![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > df-srng | Structured version Visualization version GIF version |
Description: Define class of all star rings. A star ring is a ring with an involution (conjugation) function. Involution (unlike say the ring zero) is not unique and therefore must be added as a new component to the ring. For example, two possible involutions for complex numbers are the identity function and complex conjugation. Definition of involution in [Holland95] p. 204. (Contributed by NM, 22-Sep-2011.) (Revised by Mario Carneiro, 6-Oct-2015.) |
Ref | Expression |
---|---|
df-srng | ⊢ *-Ring = {𝑓 ∣ [(*rf‘𝑓) / 𝑖](𝑖 ∈ (𝑓 RingHom (oppr‘𝑓)) ∧ 𝑖 = ◡𝑖)} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | csr 20444 | . 2 class *-Ring | |
2 | vi | . . . . . . 7 setvar 𝑖 | |
3 | 2 | cv 1540 | . . . . . 6 class 𝑖 |
4 | vf | . . . . . . . 8 setvar 𝑓 | |
5 | 4 | cv 1540 | . . . . . . 7 class 𝑓 |
6 | coppr 20141 | . . . . . . . 8 class oppr | |
7 | 5, 6 | cfv 6540 | . . . . . . 7 class (oppr‘𝑓) |
8 | crh 20240 | . . . . . . 7 class RingHom | |
9 | 5, 7, 8 | co 7405 | . . . . . 6 class (𝑓 RingHom (oppr‘𝑓)) |
10 | 3, 9 | wcel 2106 | . . . . 5 wff 𝑖 ∈ (𝑓 RingHom (oppr‘𝑓)) |
11 | 3 | ccnv 5674 | . . . . . 6 class ◡𝑖 |
12 | 3, 11 | wceq 1541 | . . . . 5 wff 𝑖 = ◡𝑖 |
13 | 10, 12 | wa 396 | . . . 4 wff (𝑖 ∈ (𝑓 RingHom (oppr‘𝑓)) ∧ 𝑖 = ◡𝑖) |
14 | cstf 20443 | . . . . 5 class *rf | |
15 | 5, 14 | cfv 6540 | . . . 4 class (*rf‘𝑓) |
16 | 13, 2, 15 | wsbc 3776 | . . 3 wff [(*rf‘𝑓) / 𝑖](𝑖 ∈ (𝑓 RingHom (oppr‘𝑓)) ∧ 𝑖 = ◡𝑖) |
17 | 16, 4 | cab 2709 | . 2 class {𝑓 ∣ [(*rf‘𝑓) / 𝑖](𝑖 ∈ (𝑓 RingHom (oppr‘𝑓)) ∧ 𝑖 = ◡𝑖)} |
18 | 1, 17 | wceq 1541 | 1 wff *-Ring = {𝑓 ∣ [(*rf‘𝑓) / 𝑖](𝑖 ∈ (𝑓 RingHom (oppr‘𝑓)) ∧ 𝑖 = ◡𝑖)} |
Colors of variables: wff setvar class |
This definition is referenced by: issrng 20450 |
Copyright terms: Public domain | W3C validator |