| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | smuval.a | . . 3
⊢ (𝜑 → 𝐴 ⊆
ℕ0) | 
| 2 |  | nn0ex 12534 | . . . 4
⊢
ℕ0 ∈ V | 
| 3 | 2 | elpw2 5333 | . . 3
⊢ (𝐴 ∈ 𝒫
ℕ0 ↔ 𝐴 ⊆
ℕ0) | 
| 4 | 1, 3 | sylibr 234 | . 2
⊢ (𝜑 → 𝐴 ∈ 𝒫
ℕ0) | 
| 5 |  | smuval.b | . . 3
⊢ (𝜑 → 𝐵 ⊆
ℕ0) | 
| 6 | 2 | elpw2 5333 | . . 3
⊢ (𝐵 ∈ 𝒫
ℕ0 ↔ 𝐵 ⊆
ℕ0) | 
| 7 | 5, 6 | sylibr 234 | . 2
⊢ (𝜑 → 𝐵 ∈ 𝒫
ℕ0) | 
| 8 |  | simp1l 1197 | . . . . . . . . . . . . 13
⊢ (((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) ∧ 𝑝 ∈ 𝒫 ℕ0 ∧
𝑚 ∈
ℕ0) → 𝑥 = 𝐴) | 
| 9 | 8 | eleq2d 2826 | . . . . . . . . . . . 12
⊢ (((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) ∧ 𝑝 ∈ 𝒫 ℕ0 ∧
𝑚 ∈
ℕ0) → (𝑚 ∈ 𝑥 ↔ 𝑚 ∈ 𝐴)) | 
| 10 |  | simp1r 1198 | . . . . . . . . . . . . 13
⊢ (((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) ∧ 𝑝 ∈ 𝒫 ℕ0 ∧
𝑚 ∈
ℕ0) → 𝑦 = 𝐵) | 
| 11 | 10 | eleq2d 2826 | . . . . . . . . . . . 12
⊢ (((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) ∧ 𝑝 ∈ 𝒫 ℕ0 ∧
𝑚 ∈
ℕ0) → ((𝑛 − 𝑚) ∈ 𝑦 ↔ (𝑛 − 𝑚) ∈ 𝐵)) | 
| 12 | 9, 11 | anbi12d 632 | . . . . . . . . . . 11
⊢ (((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) ∧ 𝑝 ∈ 𝒫 ℕ0 ∧
𝑚 ∈
ℕ0) → ((𝑚 ∈ 𝑥 ∧ (𝑛 − 𝑚) ∈ 𝑦) ↔ (𝑚 ∈ 𝐴 ∧ (𝑛 − 𝑚) ∈ 𝐵))) | 
| 13 | 12 | rabbidv 3443 | . . . . . . . . . 10
⊢ (((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) ∧ 𝑝 ∈ 𝒫 ℕ0 ∧
𝑚 ∈
ℕ0) → {𝑛 ∈ ℕ0 ∣ (𝑚 ∈ 𝑥 ∧ (𝑛 − 𝑚) ∈ 𝑦)} = {𝑛 ∈ ℕ0 ∣ (𝑚 ∈ 𝐴 ∧ (𝑛 − 𝑚) ∈ 𝐵)}) | 
| 14 | 13 | oveq2d 7448 | . . . . . . . . 9
⊢ (((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) ∧ 𝑝 ∈ 𝒫 ℕ0 ∧
𝑚 ∈
ℕ0) → (𝑝 sadd {𝑛 ∈ ℕ0 ∣ (𝑚 ∈ 𝑥 ∧ (𝑛 − 𝑚) ∈ 𝑦)}) = (𝑝 sadd {𝑛 ∈ ℕ0 ∣ (𝑚 ∈ 𝐴 ∧ (𝑛 − 𝑚) ∈ 𝐵)})) | 
| 15 | 14 | mpoeq3dva 7511 | . . . . . . . 8
⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0
↦ (𝑝 sadd {𝑛 ∈ ℕ0
∣ (𝑚 ∈ 𝑥 ∧ (𝑛 − 𝑚) ∈ 𝑦)})) = (𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0
↦ (𝑝 sadd {𝑛 ∈ ℕ0
∣ (𝑚 ∈ 𝐴 ∧ (𝑛 − 𝑚) ∈ 𝐵)}))) | 
| 16 | 15 | seqeq2d 14050 | . . . . . . 7
⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → seq0((𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0
↦ (𝑝 sadd {𝑛 ∈ ℕ0
∣ (𝑚 ∈ 𝑥 ∧ (𝑛 − 𝑚) ∈ 𝑦)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1)))) = seq0((𝑝 ∈ 𝒫
ℕ0, 𝑚
∈ ℕ0 ↦ (𝑝 sadd {𝑛 ∈ ℕ0 ∣ (𝑚 ∈ 𝐴 ∧ (𝑛 − 𝑚) ∈ 𝐵)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))) | 
| 17 |  | smuval.p | . . . . . . 7
⊢ 𝑃 = seq0((𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0
↦ (𝑝 sadd {𝑛 ∈ ℕ0
∣ (𝑚 ∈ 𝐴 ∧ (𝑛 − 𝑚) ∈ 𝐵)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1)))) | 
| 18 | 16, 17 | eqtr4di 2794 | . . . . . 6
⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → seq0((𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0
↦ (𝑝 sadd {𝑛 ∈ ℕ0
∣ (𝑚 ∈ 𝑥 ∧ (𝑛 − 𝑚) ∈ 𝑦)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1)))) = 𝑃) | 
| 19 | 18 | fveq1d 6907 | . . . . 5
⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (seq0((𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0
↦ (𝑝 sadd {𝑛 ∈ ℕ0
∣ (𝑚 ∈ 𝑥 ∧ (𝑛 − 𝑚) ∈ 𝑦)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))‘(𝑘 + 1)) = (𝑃‘(𝑘 + 1))) | 
| 20 | 19 | eleq2d 2826 | . . . 4
⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (𝑘 ∈ (seq0((𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0
↦ (𝑝 sadd {𝑛 ∈ ℕ0
∣ (𝑚 ∈ 𝑥 ∧ (𝑛 − 𝑚) ∈ 𝑦)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))‘(𝑘 + 1)) ↔ 𝑘 ∈ (𝑃‘(𝑘 + 1)))) | 
| 21 | 20 | rabbidv 3443 | . . 3
⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → {𝑘 ∈ ℕ0 ∣ 𝑘 ∈ (seq0((𝑝 ∈ 𝒫
ℕ0, 𝑚
∈ ℕ0 ↦ (𝑝 sadd {𝑛 ∈ ℕ0 ∣ (𝑚 ∈ 𝑥 ∧ (𝑛 − 𝑚) ∈ 𝑦)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))‘(𝑘 + 1))} = {𝑘 ∈ ℕ0 ∣ 𝑘 ∈ (𝑃‘(𝑘 + 1))}) | 
| 22 |  | df-smu 16514 | . . 3
⊢  smul =
(𝑥 ∈ 𝒫
ℕ0, 𝑦
∈ 𝒫 ℕ0 ↦ {𝑘 ∈ ℕ0 ∣ 𝑘 ∈ (seq0((𝑝 ∈ 𝒫
ℕ0, 𝑚
∈ ℕ0 ↦ (𝑝 sadd {𝑛 ∈ ℕ0 ∣ (𝑚 ∈ 𝑥 ∧ (𝑛 − 𝑚) ∈ 𝑦)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))‘(𝑘 + 1))}) | 
| 23 | 2 | rabex 5338 | . . 3
⊢ {𝑘 ∈ ℕ0
∣ 𝑘 ∈ (𝑃‘(𝑘 + 1))} ∈ V | 
| 24 | 21, 22, 23 | ovmpoa 7589 | . 2
⊢ ((𝐴 ∈ 𝒫
ℕ0 ∧ 𝐵
∈ 𝒫 ℕ0) → (𝐴 smul 𝐵) = {𝑘 ∈ ℕ0 ∣ 𝑘 ∈ (𝑃‘(𝑘 + 1))}) | 
| 25 | 4, 7, 24 | syl2anc 584 | 1
⊢ (𝜑 → (𝐴 smul 𝐵) = {𝑘 ∈ ℕ0 ∣ 𝑘 ∈ (𝑃‘(𝑘 + 1))}) |