MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  staffval Structured version   Visualization version   GIF version

Theorem staffval 19740
Description: The functionalization of the involution component of a structure. (Contributed by Mario Carneiro, 6-Oct-2015.)
Hypotheses
Ref Expression
staffval.b 𝐵 = (Base‘𝑅)
staffval.i = (*𝑟𝑅)
staffval.f = (*rf𝑅)
Assertion
Ref Expression
staffval = (𝑥𝐵 ↦ ( 𝑥))
Distinct variable groups:   𝑥,𝐵   𝑥,   𝑥,𝑅
Allowed substitution hint:   (𝑥)

Proof of Theorem staffval
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 staffval.f . 2 = (*rf𝑅)
2 fveq2 6677 . . . . . 6 (𝑓 = 𝑅 → (Base‘𝑓) = (Base‘𝑅))
3 staffval.b . . . . . 6 𝐵 = (Base‘𝑅)
42, 3eqtr4di 2792 . . . . 5 (𝑓 = 𝑅 → (Base‘𝑓) = 𝐵)
5 fveq2 6677 . . . . . . 7 (𝑓 = 𝑅 → (*𝑟𝑓) = (*𝑟𝑅))
6 staffval.i . . . . . . 7 = (*𝑟𝑅)
75, 6eqtr4di 2792 . . . . . 6 (𝑓 = 𝑅 → (*𝑟𝑓) = )
87fveq1d 6679 . . . . 5 (𝑓 = 𝑅 → ((*𝑟𝑓)‘𝑥) = ( 𝑥))
94, 8mpteq12dv 5116 . . . 4 (𝑓 = 𝑅 → (𝑥 ∈ (Base‘𝑓) ↦ ((*𝑟𝑓)‘𝑥)) = (𝑥𝐵 ↦ ( 𝑥)))
10 df-staf 19738 . . . 4 *rf = (𝑓 ∈ V ↦ (𝑥 ∈ (Base‘𝑓) ↦ ((*𝑟𝑓)‘𝑥)))
11 eqid 2739 . . . . . 6 (𝑥𝐵 ↦ ( 𝑥)) = (𝑥𝐵 ↦ ( 𝑥))
12 fvrn0 6705 . . . . . . 7 ( 𝑥) ∈ (ran ∪ {∅})
1312a1i 11 . . . . . 6 (𝑥𝐵 → ( 𝑥) ∈ (ran ∪ {∅}))
1411, 13fmpti 6889 . . . . 5 (𝑥𝐵 ↦ ( 𝑥)):𝐵⟶(ran ∪ {∅})
153fvexi 6691 . . . . 5 𝐵 ∈ V
166fvexi 6691 . . . . . . 7 ∈ V
1716rnex 7646 . . . . . 6 ran ∈ V
18 p0ex 5252 . . . . . 6 {∅} ∈ V
1917, 18unex 7490 . . . . 5 (ran ∪ {∅}) ∈ V
20 fex2 7667 . . . . 5 (((𝑥𝐵 ↦ ( 𝑥)):𝐵⟶(ran ∪ {∅}) ∧ 𝐵 ∈ V ∧ (ran ∪ {∅}) ∈ V) → (𝑥𝐵 ↦ ( 𝑥)) ∈ V)
2114, 15, 19, 20mp3an 1462 . . . 4 (𝑥𝐵 ↦ ( 𝑥)) ∈ V
229, 10, 21fvmpt 6778 . . 3 (𝑅 ∈ V → (*rf𝑅) = (𝑥𝐵 ↦ ( 𝑥)))
23 fvprc 6669 . . . . 5 𝑅 ∈ V → (*rf𝑅) = ∅)
24 mpt0 6480 . . . . 5 (𝑥 ∈ ∅ ↦ ( 𝑥)) = ∅
2523, 24eqtr4di 2792 . . . 4 𝑅 ∈ V → (*rf𝑅) = (𝑥 ∈ ∅ ↦ ( 𝑥)))
26 fvprc 6669 . . . . . 6 𝑅 ∈ V → (Base‘𝑅) = ∅)
273, 26syl5eq 2786 . . . . 5 𝑅 ∈ V → 𝐵 = ∅)
2827mpteq1d 5120 . . . 4 𝑅 ∈ V → (𝑥𝐵 ↦ ( 𝑥)) = (𝑥 ∈ ∅ ↦ ( 𝑥)))
2925, 28eqtr4d 2777 . . 3 𝑅 ∈ V → (*rf𝑅) = (𝑥𝐵 ↦ ( 𝑥)))
3022, 29pm2.61i 185 . 2 (*rf𝑅) = (𝑥𝐵 ↦ ( 𝑥))
311, 30eqtri 2762 1 = (𝑥𝐵 ↦ ( 𝑥))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1542  wcel 2114  Vcvv 3399  cun 3842  c0 4212  {csn 4517  cmpt 5111  ran crn 5527  wf 6336  cfv 6340  Basecbs 16589  *𝑟cstv 16673  *rfcstf 19736
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2162  ax-12 2179  ax-ext 2711  ax-sep 5168  ax-nul 5175  ax-pow 5233  ax-pr 5297  ax-un 7482
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2075  df-mo 2541  df-eu 2571  df-clab 2718  df-cleq 2731  df-clel 2812  df-nfc 2882  df-ne 2936  df-ral 3059  df-rex 3060  df-rab 3063  df-v 3401  df-sbc 3682  df-dif 3847  df-un 3849  df-in 3851  df-ss 3861  df-nul 4213  df-if 4416  df-pw 4491  df-sn 4518  df-pr 4520  df-op 4524  df-uni 4798  df-br 5032  df-opab 5094  df-mpt 5112  df-id 5430  df-xp 5532  df-rel 5533  df-cnv 5534  df-co 5535  df-dm 5536  df-rn 5537  df-res 5538  df-ima 5539  df-iota 6298  df-fun 6342  df-fn 6343  df-f 6344  df-fv 6348  df-staf 19738
This theorem is referenced by:  stafval  19741  staffn  19742  issrngd  19754
  Copyright terms: Public domain W3C validator