![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > issrng | Structured version Visualization version GIF version |
Description: The predicate "is a star ring". (Contributed by NM, 22-Sep-2011.) (Revised by Mario Carneiro, 6-Oct-2015.) |
Ref | Expression |
---|---|
issrng.o | ⊢ 𝑂 = (oppr‘𝑅) |
issrng.i | ⊢ ∗ = (*rf‘𝑅) |
Ref | Expression |
---|---|
issrng | ⊢ (𝑅 ∈ *-Ring ↔ ( ∗ ∈ (𝑅 RingHom 𝑂) ∧ ∗ = ◡ ∗ )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-srng 20726 | . . 3 ⊢ *-Ring = {𝑟 ∣ [(*rf‘𝑟) / 𝑖](𝑖 ∈ (𝑟 RingHom (oppr‘𝑟)) ∧ 𝑖 = ◡𝑖)} | |
2 | 1 | eleq2i 2821 | . 2 ⊢ (𝑅 ∈ *-Ring ↔ 𝑅 ∈ {𝑟 ∣ [(*rf‘𝑟) / 𝑖](𝑖 ∈ (𝑟 RingHom (oppr‘𝑟)) ∧ 𝑖 = ◡𝑖)}) |
3 | rhmrcl1 20415 | . . . 4 ⊢ ( ∗ ∈ (𝑅 RingHom 𝑂) → 𝑅 ∈ Ring) | |
4 | 3 | adantr 480 | . . 3 ⊢ (( ∗ ∈ (𝑅 RingHom 𝑂) ∧ ∗ = ◡ ∗ ) → 𝑅 ∈ Ring) |
5 | fvexd 6912 | . . . 4 ⊢ (𝑟 = 𝑅 → (*rf‘𝑟) ∈ V) | |
6 | id 22 | . . . . . . 7 ⊢ (𝑖 = (*rf‘𝑟) → 𝑖 = (*rf‘𝑟)) | |
7 | fveq2 6897 | . . . . . . . 8 ⊢ (𝑟 = 𝑅 → (*rf‘𝑟) = (*rf‘𝑅)) | |
8 | issrng.i | . . . . . . . 8 ⊢ ∗ = (*rf‘𝑅) | |
9 | 7, 8 | eqtr4di 2786 | . . . . . . 7 ⊢ (𝑟 = 𝑅 → (*rf‘𝑟) = ∗ ) |
10 | 6, 9 | sylan9eqr 2790 | . . . . . 6 ⊢ ((𝑟 = 𝑅 ∧ 𝑖 = (*rf‘𝑟)) → 𝑖 = ∗ ) |
11 | simpl 482 | . . . . . . 7 ⊢ ((𝑟 = 𝑅 ∧ 𝑖 = (*rf‘𝑟)) → 𝑟 = 𝑅) | |
12 | 11 | fveq2d 6901 | . . . . . . . 8 ⊢ ((𝑟 = 𝑅 ∧ 𝑖 = (*rf‘𝑟)) → (oppr‘𝑟) = (oppr‘𝑅)) |
13 | issrng.o | . . . . . . . 8 ⊢ 𝑂 = (oppr‘𝑅) | |
14 | 12, 13 | eqtr4di 2786 | . . . . . . 7 ⊢ ((𝑟 = 𝑅 ∧ 𝑖 = (*rf‘𝑟)) → (oppr‘𝑟) = 𝑂) |
15 | 11, 14 | oveq12d 7438 | . . . . . 6 ⊢ ((𝑟 = 𝑅 ∧ 𝑖 = (*rf‘𝑟)) → (𝑟 RingHom (oppr‘𝑟)) = (𝑅 RingHom 𝑂)) |
16 | 10, 15 | eleq12d 2823 | . . . . 5 ⊢ ((𝑟 = 𝑅 ∧ 𝑖 = (*rf‘𝑟)) → (𝑖 ∈ (𝑟 RingHom (oppr‘𝑟)) ↔ ∗ ∈ (𝑅 RingHom 𝑂))) |
17 | 10 | cnveqd 5878 | . . . . . 6 ⊢ ((𝑟 = 𝑅 ∧ 𝑖 = (*rf‘𝑟)) → ◡𝑖 = ◡ ∗ ) |
18 | 10, 17 | eqeq12d 2744 | . . . . 5 ⊢ ((𝑟 = 𝑅 ∧ 𝑖 = (*rf‘𝑟)) → (𝑖 = ◡𝑖 ↔ ∗ = ◡ ∗ )) |
19 | 16, 18 | anbi12d 631 | . . . 4 ⊢ ((𝑟 = 𝑅 ∧ 𝑖 = (*rf‘𝑟)) → ((𝑖 ∈ (𝑟 RingHom (oppr‘𝑟)) ∧ 𝑖 = ◡𝑖) ↔ ( ∗ ∈ (𝑅 RingHom 𝑂) ∧ ∗ = ◡ ∗ ))) |
20 | 5, 19 | sbcied 3822 | . . 3 ⊢ (𝑟 = 𝑅 → ([(*rf‘𝑟) / 𝑖](𝑖 ∈ (𝑟 RingHom (oppr‘𝑟)) ∧ 𝑖 = ◡𝑖) ↔ ( ∗ ∈ (𝑅 RingHom 𝑂) ∧ ∗ = ◡ ∗ ))) |
21 | 4, 20 | elab3 3675 | . 2 ⊢ (𝑅 ∈ {𝑟 ∣ [(*rf‘𝑟) / 𝑖](𝑖 ∈ (𝑟 RingHom (oppr‘𝑟)) ∧ 𝑖 = ◡𝑖)} ↔ ( ∗ ∈ (𝑅 RingHom 𝑂) ∧ ∗ = ◡ ∗ )) |
22 | 2, 21 | bitri 275 | 1 ⊢ (𝑅 ∈ *-Ring ↔ ( ∗ ∈ (𝑅 RingHom 𝑂) ∧ ∗ = ◡ ∗ )) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 395 = wceq 1534 ∈ wcel 2099 {cab 2705 Vcvv 3471 [wsbc 3776 ◡ccnv 5677 ‘cfv 6548 (class class class)co 7420 Ringcrg 20173 opprcoppr 20272 RingHom crh 20408 *rfcstf 20723 *-Ringcsr 20724 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5365 ax-pr 5429 ax-un 7740 ax-cnex 11195 ax-resscn 11196 ax-1cn 11197 ax-icn 11198 ax-addcl 11199 ax-addrcl 11200 ax-mulcl 11201 ax-mulrcl 11202 ax-mulcom 11203 ax-addass 11204 ax-mulass 11205 ax-distr 11206 ax-i2m1 11207 ax-1ne0 11208 ax-1rid 11209 ax-rnegex 11210 ax-rrecex 11211 ax-cnre 11212 ax-pre-lttri 11213 ax-pre-lttrn 11214 ax-pre-ltadd 11215 ax-pre-mulgt0 11216 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-reu 3374 df-rab 3430 df-v 3473 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-we 5635 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-pred 6305 df-ord 6372 df-on 6373 df-lim 6374 df-suc 6375 df-iota 6500 df-fun 6550 df-fn 6551 df-f 6552 df-f1 6553 df-fo 6554 df-f1o 6555 df-fv 6556 df-riota 7376 df-ov 7423 df-oprab 7424 df-mpo 7425 df-om 7871 df-2nd 7994 df-frecs 8287 df-wrecs 8318 df-recs 8392 df-rdg 8431 df-er 8725 df-map 8847 df-en 8965 df-dom 8966 df-sdom 8967 df-pnf 11281 df-mnf 11282 df-xr 11283 df-ltxr 11284 df-le 11285 df-sub 11477 df-neg 11478 df-nn 12244 df-2 12306 df-sets 17133 df-slot 17151 df-ndx 17163 df-base 17181 df-plusg 17246 df-0g 17423 df-mhm 18740 df-ghm 19168 df-mgp 20075 df-ur 20122 df-ring 20175 df-rhm 20411 df-srng 20726 |
This theorem is referenced by: srngrhm 20731 srngcnv 20733 issrngd 20741 |
Copyright terms: Public domain | W3C validator |