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ0) → (𝑁 mod (2↑(𝑀 + 1))) = ((𝑁 mod (2↑𝑀)) + if(𝑀 ∈ (bits‘𝑁), (2↑𝑀), 0))) | ||
| Theorem | bitsinv1 16461* | There is an explicit inverse to the bits function for nonnegative integers (which can be extended to negative integers using bitscmp 16457), part 1. (Contributed by Mario Carneiro, 7-Sep-2016.) |
| ⊢ (𝑁 ∈ ℕ0 → Σ𝑛 ∈ (bits‘𝑁)(2↑𝑛) = 𝑁) | ||
| Theorem | bitsinv2 16462* | There is an explicit inverse to the bits function for nonnegative integers, part 2. (Contributed by Mario Carneiro, 8-Sep-2016.) |
| ⊢ (𝐴 ∈ (𝒫 ℕ0 ∩ Fin) → (bits‘Σ𝑛 ∈ 𝐴 (2↑𝑛)) = 𝐴) | ||
| Theorem | bitsf1ocnv 16463* | The bits function restricted to nonnegative integers is a bijection from the integers to the finite sets of integers. It is in fact the inverse of the Ackermann bijection ackbijnn 15844. (Contributed by Mario Carneiro, 8-Sep-2016.) |
| ⊢ ((bits ↾ ℕ0):ℕ0–1-1-onto→(𝒫 ℕ0 ∩ Fin) ∧ ◡(bits ↾ ℕ0) = (𝑥 ∈ (𝒫 ℕ0 ∩ Fin) ↦ Σ𝑛 ∈ 𝑥 (2↑𝑛))) | ||
| Theorem | bitsf1o 16464 | The bits function restricted to nonnegative integers is a bijection from the integers to the finite sets of integers. It is in fact the inverse of the Ackermann bijection ackbijnn 15844. (Contributed by Mario Carneiro, 8-Sep-2016.) |
| ⊢ (bits ↾ ℕ0):ℕ0–1-1-onto→(𝒫 ℕ0 ∩ Fin) | ||
| Theorem | bitsf1 16465 | The bits function is an injection from ℤ to 𝒫 ℕ0. It is obviously not a bijection (by Cantor's theorem canth2 9144), and in fact its range is the set of finite and cofinite subsets of ℕ0. (Contributed by Mario Carneiro, 22-Sep-2016.) |
| ⊢ bits:ℤ–1-1→𝒫 ℕ0 | ||
| Theorem | 2ebits 16466 | The bits of a power of two. (Contributed by Mario Carneiro, 5-Sep-2016.) |
| ⊢ (𝑁 ∈ ℕ0 → (bits‘(2↑𝑁)) = {𝑁}) | ||
| Theorem | bitsinv 16467* | The inverse of the bits function. (Contributed by Mario Carneiro, 8-Sep-2016.) |
| ⊢ 𝐾 = ◡(bits ↾ ℕ0) ⇒ ⊢ (𝐴 ∈ (𝒫 ℕ0 ∩ Fin) → (𝐾‘𝐴) = Σ𝑘 ∈ 𝐴 (2↑𝑘)) | ||
| Theorem | bitsinvp1 16468 | Recursive definition of the inverse of the bits function. (Contributed by Mario Carneiro, 8-Sep-2016.) |
| ⊢ 𝐾 = ◡(bits ↾ ℕ0) ⇒ ⊢ ((𝐴 ⊆ ℕ0 ∧ 𝑁 ∈ ℕ0) → (𝐾‘(𝐴 ∩ (0..^(𝑁 + 1)))) = ((𝐾‘(𝐴 ∩ (0..^𝑁))) + if(𝑁 ∈ 𝐴, (2↑𝑁), 0))) | ||
| Theorem | sadadd2lem2 16469 | The core of the proof of sadadd2 16479. The intuitive justification for this is that cadd is true if at least two arguments are true, and hadd is true if an odd number of arguments are true, so altogether the result is 𝑛 · 𝐴 where 𝑛 is the number of true arguments, which is equivalently obtained by adding together one 𝐴 for each true argument, on the right side. (Contributed by Mario Carneiro, 8-Sep-2016.) |
| ⊢ (𝐴 ∈ ℂ → (if(hadd(𝜑, 𝜓, 𝜒), 𝐴, 0) + if(cadd(𝜑, 𝜓, 𝜒), (2 · 𝐴), 0)) = ((if(𝜑, 𝐴, 0) + if(𝜓, 𝐴, 0)) + if(𝜒, 𝐴, 0))) | ||
| Definition | df-sad 16470* | Define the addition of two bit sequences, using df-had 1594 and df-cad 1607 bit operations. (Contributed by Mario Carneiro, 5-Sep-2016.) |
| ⊢ sadd = (𝑥 ∈ 𝒫 ℕ0, 𝑦 ∈ 𝒫 ℕ0 ↦ {𝑘 ∈ ℕ0 ∣ hadd(𝑘 ∈ 𝑥, 𝑘 ∈ 𝑦, ∅ ∈ (seq0((𝑐 ∈ 2o, 𝑚 ∈ ℕ0 ↦ if(cadd(𝑚 ∈ 𝑥, 𝑚 ∈ 𝑦, ∅ ∈ 𝑐), 1o, ∅)), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))‘𝑘))}) | ||
| Theorem | sadfval 16471* | Define the addition of two bit sequences, using df-had 1594 and df-cad 1607 bit operations. (Contributed by Mario Carneiro, 5-Sep-2016.) |
| ⊢ (𝜑 → 𝐴 ⊆ ℕ0) & ⊢ (𝜑 → 𝐵 ⊆ ℕ0) & ⊢ 𝐶 = seq0((𝑐 ∈ 2o, 𝑚 ∈ ℕ0 ↦ if(cadd(𝑚 ∈ 𝐴, 𝑚 ∈ 𝐵, ∅ ∈ 𝑐), 1o, ∅)), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1)))) ⇒ ⊢ (𝜑 → (𝐴 sadd 𝐵) = {𝑘 ∈ ℕ0 ∣ hadd(𝑘 ∈ 𝐴, 𝑘 ∈ 𝐵, ∅ ∈ (𝐶‘𝑘))}) | ||
| Theorem | sadcf 16472* | The carry sequence is a sequence of elements of 2o encoding a "sequence of wffs". (Contributed by Mario Carneiro, 5-Sep-2016.) |
| ⊢ (𝜑 → 𝐴 ⊆ ℕ0) & ⊢ (𝜑 → 𝐵 ⊆ ℕ0) & ⊢ 𝐶 = seq0((𝑐 ∈ 2o, 𝑚 ∈ ℕ0 ↦ if(cadd(𝑚 ∈ 𝐴, 𝑚 ∈ 𝐵, ∅ ∈ 𝑐), 1o, ∅)), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1)))) ⇒ ⊢ (𝜑 → 𝐶:ℕ0⟶2o) | ||
| Theorem | sadc0 16473* | The initial element of the carry sequence is ⊥. (Contributed by Mario Carneiro, 5-Sep-2016.) |
| ⊢ (𝜑 → 𝐴 ⊆ ℕ0) & ⊢ (𝜑 → 𝐵 ⊆ ℕ0) & ⊢ 𝐶 = seq0((𝑐 ∈ 2o, 𝑚 ∈ ℕ0 ↦ if(cadd(𝑚 ∈ 𝐴, 𝑚 ∈ 𝐵, ∅ ∈ 𝑐), 1o, ∅)), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1)))) ⇒ ⊢ (𝜑 → ¬ ∅ ∈ (𝐶‘0)) | ||
| Theorem | sadcp1 16474* | The carry sequence (which is a sequence of wffs, encoded as 1o and ∅) is defined recursively as the carry operation applied to the previous carry and the two current inputs. (Contributed by Mario Carneiro, 5-Sep-2016.) |
| ⊢ (𝜑 → 𝐴 ⊆ ℕ0) & ⊢ (𝜑 → 𝐵 ⊆ ℕ0) & ⊢ 𝐶 = seq0((𝑐 ∈ 2o, 𝑚 ∈ ℕ0 ↦ if(cadd(𝑚 ∈ 𝐴, 𝑚 ∈ 𝐵, ∅ ∈ 𝑐), 1o, ∅)), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1)))) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) ⇒ ⊢ (𝜑 → (∅ ∈ (𝐶‘(𝑁 + 1)) ↔ cadd(𝑁 ∈ 𝐴, 𝑁 ∈ 𝐵, ∅ ∈ (𝐶‘𝑁)))) | ||
| Theorem | sadval 16475* | The full adder sequence is the half adder function applied to the inputs and the carry sequence. (Contributed by Mario Carneiro, 5-Sep-2016.) |
| ⊢ (𝜑 → 𝐴 ⊆ ℕ0) & ⊢ (𝜑 → 𝐵 ⊆ ℕ0) & ⊢ 𝐶 = seq0((𝑐 ∈ 2o, 𝑚 ∈ ℕ0 ↦ if(cadd(𝑚 ∈ 𝐴, 𝑚 ∈ 𝐵, ∅ ∈ 𝑐), 1o, ∅)), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1)))) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) ⇒ ⊢ (𝜑 → (𝑁 ∈ (𝐴 sadd 𝐵) ↔ hadd(𝑁 ∈ 𝐴, 𝑁 ∈ 𝐵, ∅ ∈ (𝐶‘𝑁)))) | ||
| Theorem | sadcaddlem 16476* | Lemma for sadcadd 16477. (Contributed by Mario Carneiro, 8-Sep-2016.) |
| ⊢ (𝜑 → 𝐴 ⊆ ℕ0) & ⊢ (𝜑 → 𝐵 ⊆ ℕ0) & ⊢ 𝐶 = seq0((𝑐 ∈ 2o, 𝑚 ∈ ℕ0 ↦ if(cadd(𝑚 ∈ 𝐴, 𝑚 ∈ 𝐵, ∅ ∈ 𝑐), 1o, ∅)), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1)))) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ 𝐾 = ◡(bits ↾ ℕ0) & ⊢ (𝜑 → (∅ ∈ (𝐶‘𝑁) ↔ (2↑𝑁) ≤ ((𝐾‘(𝐴 ∩ (0..^𝑁))) + (𝐾‘(𝐵 ∩ (0..^𝑁)))))) ⇒ ⊢ (𝜑 → (∅ ∈ (𝐶‘(𝑁 + 1)) ↔ (2↑(𝑁 + 1)) ≤ ((𝐾‘(𝐴 ∩ (0..^(𝑁 + 1)))) + (𝐾‘(𝐵 ∩ (0..^(𝑁 + 1))))))) | ||
| Theorem | sadcadd 16477* | Non-recursive definition of the carry sequence. (Contributed by Mario Carneiro, 8-Sep-2016.) |
| ⊢ (𝜑 → 𝐴 ⊆ ℕ0) & ⊢ (𝜑 → 𝐵 ⊆ ℕ0) & ⊢ 𝐶 = seq0((𝑐 ∈ 2o, 𝑚 ∈ ℕ0 ↦ if(cadd(𝑚 ∈ 𝐴, 𝑚 ∈ 𝐵, ∅ ∈ 𝑐), 1o, ∅)), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1)))) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ 𝐾 = ◡(bits ↾ ℕ0) ⇒ ⊢ (𝜑 → (∅ ∈ (𝐶‘𝑁) ↔ (2↑𝑁) ≤ ((𝐾‘(𝐴 ∩ (0..^𝑁))) + (𝐾‘(𝐵 ∩ (0..^𝑁)))))) | ||
| Theorem | sadadd2lem 16478* | Lemma for sadadd2 16479. (Contributed by Mario Carneiro, 9-Sep-2016.) |
| ⊢ (𝜑 → 𝐴 ⊆ ℕ0) & ⊢ (𝜑 → 𝐵 ⊆ ℕ0) & ⊢ 𝐶 = seq0((𝑐 ∈ 2o, 𝑚 ∈ ℕ0 ↦ if(cadd(𝑚 ∈ 𝐴, 𝑚 ∈ 𝐵, ∅ ∈ 𝑐), 1o, ∅)), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1)))) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ 𝐾 = ◡(bits ↾ ℕ0) & ⊢ (𝜑 → ((𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑁))) + if(∅ ∈ (𝐶‘𝑁), (2↑𝑁), 0)) = ((𝐾‘(𝐴 ∩ (0..^𝑁))) + (𝐾‘(𝐵 ∩ (0..^𝑁))))) ⇒ ⊢ (𝜑 → ((𝐾‘((𝐴 sadd 𝐵) ∩ (0..^(𝑁 + 1)))) + if(∅ ∈ (𝐶‘(𝑁 + 1)), (2↑(𝑁 + 1)), 0)) = ((𝐾‘(𝐴 ∩ (0..^(𝑁 + 1)))) + (𝐾‘(𝐵 ∩ (0..^(𝑁 + 1)))))) | ||
| Theorem | sadadd2 16479* | Sum of initial segments of the sadd sequence. (Contributed by Mario Carneiro, 8-Sep-2016.) |
| ⊢ (𝜑 → 𝐴 ⊆ ℕ0) & ⊢ (𝜑 → 𝐵 ⊆ ℕ0) & ⊢ 𝐶 = seq0((𝑐 ∈ 2o, 𝑚 ∈ ℕ0 ↦ if(cadd(𝑚 ∈ 𝐴, 𝑚 ∈ 𝐵, ∅ ∈ 𝑐), 1o, ∅)), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1)))) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ 𝐾 = ◡(bits ↾ ℕ0) ⇒ ⊢ (𝜑 → ((𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑁))) + if(∅ ∈ (𝐶‘𝑁), (2↑𝑁), 0)) = ((𝐾‘(𝐴 ∩ (0..^𝑁))) + (𝐾‘(𝐵 ∩ (0..^𝑁))))) | ||
| Theorem | sadadd3 16480* | Sum of initial segments of the sadd sequence. (Contributed by Mario Carneiro, 9-Sep-2016.) |
| ⊢ (𝜑 → 𝐴 ⊆ ℕ0) & ⊢ (𝜑 → 𝐵 ⊆ ℕ0) & ⊢ 𝐶 = seq0((𝑐 ∈ 2o, 𝑚 ∈ ℕ0 ↦ if(cadd(𝑚 ∈ 𝐴, 𝑚 ∈ 𝐵, ∅ ∈ 𝑐), 1o, ∅)), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1)))) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ 𝐾 = ◡(bits ↾ ℕ0) ⇒ ⊢ (𝜑 → ((𝐾‘((𝐴 sadd 𝐵) ∩ (0..^𝑁))) mod (2↑𝑁)) = (((𝐾‘(𝐴 ∩ (0..^𝑁))) + (𝐾‘(𝐵 ∩ (0..^𝑁)))) mod (2↑𝑁))) | ||
| Theorem | sadcl 16481 | The sum of two sequences is a sequence. (Contributed by Mario Carneiro, 5-Sep-2016.) |
| ⊢ ((𝐴 ⊆ ℕ0 ∧ 𝐵 ⊆ ℕ0) → (𝐴 sadd 𝐵) ⊆ ℕ0) | ||
| Theorem | sadcom 16482 | The adder sequence function is commutative. (Contributed by Mario Carneiro, 5-Sep-2016.) |
| ⊢ ((𝐴 ⊆ ℕ0 ∧ 𝐵 ⊆ ℕ0) → (𝐴 sadd 𝐵) = (𝐵 sadd 𝐴)) | ||
| Theorem | saddisjlem 16483* | Lemma for sadadd 16486. (Contributed by Mario Carneiro, 9-Sep-2016.) |
| ⊢ (𝜑 → 𝐴 ⊆ ℕ0) & ⊢ (𝜑 → 𝐵 ⊆ ℕ0) & ⊢ (𝜑 → (𝐴 ∩ 𝐵) = ∅) & ⊢ 𝐶 = seq0((𝑐 ∈ 2o, 𝑚 ∈ ℕ0 ↦ if(cadd(𝑚 ∈ 𝐴, 𝑚 ∈ 𝐵, ∅ ∈ 𝑐), 1o, ∅)), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1)))) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) ⇒ ⊢ (𝜑 → (𝑁 ∈ (𝐴 sadd 𝐵) ↔ 𝑁 ∈ (𝐴 ∪ 𝐵))) | ||
| Theorem | saddisj 16484 | The sum of disjoint sequences is the union of the sequences. (In this case, there are no carried bits.) (Contributed by Mario Carneiro, 9-Sep-2016.) |
| ⊢ (𝜑 → 𝐴 ⊆ ℕ0) & ⊢ (𝜑 → 𝐵 ⊆ ℕ0) & ⊢ (𝜑 → (𝐴 ∩ 𝐵) = ∅) ⇒ ⊢ (𝜑 → (𝐴 sadd 𝐵) = (𝐴 ∪ 𝐵)) | ||
| Theorem | sadaddlem 16485* | Lemma for sadadd 16486. (Contributed by Mario Carneiro, 9-Sep-2016.) |
| ⊢ 𝐶 = seq0((𝑐 ∈ 2o, 𝑚 ∈ ℕ0 ↦ if(cadd(𝑚 ∈ (bits‘𝐴), 𝑚 ∈ (bits‘𝐵), ∅ ∈ 𝑐), 1o, ∅)), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1)))) & ⊢ 𝐾 = ◡(bits ↾ ℕ0) & ⊢ (𝜑 → 𝐴 ∈ ℤ) & ⊢ (𝜑 → 𝐵 ∈ ℤ) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) ⇒ ⊢ (𝜑 → (((bits‘𝐴) sadd (bits‘𝐵)) ∩ (0..^𝑁)) = (bits‘((𝐴 + 𝐵) mod (2↑𝑁)))) | ||
| Theorem | sadadd 16486 |
For sequences that correspond to valid integers, the adder sequence
function produces the sequence for the sum. This is effectively a proof
of the correctness of the ripple carry adder, implemented with logic
gates corresponding to df-had 1594 and df-cad 1607.
It is interesting to consider in what sense the sadd function can be said to be "adding" things outside the range of the bits function, that is, when adding sequences that are not eventually constant and so do not denote any integer. The correct interpretation is that the sequences are representations of 2-adic integers, which have a natural ring structure. (Contributed by Mario Carneiro, 9-Sep-2016.) |
| ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((bits‘𝐴) sadd (bits‘𝐵)) = (bits‘(𝐴 + 𝐵))) | ||
| Theorem | sadid1 16487 | The adder sequence function has a left identity, the empty set, which is the representation of the integer zero. (Contributed by Mario Carneiro, 9-Sep-2016.) |
| ⊢ (𝐴 ⊆ ℕ0 → (𝐴 sadd ∅) = 𝐴) | ||
| Theorem | sadid2 16488 | The adder sequence function has a right identity, the empty set, which is the representation of the integer zero. (Contributed by Mario Carneiro, 9-Sep-2016.) |
| ⊢ (𝐴 ⊆ ℕ0 → (∅ sadd 𝐴) = 𝐴) | ||
| Theorem | sadasslem 16489 | Lemma for sadass 16490. (Contributed by Mario Carneiro, 9-Sep-2016.) |
| ⊢ (𝜑 → 𝐴 ⊆ ℕ0) & ⊢ (𝜑 → 𝐵 ⊆ ℕ0) & ⊢ (𝜑 → 𝐶 ⊆ ℕ0) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) ⇒ ⊢ (𝜑 → (((𝐴 sadd 𝐵) sadd 𝐶) ∩ (0..^𝑁)) = ((𝐴 sadd (𝐵 sadd 𝐶)) ∩ (0..^𝑁))) | ||
| Theorem | sadass 16490 | Sequence addition is associative. (Contributed by Mario Carneiro, 9-Sep-2016.) |
| ⊢ ((𝐴 ⊆ ℕ0 ∧ 𝐵 ⊆ ℕ0 ∧ 𝐶 ⊆ ℕ0) → ((𝐴 sadd 𝐵) sadd 𝐶) = (𝐴 sadd (𝐵 sadd 𝐶))) | ||
| Theorem | sadeq 16491 | Any element of a sequence sum only depends on the values of the argument sequences up to and including that point. (Contributed by Mario Carneiro, 9-Sep-2016.) |
| ⊢ (𝜑 → 𝐴 ⊆ ℕ0) & ⊢ (𝜑 → 𝐵 ⊆ ℕ0) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) ⇒ ⊢ (𝜑 → ((𝐴 sadd 𝐵) ∩ (0..^𝑁)) = (((𝐴 ∩ (0..^𝑁)) sadd (𝐵 ∩ (0..^𝑁))) ∩ (0..^𝑁))) | ||
| Theorem | bitsres 16492 | Restrict the bits of a number to an upper integer set. (Contributed by Mario Carneiro, 5-Sep-2016.) |
| ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → ((bits‘𝐴) ∩ (ℤ≥‘𝑁)) = (bits‘((⌊‘(𝐴 / (2↑𝑁))) · (2↑𝑁)))) | ||
| Theorem | bitsuz 16493 | The bits of a number are all at least 𝑁 iff the number is divisible by 2↑𝑁. (Contributed by Mario Carneiro, 21-Sep-2016.) |
| ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → ((2↑𝑁) ∥ 𝐴 ↔ (bits‘𝐴) ⊆ (ℤ≥‘𝑁))) | ||
| Theorem | bitsshft 16494* | Shifting a bit sequence to the left (toward the more significant bits) causes the number to be multiplied by a power of two. (Contributed by Mario Carneiro, 22-Sep-2016.) |
| ⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → {𝑛 ∈ ℕ0 ∣ (𝑛 − 𝑁) ∈ (bits‘𝐴)} = (bits‘(𝐴 · (2↑𝑁)))) | ||
| Definition | df-smu 16495* | Define the multiplication of two bit sequences, using repeated sequence addition. (Contributed by Mario Carneiro, 9-Sep-2016.) |
| ⊢ smul = (𝑥 ∈ 𝒫 ℕ0, 𝑦 ∈ 𝒫 ℕ0 ↦ {𝑘 ∈ ℕ0 ∣ 𝑘 ∈ (seq0((𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0 ↦ (𝑝 sadd {𝑛 ∈ ℕ0 ∣ (𝑚 ∈ 𝑥 ∧ (𝑛 − 𝑚) ∈ 𝑦)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))‘(𝑘 + 1))}) | ||
| Theorem | smufval 16496* | The multiplication of two bit sequences as repeated sequence addition. (Contributed by Mario Carneiro, 9-Sep-2016.) |
| ⊢ (𝜑 → 𝐴 ⊆ ℕ0) & ⊢ (𝜑 → 𝐵 ⊆ ℕ0) & ⊢ 𝑃 = seq0((𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0 ↦ (𝑝 sadd {𝑛 ∈ ℕ0 ∣ (𝑚 ∈ 𝐴 ∧ (𝑛 − 𝑚) ∈ 𝐵)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1)))) ⇒ ⊢ (𝜑 → (𝐴 smul 𝐵) = {𝑘 ∈ ℕ0 ∣ 𝑘 ∈ (𝑃‘(𝑘 + 1))}) | ||
| Theorem | smupf 16497* | The sequence of partial sums of the sequence multiplication. (Contributed by Mario Carneiro, 9-Sep-2016.) |
| ⊢ (𝜑 → 𝐴 ⊆ ℕ0) & ⊢ (𝜑 → 𝐵 ⊆ ℕ0) & ⊢ 𝑃 = seq0((𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0 ↦ (𝑝 sadd {𝑛 ∈ ℕ0 ∣ (𝑚 ∈ 𝐴 ∧ (𝑛 − 𝑚) ∈ 𝐵)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1)))) ⇒ ⊢ (𝜑 → 𝑃:ℕ0⟶𝒫 ℕ0) | ||
| Theorem | smup0 16498* | The initial element of the partial sum sequence. (Contributed by Mario Carneiro, 9-Sep-2016.) |
| ⊢ (𝜑 → 𝐴 ⊆ ℕ0) & ⊢ (𝜑 → 𝐵 ⊆ ℕ0) & ⊢ 𝑃 = seq0((𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0 ↦ (𝑝 sadd {𝑛 ∈ ℕ0 ∣ (𝑚 ∈ 𝐴 ∧ (𝑛 − 𝑚) ∈ 𝐵)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1)))) ⇒ ⊢ (𝜑 → (𝑃‘0) = ∅) | ||
| Theorem | smupp1 16499* | The initial element of the partial sum sequence. (Contributed by Mario Carneiro, 9-Sep-2016.) |
| ⊢ (𝜑 → 𝐴 ⊆ ℕ0) & ⊢ (𝜑 → 𝐵 ⊆ ℕ0) & ⊢ 𝑃 = seq0((𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0 ↦ (𝑝 sadd {𝑛 ∈ ℕ0 ∣ (𝑚 ∈ 𝐴 ∧ (𝑛 − 𝑚) ∈ 𝐵)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1)))) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) ⇒ ⊢ (𝜑 → (𝑃‘(𝑁 + 1)) = ((𝑃‘𝑁) sadd {𝑛 ∈ ℕ0 ∣ (𝑁 ∈ 𝐴 ∧ (𝑛 − 𝑁) ∈ 𝐵)})) | ||
| Theorem | smuval 16500* | Define the addition of two bit sequences, using df-had 1594 and df-cad 1607 bit operations. (Contributed by Mario Carneiro, 9-Sep-2016.) |
| ⊢ (𝜑 → 𝐴 ⊆ ℕ0) & ⊢ (𝜑 → 𝐵 ⊆ ℕ0) & ⊢ 𝑃 = seq0((𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0 ↦ (𝑝 sadd {𝑛 ∈ ℕ0 ∣ (𝑚 ∈ 𝐴 ∧ (𝑛 − 𝑚) ∈ 𝐵)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1)))) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) ⇒ ⊢ (𝜑 → (𝑁 ∈ (𝐴 smul 𝐵) ↔ 𝑁 ∈ (𝑃‘(𝑁 + 1)))) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |