Step | Hyp | Ref
| Expression |
1 | | smuval.a |
. . 3
⊢ (𝜑 → 𝐴 ⊆
ℕ0) |
2 | | nn0ex 12096 |
. . . 4
⊢
ℕ0 ∈ V |
3 | 2 | elpw2 5238 |
. . 3
⊢ (𝐴 ∈ 𝒫
ℕ0 ↔ 𝐴 ⊆
ℕ0) |
4 | 1, 3 | sylibr 237 |
. 2
⊢ (𝜑 → 𝐴 ∈ 𝒫
ℕ0) |
5 | | smuval.b |
. . 3
⊢ (𝜑 → 𝐵 ⊆
ℕ0) |
6 | 2 | elpw2 5238 |
. . 3
⊢ (𝐵 ∈ 𝒫
ℕ0 ↔ 𝐵 ⊆
ℕ0) |
7 | 5, 6 | sylibr 237 |
. 2
⊢ (𝜑 → 𝐵 ∈ 𝒫
ℕ0) |
8 | | simp1l 1199 |
. . . . . . . . . . . . 13
⊢ (((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) ∧ 𝑝 ∈ 𝒫 ℕ0 ∧
𝑚 ∈
ℕ0) → 𝑥 = 𝐴) |
9 | 8 | eleq2d 2823 |
. . . . . . . . . . . 12
⊢ (((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) ∧ 𝑝 ∈ 𝒫 ℕ0 ∧
𝑚 ∈
ℕ0) → (𝑚 ∈ 𝑥 ↔ 𝑚 ∈ 𝐴)) |
10 | | simp1r 1200 |
. . . . . . . . . . . . 13
⊢ (((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) ∧ 𝑝 ∈ 𝒫 ℕ0 ∧
𝑚 ∈
ℕ0) → 𝑦 = 𝐵) |
11 | 10 | eleq2d 2823 |
. . . . . . . . . . . 12
⊢ (((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) ∧ 𝑝 ∈ 𝒫 ℕ0 ∧
𝑚 ∈
ℕ0) → ((𝑛 − 𝑚) ∈ 𝑦 ↔ (𝑛 − 𝑚) ∈ 𝐵)) |
12 | 9, 11 | anbi12d 634 |
. . . . . . . . . . 11
⊢ (((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) ∧ 𝑝 ∈ 𝒫 ℕ0 ∧
𝑚 ∈
ℕ0) → ((𝑚 ∈ 𝑥 ∧ (𝑛 − 𝑚) ∈ 𝑦) ↔ (𝑚 ∈ 𝐴 ∧ (𝑛 − 𝑚) ∈ 𝐵))) |
13 | 12 | rabbidv 3390 |
. . . . . . . . . 10
⊢ (((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) ∧ 𝑝 ∈ 𝒫 ℕ0 ∧
𝑚 ∈
ℕ0) → {𝑛 ∈ ℕ0 ∣ (𝑚 ∈ 𝑥 ∧ (𝑛 − 𝑚) ∈ 𝑦)} = {𝑛 ∈ ℕ0 ∣ (𝑚 ∈ 𝐴 ∧ (𝑛 − 𝑚) ∈ 𝐵)}) |
14 | 13 | oveq2d 7229 |
. . . . . . . . 9
⊢ (((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) ∧ 𝑝 ∈ 𝒫 ℕ0 ∧
𝑚 ∈
ℕ0) → (𝑝 sadd {𝑛 ∈ ℕ0 ∣ (𝑚 ∈ 𝑥 ∧ (𝑛 − 𝑚) ∈ 𝑦)}) = (𝑝 sadd {𝑛 ∈ ℕ0 ∣ (𝑚 ∈ 𝐴 ∧ (𝑛 − 𝑚) ∈ 𝐵)})) |
15 | 14 | mpoeq3dva 7288 |
. . . . . . . 8
⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0
↦ (𝑝 sadd {𝑛 ∈ ℕ0
∣ (𝑚 ∈ 𝑥 ∧ (𝑛 − 𝑚) ∈ 𝑦)})) = (𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0
↦ (𝑝 sadd {𝑛 ∈ ℕ0
∣ (𝑚 ∈ 𝐴 ∧ (𝑛 − 𝑚) ∈ 𝐵)}))) |
16 | 15 | seqeq2d 13581 |
. . . . . . 7
⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → seq0((𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0
↦ (𝑝 sadd {𝑛 ∈ ℕ0
∣ (𝑚 ∈ 𝑥 ∧ (𝑛 − 𝑚) ∈ 𝑦)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1)))) = seq0((𝑝 ∈ 𝒫
ℕ0, 𝑚
∈ ℕ0 ↦ (𝑝 sadd {𝑛 ∈ ℕ0 ∣ (𝑚 ∈ 𝐴 ∧ (𝑛 − 𝑚) ∈ 𝐵)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))) |
17 | | smuval.p |
. . . . . . 7
⊢ 𝑃 = seq0((𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0
↦ (𝑝 sadd {𝑛 ∈ ℕ0
∣ (𝑚 ∈ 𝐴 ∧ (𝑛 − 𝑚) ∈ 𝐵)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1)))) |
18 | 16, 17 | eqtr4di 2796 |
. . . . . 6
⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → seq0((𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0
↦ (𝑝 sadd {𝑛 ∈ ℕ0
∣ (𝑚 ∈ 𝑥 ∧ (𝑛 − 𝑚) ∈ 𝑦)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1)))) = 𝑃) |
19 | 18 | fveq1d 6719 |
. . . . 5
⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (seq0((𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0
↦ (𝑝 sadd {𝑛 ∈ ℕ0
∣ (𝑚 ∈ 𝑥 ∧ (𝑛 − 𝑚) ∈ 𝑦)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))‘(𝑘 + 1)) = (𝑃‘(𝑘 + 1))) |
20 | 19 | eleq2d 2823 |
. . . 4
⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (𝑘 ∈ (seq0((𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0
↦ (𝑝 sadd {𝑛 ∈ ℕ0
∣ (𝑚 ∈ 𝑥 ∧ (𝑛 − 𝑚) ∈ 𝑦)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))‘(𝑘 + 1)) ↔ 𝑘 ∈ (𝑃‘(𝑘 + 1)))) |
21 | 20 | rabbidv 3390 |
. . 3
⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → {𝑘 ∈ ℕ0 ∣ 𝑘 ∈ (seq0((𝑝 ∈ 𝒫
ℕ0, 𝑚
∈ ℕ0 ↦ (𝑝 sadd {𝑛 ∈ ℕ0 ∣ (𝑚 ∈ 𝑥 ∧ (𝑛 − 𝑚) ∈ 𝑦)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))‘(𝑘 + 1))} = {𝑘 ∈ ℕ0 ∣ 𝑘 ∈ (𝑃‘(𝑘 + 1))}) |
22 | | df-smu 16035 |
. . 3
⊢ smul =
(𝑥 ∈ 𝒫
ℕ0, 𝑦
∈ 𝒫 ℕ0 ↦ {𝑘 ∈ ℕ0 ∣ 𝑘 ∈ (seq0((𝑝 ∈ 𝒫
ℕ0, 𝑚
∈ ℕ0 ↦ (𝑝 sadd {𝑛 ∈ ℕ0 ∣ (𝑚 ∈ 𝑥 ∧ (𝑛 − 𝑚) ∈ 𝑦)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))‘(𝑘 + 1))}) |
23 | 2 | rabex 5225 |
. . 3
⊢ {𝑘 ∈ ℕ0
∣ 𝑘 ∈ (𝑃‘(𝑘 + 1))} ∈ V |
24 | 21, 22, 23 | ovmpoa 7364 |
. 2
⊢ ((𝐴 ∈ 𝒫
ℕ0 ∧ 𝐵
∈ 𝒫 ℕ0) → (𝐴 smul 𝐵) = {𝑘 ∈ ℕ0 ∣ 𝑘 ∈ (𝑃‘(𝑘 + 1))}) |
25 | 4, 7, 24 | syl2anc 587 |
1
⊢ (𝜑 → (𝐴 smul 𝐵) = {𝑘 ∈ ℕ0 ∣ 𝑘 ∈ (𝑃‘(𝑘 + 1))}) |