MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  smufval Structured version   Visualization version   GIF version

Theorem smufval 16501
Description: The multiplication of two bit sequences as repeated sequence addition. (Contributed by Mario Carneiro, 9-Sep-2016.)
Hypotheses
Ref Expression
smuval.a (𝜑𝐴 ⊆ ℕ0)
smuval.b (𝜑𝐵 ⊆ ℕ0)
smuval.p 𝑃 = seq0((𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0 ↦ (𝑝 sadd {𝑛 ∈ ℕ0 ∣ (𝑚𝐴 ∧ (𝑛𝑚) ∈ 𝐵)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))
Assertion
Ref Expression
smufval (𝜑 → (𝐴 smul 𝐵) = {𝑘 ∈ ℕ0𝑘 ∈ (𝑃‘(𝑘 + 1))})
Distinct variable groups:   𝑘,𝑚,𝑛,𝑝,𝐴   𝜑,𝑘,𝑛   𝐵,𝑘,𝑚,𝑛,𝑝   𝑃,𝑘
Allowed substitution hints:   𝜑(𝑚,𝑝)   𝑃(𝑚,𝑛,𝑝)

Proof of Theorem smufval
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 smuval.a . . 3 (𝜑𝐴 ⊆ ℕ0)
2 nn0ex 12512 . . . 4 0 ∈ V
32elpw2 5309 . . 3 (𝐴 ∈ 𝒫 ℕ0𝐴 ⊆ ℕ0)
41, 3sylibr 234 . 2 (𝜑𝐴 ∈ 𝒫 ℕ0)
5 smuval.b . . 3 (𝜑𝐵 ⊆ ℕ0)
62elpw2 5309 . . 3 (𝐵 ∈ 𝒫 ℕ0𝐵 ⊆ ℕ0)
75, 6sylibr 234 . 2 (𝜑𝐵 ∈ 𝒫 ℕ0)
8 simp1l 1198 . . . . . . . . . . . . 13 (((𝑥 = 𝐴𝑦 = 𝐵) ∧ 𝑝 ∈ 𝒫 ℕ0𝑚 ∈ ℕ0) → 𝑥 = 𝐴)
98eleq2d 2821 . . . . . . . . . . . 12 (((𝑥 = 𝐴𝑦 = 𝐵) ∧ 𝑝 ∈ 𝒫 ℕ0𝑚 ∈ ℕ0) → (𝑚𝑥𝑚𝐴))
10 simp1r 1199 . . . . . . . . . . . . 13 (((𝑥 = 𝐴𝑦 = 𝐵) ∧ 𝑝 ∈ 𝒫 ℕ0𝑚 ∈ ℕ0) → 𝑦 = 𝐵)
1110eleq2d 2821 . . . . . . . . . . . 12 (((𝑥 = 𝐴𝑦 = 𝐵) ∧ 𝑝 ∈ 𝒫 ℕ0𝑚 ∈ ℕ0) → ((𝑛𝑚) ∈ 𝑦 ↔ (𝑛𝑚) ∈ 𝐵))
129, 11anbi12d 632 . . . . . . . . . . 11 (((𝑥 = 𝐴𝑦 = 𝐵) ∧ 𝑝 ∈ 𝒫 ℕ0𝑚 ∈ ℕ0) → ((𝑚𝑥 ∧ (𝑛𝑚) ∈ 𝑦) ↔ (𝑚𝐴 ∧ (𝑛𝑚) ∈ 𝐵)))
1312rabbidv 3428 . . . . . . . . . 10 (((𝑥 = 𝐴𝑦 = 𝐵) ∧ 𝑝 ∈ 𝒫 ℕ0𝑚 ∈ ℕ0) → {𝑛 ∈ ℕ0 ∣ (𝑚𝑥 ∧ (𝑛𝑚) ∈ 𝑦)} = {𝑛 ∈ ℕ0 ∣ (𝑚𝐴 ∧ (𝑛𝑚) ∈ 𝐵)})
1413oveq2d 7426 . . . . . . . . 9 (((𝑥 = 𝐴𝑦 = 𝐵) ∧ 𝑝 ∈ 𝒫 ℕ0𝑚 ∈ ℕ0) → (𝑝 sadd {𝑛 ∈ ℕ0 ∣ (𝑚𝑥 ∧ (𝑛𝑚) ∈ 𝑦)}) = (𝑝 sadd {𝑛 ∈ ℕ0 ∣ (𝑚𝐴 ∧ (𝑛𝑚) ∈ 𝐵)}))
1514mpoeq3dva 7489 . . . . . . . 8 ((𝑥 = 𝐴𝑦 = 𝐵) → (𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0 ↦ (𝑝 sadd {𝑛 ∈ ℕ0 ∣ (𝑚𝑥 ∧ (𝑛𝑚) ∈ 𝑦)})) = (𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0 ↦ (𝑝 sadd {𝑛 ∈ ℕ0 ∣ (𝑚𝐴 ∧ (𝑛𝑚) ∈ 𝐵)})))
1615seqeq2d 14031 . . . . . . 7 ((𝑥 = 𝐴𝑦 = 𝐵) → seq0((𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0 ↦ (𝑝 sadd {𝑛 ∈ ℕ0 ∣ (𝑚𝑥 ∧ (𝑛𝑚) ∈ 𝑦)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1)))) = seq0((𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0 ↦ (𝑝 sadd {𝑛 ∈ ℕ0 ∣ (𝑚𝐴 ∧ (𝑛𝑚) ∈ 𝐵)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1)))))
17 smuval.p . . . . . . 7 𝑃 = seq0((𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0 ↦ (𝑝 sadd {𝑛 ∈ ℕ0 ∣ (𝑚𝐴 ∧ (𝑛𝑚) ∈ 𝐵)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))
1816, 17eqtr4di 2789 . . . . . 6 ((𝑥 = 𝐴𝑦 = 𝐵) → seq0((𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0 ↦ (𝑝 sadd {𝑛 ∈ ℕ0 ∣ (𝑚𝑥 ∧ (𝑛𝑚) ∈ 𝑦)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1)))) = 𝑃)
1918fveq1d 6883 . . . . 5 ((𝑥 = 𝐴𝑦 = 𝐵) → (seq0((𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0 ↦ (𝑝 sadd {𝑛 ∈ ℕ0 ∣ (𝑚𝑥 ∧ (𝑛𝑚) ∈ 𝑦)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))‘(𝑘 + 1)) = (𝑃‘(𝑘 + 1)))
2019eleq2d 2821 . . . 4 ((𝑥 = 𝐴𝑦 = 𝐵) → (𝑘 ∈ (seq0((𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0 ↦ (𝑝 sadd {𝑛 ∈ ℕ0 ∣ (𝑚𝑥 ∧ (𝑛𝑚) ∈ 𝑦)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))‘(𝑘 + 1)) ↔ 𝑘 ∈ (𝑃‘(𝑘 + 1))))
2120rabbidv 3428 . . 3 ((𝑥 = 𝐴𝑦 = 𝐵) → {𝑘 ∈ ℕ0𝑘 ∈ (seq0((𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0 ↦ (𝑝 sadd {𝑛 ∈ ℕ0 ∣ (𝑚𝑥 ∧ (𝑛𝑚) ∈ 𝑦)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))‘(𝑘 + 1))} = {𝑘 ∈ ℕ0𝑘 ∈ (𝑃‘(𝑘 + 1))})
22 df-smu 16500 . . 3 smul = (𝑥 ∈ 𝒫 ℕ0, 𝑦 ∈ 𝒫 ℕ0 ↦ {𝑘 ∈ ℕ0𝑘 ∈ (seq0((𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0 ↦ (𝑝 sadd {𝑛 ∈ ℕ0 ∣ (𝑚𝑥 ∧ (𝑛𝑚) ∈ 𝑦)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))‘(𝑘 + 1))})
232rabex 5314 . . 3 {𝑘 ∈ ℕ0𝑘 ∈ (𝑃‘(𝑘 + 1))} ∈ V
2421, 22, 23ovmpoa 7567 . 2 ((𝐴 ∈ 𝒫 ℕ0𝐵 ∈ 𝒫 ℕ0) → (𝐴 smul 𝐵) = {𝑘 ∈ ℕ0𝑘 ∈ (𝑃‘(𝑘 + 1))})
254, 7, 24syl2anc 584 1 (𝜑 → (𝐴 smul 𝐵) = {𝑘 ∈ ℕ0𝑘 ∈ (𝑃‘(𝑘 + 1))})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  {crab 3420  wss 3931  c0 4313  ifcif 4505  𝒫 cpw 4580  cmpt 5206  cfv 6536  (class class class)co 7410  cmpo 7412  0cc0 11134  1c1 11135   + caddc 11137  cmin 11471  0cn0 12506  seqcseq 14024   sadd csad 16444   smul csmu 16445
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-1cn 11192  ax-addcl 11194
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-nn 12246  df-n0 12507  df-seq 14025  df-smu 16500
This theorem is referenced by:  smuval  16505  smupvallem  16507  smucl  16508
  Copyright terms: Public domain W3C validator