![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > issrng | Structured version Visualization version GIF version |
Description: The predicate "is a star ring". (Contributed by NM, 22-Sep-2011.) (Revised by Mario Carneiro, 6-Oct-2015.) |
Ref | Expression |
---|---|
issrng.o | ⊢ 𝑂 = (oppr‘𝑅) |
issrng.i | ⊢ ∗ = (*rf‘𝑅) |
Ref | Expression |
---|---|
issrng | ⊢ (𝑅 ∈ *-Ring ↔ ( ∗ ∈ (𝑅 RingHom 𝑂) ∧ ∗ = ◡ ∗ )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-srng 20687 | . . 3 ⊢ *-Ring = {𝑟 ∣ [(*rf‘𝑟) / 𝑖](𝑖 ∈ (𝑟 RingHom (oppr‘𝑟)) ∧ 𝑖 = ◡𝑖)} | |
2 | 1 | eleq2i 2819 | . 2 ⊢ (𝑅 ∈ *-Ring ↔ 𝑅 ∈ {𝑟 ∣ [(*rf‘𝑟) / 𝑖](𝑖 ∈ (𝑟 RingHom (oppr‘𝑟)) ∧ 𝑖 = ◡𝑖)}) |
3 | rhmrcl1 20376 | . . . 4 ⊢ ( ∗ ∈ (𝑅 RingHom 𝑂) → 𝑅 ∈ Ring) | |
4 | 3 | adantr 480 | . . 3 ⊢ (( ∗ ∈ (𝑅 RingHom 𝑂) ∧ ∗ = ◡ ∗ ) → 𝑅 ∈ Ring) |
5 | fvexd 6899 | . . . 4 ⊢ (𝑟 = 𝑅 → (*rf‘𝑟) ∈ V) | |
6 | id 22 | . . . . . . 7 ⊢ (𝑖 = (*rf‘𝑟) → 𝑖 = (*rf‘𝑟)) | |
7 | fveq2 6884 | . . . . . . . 8 ⊢ (𝑟 = 𝑅 → (*rf‘𝑟) = (*rf‘𝑅)) | |
8 | issrng.i | . . . . . . . 8 ⊢ ∗ = (*rf‘𝑅) | |
9 | 7, 8 | eqtr4di 2784 | . . . . . . 7 ⊢ (𝑟 = 𝑅 → (*rf‘𝑟) = ∗ ) |
10 | 6, 9 | sylan9eqr 2788 | . . . . . 6 ⊢ ((𝑟 = 𝑅 ∧ 𝑖 = (*rf‘𝑟)) → 𝑖 = ∗ ) |
11 | simpl 482 | . . . . . . 7 ⊢ ((𝑟 = 𝑅 ∧ 𝑖 = (*rf‘𝑟)) → 𝑟 = 𝑅) | |
12 | 11 | fveq2d 6888 | . . . . . . . 8 ⊢ ((𝑟 = 𝑅 ∧ 𝑖 = (*rf‘𝑟)) → (oppr‘𝑟) = (oppr‘𝑅)) |
13 | issrng.o | . . . . . . . 8 ⊢ 𝑂 = (oppr‘𝑅) | |
14 | 12, 13 | eqtr4di 2784 | . . . . . . 7 ⊢ ((𝑟 = 𝑅 ∧ 𝑖 = (*rf‘𝑟)) → (oppr‘𝑟) = 𝑂) |
15 | 11, 14 | oveq12d 7422 | . . . . . 6 ⊢ ((𝑟 = 𝑅 ∧ 𝑖 = (*rf‘𝑟)) → (𝑟 RingHom (oppr‘𝑟)) = (𝑅 RingHom 𝑂)) |
16 | 10, 15 | eleq12d 2821 | . . . . 5 ⊢ ((𝑟 = 𝑅 ∧ 𝑖 = (*rf‘𝑟)) → (𝑖 ∈ (𝑟 RingHom (oppr‘𝑟)) ↔ ∗ ∈ (𝑅 RingHom 𝑂))) |
17 | 10 | cnveqd 5868 | . . . . . 6 ⊢ ((𝑟 = 𝑅 ∧ 𝑖 = (*rf‘𝑟)) → ◡𝑖 = ◡ ∗ ) |
18 | 10, 17 | eqeq12d 2742 | . . . . 5 ⊢ ((𝑟 = 𝑅 ∧ 𝑖 = (*rf‘𝑟)) → (𝑖 = ◡𝑖 ↔ ∗ = ◡ ∗ )) |
19 | 16, 18 | anbi12d 630 | . . . 4 ⊢ ((𝑟 = 𝑅 ∧ 𝑖 = (*rf‘𝑟)) → ((𝑖 ∈ (𝑟 RingHom (oppr‘𝑟)) ∧ 𝑖 = ◡𝑖) ↔ ( ∗ ∈ (𝑅 RingHom 𝑂) ∧ ∗ = ◡ ∗ ))) |
20 | 5, 19 | sbcied 3817 | . . 3 ⊢ (𝑟 = 𝑅 → ([(*rf‘𝑟) / 𝑖](𝑖 ∈ (𝑟 RingHom (oppr‘𝑟)) ∧ 𝑖 = ◡𝑖) ↔ ( ∗ ∈ (𝑅 RingHom 𝑂) ∧ ∗ = ◡ ∗ ))) |
21 | 4, 20 | elab3 3671 | . 2 ⊢ (𝑅 ∈ {𝑟 ∣ [(*rf‘𝑟) / 𝑖](𝑖 ∈ (𝑟 RingHom (oppr‘𝑟)) ∧ 𝑖 = ◡𝑖)} ↔ ( ∗ ∈ (𝑅 RingHom 𝑂) ∧ ∗ = ◡ ∗ )) |
22 | 2, 21 | bitri 275 | 1 ⊢ (𝑅 ∈ *-Ring ↔ ( ∗ ∈ (𝑅 RingHom 𝑂) ∧ ∗ = ◡ ∗ )) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 395 = wceq 1533 ∈ wcel 2098 {cab 2703 Vcvv 3468 [wsbc 3772 ◡ccnv 5668 ‘cfv 6536 (class class class)co 7404 Ringcrg 20136 opprcoppr 20233 RingHom crh 20369 *rfcstf 20684 *-Ringcsr 20685 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-rep 5278 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7721 ax-cnex 11165 ax-resscn 11166 ax-1cn 11167 ax-icn 11168 ax-addcl 11169 ax-addrcl 11170 ax-mulcl 11171 ax-mulrcl 11172 ax-mulcom 11173 ax-addass 11174 ax-mulass 11175 ax-distr 11176 ax-i2m1 11177 ax-1ne0 11178 ax-1rid 11179 ax-rnegex 11180 ax-rrecex 11181 ax-cnre 11182 ax-pre-lttri 11183 ax-pre-lttrn 11184 ax-pre-ltadd 11185 ax-pre-mulgt0 11186 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-nel 3041 df-ral 3056 df-rex 3065 df-reu 3371 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-pss 3962 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-iun 4992 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5567 df-eprel 5573 df-po 5581 df-so 5582 df-fr 5624 df-we 5626 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-pred 6293 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6488 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7360 df-ov 7407 df-oprab 7408 df-mpo 7409 df-om 7852 df-2nd 7972 df-frecs 8264 df-wrecs 8295 df-recs 8369 df-rdg 8408 df-er 8702 df-map 8821 df-en 8939 df-dom 8940 df-sdom 8941 df-pnf 11251 df-mnf 11252 df-xr 11253 df-ltxr 11254 df-le 11255 df-sub 11447 df-neg 11448 df-nn 12214 df-2 12276 df-sets 17104 df-slot 17122 df-ndx 17134 df-base 17152 df-plusg 17217 df-0g 17394 df-mhm 18711 df-ghm 19137 df-mgp 20038 df-ur 20085 df-ring 20138 df-rhm 20372 df-srng 20687 |
This theorem is referenced by: srngrhm 20692 srngcnv 20694 issrngd 20702 |
Copyright terms: Public domain | W3C validator |