MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  staffval Structured version   Visualization version   GIF version

Theorem staffval 20156
Description: The functionalization of the involution component of a structure. (Contributed by Mario Carneiro, 6-Oct-2015.)
Hypotheses
Ref Expression
staffval.b 𝐵 = (Base‘𝑅)
staffval.i = (*𝑟𝑅)
staffval.f = (*rf𝑅)
Assertion
Ref Expression
staffval = (𝑥𝐵 ↦ ( 𝑥))
Distinct variable groups:   𝑥,𝐵   𝑥,   𝑥,𝑅
Allowed substitution hint:   (𝑥)

Proof of Theorem staffval
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 staffval.f . 2 = (*rf𝑅)
2 fveq2 6804 . . . . . 6 (𝑓 = 𝑅 → (Base‘𝑓) = (Base‘𝑅))
3 staffval.b . . . . . 6 𝐵 = (Base‘𝑅)
42, 3eqtr4di 2794 . . . . 5 (𝑓 = 𝑅 → (Base‘𝑓) = 𝐵)
5 fveq2 6804 . . . . . . 7 (𝑓 = 𝑅 → (*𝑟𝑓) = (*𝑟𝑅))
6 staffval.i . . . . . . 7 = (*𝑟𝑅)
75, 6eqtr4di 2794 . . . . . 6 (𝑓 = 𝑅 → (*𝑟𝑓) = )
87fveq1d 6806 . . . . 5 (𝑓 = 𝑅 → ((*𝑟𝑓)‘𝑥) = ( 𝑥))
94, 8mpteq12dv 5172 . . . 4 (𝑓 = 𝑅 → (𝑥 ∈ (Base‘𝑓) ↦ ((*𝑟𝑓)‘𝑥)) = (𝑥𝐵 ↦ ( 𝑥)))
10 df-staf 20154 . . . 4 *rf = (𝑓 ∈ V ↦ (𝑥 ∈ (Base‘𝑓) ↦ ((*𝑟𝑓)‘𝑥)))
11 eqid 2736 . . . . . 6 (𝑥𝐵 ↦ ( 𝑥)) = (𝑥𝐵 ↦ ( 𝑥))
12 fvrn0 6834 . . . . . . 7 ( 𝑥) ∈ (ran ∪ {∅})
1312a1i 11 . . . . . 6 (𝑥𝐵 → ( 𝑥) ∈ (ran ∪ {∅}))
1411, 13fmpti 7018 . . . . 5 (𝑥𝐵 ↦ ( 𝑥)):𝐵⟶(ran ∪ {∅})
153fvexi 6818 . . . . 5 𝐵 ∈ V
166fvexi 6818 . . . . . . 7 ∈ V
1716rnex 7791 . . . . . 6 ran ∈ V
18 p0ex 5316 . . . . . 6 {∅} ∈ V
1917, 18unex 7628 . . . . 5 (ran ∪ {∅}) ∈ V
20 fex2 7812 . . . . 5 (((𝑥𝐵 ↦ ( 𝑥)):𝐵⟶(ran ∪ {∅}) ∧ 𝐵 ∈ V ∧ (ran ∪ {∅}) ∈ V) → (𝑥𝐵 ↦ ( 𝑥)) ∈ V)
2114, 15, 19, 20mp3an 1461 . . . 4 (𝑥𝐵 ↦ ( 𝑥)) ∈ V
229, 10, 21fvmpt 6907 . . 3 (𝑅 ∈ V → (*rf𝑅) = (𝑥𝐵 ↦ ( 𝑥)))
23 fvprc 6796 . . . . 5 𝑅 ∈ V → (*rf𝑅) = ∅)
24 mpt0 6605 . . . . 5 (𝑥 ∈ ∅ ↦ ( 𝑥)) = ∅
2523, 24eqtr4di 2794 . . . 4 𝑅 ∈ V → (*rf𝑅) = (𝑥 ∈ ∅ ↦ ( 𝑥)))
26 fvprc 6796 . . . . . 6 𝑅 ∈ V → (Base‘𝑅) = ∅)
273, 26eqtrid 2788 . . . . 5 𝑅 ∈ V → 𝐵 = ∅)
2827mpteq1d 5176 . . . 4 𝑅 ∈ V → (𝑥𝐵 ↦ ( 𝑥)) = (𝑥 ∈ ∅ ↦ ( 𝑥)))
2925, 28eqtr4d 2779 . . 3 𝑅 ∈ V → (*rf𝑅) = (𝑥𝐵 ↦ ( 𝑥)))
3022, 29pm2.61i 182 . 2 (*rf𝑅) = (𝑥𝐵 ↦ ( 𝑥))
311, 30eqtri 2764 1 = (𝑥𝐵 ↦ ( 𝑥))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1539  wcel 2104  Vcvv 3437  cun 3890  c0 4262  {csn 4565  cmpt 5164  ran crn 5601  wf 6454  cfv 6458  Basecbs 16961  *𝑟cstv 17013  *rfcstf 20152
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2707  ax-sep 5232  ax-nul 5239  ax-pow 5297  ax-pr 5361  ax-un 7620
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3333  df-v 3439  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4566  df-pr 4568  df-op 4572  df-uni 4845  df-br 5082  df-opab 5144  df-mpt 5165  df-id 5500  df-xp 5606  df-rel 5607  df-cnv 5608  df-co 5609  df-dm 5610  df-rn 5611  df-res 5612  df-ima 5613  df-iota 6410  df-fun 6460  df-fn 6461  df-f 6462  df-fv 6466  df-staf 20154
This theorem is referenced by:  stafval  20157  staffn  20158  issrngd  20170
  Copyright terms: Public domain W3C validator