MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  staffval Structured version   Visualization version   GIF version

Theorem staffval 20726
Description: The functionalization of the involution component of a structure. (Contributed by Mario Carneiro, 6-Oct-2015.)
Hypotheses
Ref Expression
staffval.b 𝐵 = (Base‘𝑅)
staffval.i = (*𝑟𝑅)
staffval.f = (*rf𝑅)
Assertion
Ref Expression
staffval = (𝑥𝐵 ↦ ( 𝑥))
Distinct variable groups:   𝑥,𝐵   𝑥,   𝑥,𝑅
Allowed substitution hint:   (𝑥)

Proof of Theorem staffval
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 staffval.f . 2 = (*rf𝑅)
2 fveq2 6822 . . . . . 6 (𝑓 = 𝑅 → (Base‘𝑓) = (Base‘𝑅))
3 staffval.b . . . . . 6 𝐵 = (Base‘𝑅)
42, 3eqtr4di 2782 . . . . 5 (𝑓 = 𝑅 → (Base‘𝑓) = 𝐵)
5 fveq2 6822 . . . . . . 7 (𝑓 = 𝑅 → (*𝑟𝑓) = (*𝑟𝑅))
6 staffval.i . . . . . . 7 = (*𝑟𝑅)
75, 6eqtr4di 2782 . . . . . 6 (𝑓 = 𝑅 → (*𝑟𝑓) = )
87fveq1d 6824 . . . . 5 (𝑓 = 𝑅 → ((*𝑟𝑓)‘𝑥) = ( 𝑥))
94, 8mpteq12dv 5179 . . . 4 (𝑓 = 𝑅 → (𝑥 ∈ (Base‘𝑓) ↦ ((*𝑟𝑓)‘𝑥)) = (𝑥𝐵 ↦ ( 𝑥)))
10 df-staf 20724 . . . 4 *rf = (𝑓 ∈ V ↦ (𝑥 ∈ (Base‘𝑓) ↦ ((*𝑟𝑓)‘𝑥)))
11 eqid 2729 . . . . . 6 (𝑥𝐵 ↦ ( 𝑥)) = (𝑥𝐵 ↦ ( 𝑥))
12 fvrn0 6850 . . . . . . 7 ( 𝑥) ∈ (ran ∪ {∅})
1312a1i 11 . . . . . 6 (𝑥𝐵 → ( 𝑥) ∈ (ran ∪ {∅}))
1411, 13fmpti 7046 . . . . 5 (𝑥𝐵 ↦ ( 𝑥)):𝐵⟶(ran ∪ {∅})
153fvexi 6836 . . . . 5 𝐵 ∈ V
166fvexi 6836 . . . . . . 7 ∈ V
1716rnex 7843 . . . . . 6 ran ∈ V
18 p0ex 5323 . . . . . 6 {∅} ∈ V
1917, 18unex 7680 . . . . 5 (ran ∪ {∅}) ∈ V
20 fex2 7869 . . . . 5 (((𝑥𝐵 ↦ ( 𝑥)):𝐵⟶(ran ∪ {∅}) ∧ 𝐵 ∈ V ∧ (ran ∪ {∅}) ∈ V) → (𝑥𝐵 ↦ ( 𝑥)) ∈ V)
2114, 15, 19, 20mp3an 1463 . . . 4 (𝑥𝐵 ↦ ( 𝑥)) ∈ V
229, 10, 21fvmpt 6930 . . 3 (𝑅 ∈ V → (*rf𝑅) = (𝑥𝐵 ↦ ( 𝑥)))
23 fvprc 6814 . . . . 5 𝑅 ∈ V → (*rf𝑅) = ∅)
24 mpt0 6624 . . . . 5 (𝑥 ∈ ∅ ↦ ( 𝑥)) = ∅
2523, 24eqtr4di 2782 . . . 4 𝑅 ∈ V → (*rf𝑅) = (𝑥 ∈ ∅ ↦ ( 𝑥)))
26 fvprc 6814 . . . . . 6 𝑅 ∈ V → (Base‘𝑅) = ∅)
273, 26eqtrid 2776 . . . . 5 𝑅 ∈ V → 𝐵 = ∅)
2827mpteq1d 5182 . . . 4 𝑅 ∈ V → (𝑥𝐵 ↦ ( 𝑥)) = (𝑥 ∈ ∅ ↦ ( 𝑥)))
2925, 28eqtr4d 2767 . . 3 𝑅 ∈ V → (*rf𝑅) = (𝑥𝐵 ↦ ( 𝑥)))
3022, 29pm2.61i 182 . 2 (*rf𝑅) = (𝑥𝐵 ↦ ( 𝑥))
311, 30eqtri 2752 1 = (𝑥𝐵 ↦ ( 𝑥))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1540  wcel 2109  Vcvv 3436  cun 3901  c0 4284  {csn 4577  cmpt 5173  ran crn 5620  wf 6478  cfv 6482  Basecbs 17120  *𝑟cstv 17163  *rfcstf 20722
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3395  df-v 3438  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-fv 6490  df-staf 20724
This theorem is referenced by:  stafval  20727  staffn  20728  issrngd  20740
  Copyright terms: Public domain W3C validator