Detailed syntax breakdown of Definition df-srng
Step | Hyp | Ref
| Expression |
1 | | csr 20104 |
. 2
class
*-Ring |
2 | | vi |
. . . . . . 7
setvar 𝑖 |
3 | 2 | cv 1538 |
. . . . . 6
class 𝑖 |
4 | | vf |
. . . . . . . 8
setvar 𝑓 |
5 | 4 | cv 1538 |
. . . . . . 7
class 𝑓 |
6 | | coppr 19861 |
. . . . . . . 8
class
oppr |
7 | 5, 6 | cfv 6433 |
. . . . . . 7
class
(oppr‘𝑓) |
8 | | crh 19956 |
. . . . . . 7
class
RingHom |
9 | 5, 7, 8 | co 7275 |
. . . . . 6
class (𝑓 RingHom
(oppr‘𝑓)) |
10 | 3, 9 | wcel 2106 |
. . . . 5
wff 𝑖 ∈ (𝑓 RingHom (oppr‘𝑓)) |
11 | 3 | ccnv 5588 |
. . . . . 6
class ◡𝑖 |
12 | 3, 11 | wceq 1539 |
. . . . 5
wff 𝑖 = ◡𝑖 |
13 | 10, 12 | wa 396 |
. . . 4
wff (𝑖 ∈ (𝑓 RingHom (oppr‘𝑓)) ∧ 𝑖 = ◡𝑖) |
14 | | cstf 20103 |
. . . . 5
class
*rf |
15 | 5, 14 | cfv 6433 |
. . . 4
class
(*rf‘𝑓) |
16 | 13, 2, 15 | wsbc 3716 |
. . 3
wff
[(*rf‘𝑓) / 𝑖](𝑖 ∈ (𝑓 RingHom (oppr‘𝑓)) ∧ 𝑖 = ◡𝑖) |
17 | 16, 4 | cab 2715 |
. 2
class {𝑓 ∣
[(*rf‘𝑓) / 𝑖](𝑖 ∈ (𝑓 RingHom (oppr‘𝑓)) ∧ 𝑖 = ◡𝑖)} |
18 | 1, 17 | wceq 1539 |
1
wff *-Ring =
{𝑓 ∣
[(*rf‘𝑓) / 𝑖](𝑖 ∈ (𝑓 RingHom (oppr‘𝑓)) ∧ 𝑖 = ◡𝑖)} |