MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  smufval Structured version   Visualization version   GIF version

Theorem smufval 16515
Description: The multiplication of two bit sequences as repeated sequence addition. (Contributed by Mario Carneiro, 9-Sep-2016.)
Hypotheses
Ref Expression
smuval.a (𝜑𝐴 ⊆ ℕ0)
smuval.b (𝜑𝐵 ⊆ ℕ0)
smuval.p 𝑃 = seq0((𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0 ↦ (𝑝 sadd {𝑛 ∈ ℕ0 ∣ (𝑚𝐴 ∧ (𝑛𝑚) ∈ 𝐵)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))
Assertion
Ref Expression
smufval (𝜑 → (𝐴 smul 𝐵) = {𝑘 ∈ ℕ0𝑘 ∈ (𝑃‘(𝑘 + 1))})
Distinct variable groups:   𝑘,𝑚,𝑛,𝑝,𝐴   𝜑,𝑘,𝑛   𝐵,𝑘,𝑚,𝑛,𝑝   𝑃,𝑘
Allowed substitution hints:   𝜑(𝑚,𝑝)   𝑃(𝑚,𝑛,𝑝)

Proof of Theorem smufval
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 smuval.a . . 3 (𝜑𝐴 ⊆ ℕ0)
2 nn0ex 12534 . . . 4 0 ∈ V
32elpw2 5333 . . 3 (𝐴 ∈ 𝒫 ℕ0𝐴 ⊆ ℕ0)
41, 3sylibr 234 . 2 (𝜑𝐴 ∈ 𝒫 ℕ0)
5 smuval.b . . 3 (𝜑𝐵 ⊆ ℕ0)
62elpw2 5333 . . 3 (𝐵 ∈ 𝒫 ℕ0𝐵 ⊆ ℕ0)
75, 6sylibr 234 . 2 (𝜑𝐵 ∈ 𝒫 ℕ0)
8 simp1l 1197 . . . . . . . . . . . . 13 (((𝑥 = 𝐴𝑦 = 𝐵) ∧ 𝑝 ∈ 𝒫 ℕ0𝑚 ∈ ℕ0) → 𝑥 = 𝐴)
98eleq2d 2826 . . . . . . . . . . . 12 (((𝑥 = 𝐴𝑦 = 𝐵) ∧ 𝑝 ∈ 𝒫 ℕ0𝑚 ∈ ℕ0) → (𝑚𝑥𝑚𝐴))
10 simp1r 1198 . . . . . . . . . . . . 13 (((𝑥 = 𝐴𝑦 = 𝐵) ∧ 𝑝 ∈ 𝒫 ℕ0𝑚 ∈ ℕ0) → 𝑦 = 𝐵)
1110eleq2d 2826 . . . . . . . . . . . 12 (((𝑥 = 𝐴𝑦 = 𝐵) ∧ 𝑝 ∈ 𝒫 ℕ0𝑚 ∈ ℕ0) → ((𝑛𝑚) ∈ 𝑦 ↔ (𝑛𝑚) ∈ 𝐵))
129, 11anbi12d 632 . . . . . . . . . . 11 (((𝑥 = 𝐴𝑦 = 𝐵) ∧ 𝑝 ∈ 𝒫 ℕ0𝑚 ∈ ℕ0) → ((𝑚𝑥 ∧ (𝑛𝑚) ∈ 𝑦) ↔ (𝑚𝐴 ∧ (𝑛𝑚) ∈ 𝐵)))
1312rabbidv 3443 . . . . . . . . . 10 (((𝑥 = 𝐴𝑦 = 𝐵) ∧ 𝑝 ∈ 𝒫 ℕ0𝑚 ∈ ℕ0) → {𝑛 ∈ ℕ0 ∣ (𝑚𝑥 ∧ (𝑛𝑚) ∈ 𝑦)} = {𝑛 ∈ ℕ0 ∣ (𝑚𝐴 ∧ (𝑛𝑚) ∈ 𝐵)})
1413oveq2d 7448 . . . . . . . . 9 (((𝑥 = 𝐴𝑦 = 𝐵) ∧ 𝑝 ∈ 𝒫 ℕ0𝑚 ∈ ℕ0) → (𝑝 sadd {𝑛 ∈ ℕ0 ∣ (𝑚𝑥 ∧ (𝑛𝑚) ∈ 𝑦)}) = (𝑝 sadd {𝑛 ∈ ℕ0 ∣ (𝑚𝐴 ∧ (𝑛𝑚) ∈ 𝐵)}))
1514mpoeq3dva 7511 . . . . . . . 8 ((𝑥 = 𝐴𝑦 = 𝐵) → (𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0 ↦ (𝑝 sadd {𝑛 ∈ ℕ0 ∣ (𝑚𝑥 ∧ (𝑛𝑚) ∈ 𝑦)})) = (𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0 ↦ (𝑝 sadd {𝑛 ∈ ℕ0 ∣ (𝑚𝐴 ∧ (𝑛𝑚) ∈ 𝐵)})))
1615seqeq2d 14050 . . . . . . 7 ((𝑥 = 𝐴𝑦 = 𝐵) → seq0((𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0 ↦ (𝑝 sadd {𝑛 ∈ ℕ0 ∣ (𝑚𝑥 ∧ (𝑛𝑚) ∈ 𝑦)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1)))) = seq0((𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0 ↦ (𝑝 sadd {𝑛 ∈ ℕ0 ∣ (𝑚𝐴 ∧ (𝑛𝑚) ∈ 𝐵)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1)))))
17 smuval.p . . . . . . 7 𝑃 = seq0((𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0 ↦ (𝑝 sadd {𝑛 ∈ ℕ0 ∣ (𝑚𝐴 ∧ (𝑛𝑚) ∈ 𝐵)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))
1816, 17eqtr4di 2794 . . . . . 6 ((𝑥 = 𝐴𝑦 = 𝐵) → seq0((𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0 ↦ (𝑝 sadd {𝑛 ∈ ℕ0 ∣ (𝑚𝑥 ∧ (𝑛𝑚) ∈ 𝑦)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1)))) = 𝑃)
1918fveq1d 6907 . . . . 5 ((𝑥 = 𝐴𝑦 = 𝐵) → (seq0((𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0 ↦ (𝑝 sadd {𝑛 ∈ ℕ0 ∣ (𝑚𝑥 ∧ (𝑛𝑚) ∈ 𝑦)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))‘(𝑘 + 1)) = (𝑃‘(𝑘 + 1)))
2019eleq2d 2826 . . . 4 ((𝑥 = 𝐴𝑦 = 𝐵) → (𝑘 ∈ (seq0((𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0 ↦ (𝑝 sadd {𝑛 ∈ ℕ0 ∣ (𝑚𝑥 ∧ (𝑛𝑚) ∈ 𝑦)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))‘(𝑘 + 1)) ↔ 𝑘 ∈ (𝑃‘(𝑘 + 1))))
2120rabbidv 3443 . . 3 ((𝑥 = 𝐴𝑦 = 𝐵) → {𝑘 ∈ ℕ0𝑘 ∈ (seq0((𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0 ↦ (𝑝 sadd {𝑛 ∈ ℕ0 ∣ (𝑚𝑥 ∧ (𝑛𝑚) ∈ 𝑦)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))‘(𝑘 + 1))} = {𝑘 ∈ ℕ0𝑘 ∈ (𝑃‘(𝑘 + 1))})
22 df-smu 16514 . . 3 smul = (𝑥 ∈ 𝒫 ℕ0, 𝑦 ∈ 𝒫 ℕ0 ↦ {𝑘 ∈ ℕ0𝑘 ∈ (seq0((𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0 ↦ (𝑝 sadd {𝑛 ∈ ℕ0 ∣ (𝑚𝑥 ∧ (𝑛𝑚) ∈ 𝑦)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))‘(𝑘 + 1))})
232rabex 5338 . . 3 {𝑘 ∈ ℕ0𝑘 ∈ (𝑃‘(𝑘 + 1))} ∈ V
2421, 22, 23ovmpoa 7589 . 2 ((𝐴 ∈ 𝒫 ℕ0𝐵 ∈ 𝒫 ℕ0) → (𝐴 smul 𝐵) = {𝑘 ∈ ℕ0𝑘 ∈ (𝑃‘(𝑘 + 1))})
254, 7, 24syl2anc 584 1 (𝜑 → (𝐴 smul 𝐵) = {𝑘 ∈ ℕ0𝑘 ∈ (𝑃‘(𝑘 + 1))})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1539  wcel 2107  {crab 3435  wss 3950  c0 4332  ifcif 4524  𝒫 cpw 4599  cmpt 5224  cfv 6560  (class class class)co 7432  cmpo 7434  0cc0 11156  1c1 11157   + caddc 11159  cmin 11493  0cn0 12528  seqcseq 14043   sadd csad 16458   smul csmu 16459
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-sep 5295  ax-nul 5305  ax-pr 5431  ax-un 7756  ax-cnex 11212  ax-1cn 11214  ax-addcl 11216
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-ral 3061  df-rex 3070  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-pss 3970  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-iun 4992  df-br 5143  df-opab 5205  df-mpt 5225  df-tr 5259  df-id 5577  df-eprel 5583  df-po 5591  df-so 5592  df-fr 5636  df-we 5638  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-pred 6320  df-ord 6386  df-on 6387  df-lim 6388  df-suc 6389  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-ov 7435  df-oprab 7436  df-mpo 7437  df-om 7889  df-2nd 8016  df-frecs 8307  df-wrecs 8338  df-recs 8412  df-rdg 8451  df-nn 12268  df-n0 12529  df-seq 14044  df-smu 16514
This theorem is referenced by:  smuval  16519  smupvallem  16521  smucl  16522
  Copyright terms: Public domain W3C validator