![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > issrng | Structured version Visualization version GIF version |
Description: The predicate "is a star ring". (Contributed by NM, 22-Sep-2011.) (Revised by Mario Carneiro, 6-Oct-2015.) |
Ref | Expression |
---|---|
issrng.o | ⊢ 𝑂 = (oppr‘𝑅) |
issrng.i | ⊢ ∗ = (*rf‘𝑅) |
Ref | Expression |
---|---|
issrng | ⊢ (𝑅 ∈ *-Ring ↔ ( ∗ ∈ (𝑅 RingHom 𝑂) ∧ ∗ = ◡ ∗ )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-srng 20446 | . . 3 ⊢ *-Ring = {𝑟 ∣ [(*rf‘𝑟) / 𝑖](𝑖 ∈ (𝑟 RingHom (oppr‘𝑟)) ∧ 𝑖 = ◡𝑖)} | |
2 | 1 | eleq2i 2825 | . 2 ⊢ (𝑅 ∈ *-Ring ↔ 𝑅 ∈ {𝑟 ∣ [(*rf‘𝑟) / 𝑖](𝑖 ∈ (𝑟 RingHom (oppr‘𝑟)) ∧ 𝑖 = ◡𝑖)}) |
3 | rhmrcl1 20247 | . . . 4 ⊢ ( ∗ ∈ (𝑅 RingHom 𝑂) → 𝑅 ∈ Ring) | |
4 | 3 | adantr 481 | . . 3 ⊢ (( ∗ ∈ (𝑅 RingHom 𝑂) ∧ ∗ = ◡ ∗ ) → 𝑅 ∈ Ring) |
5 | fvexd 6903 | . . . 4 ⊢ (𝑟 = 𝑅 → (*rf‘𝑟) ∈ V) | |
6 | id 22 | . . . . . . 7 ⊢ (𝑖 = (*rf‘𝑟) → 𝑖 = (*rf‘𝑟)) | |
7 | fveq2 6888 | . . . . . . . 8 ⊢ (𝑟 = 𝑅 → (*rf‘𝑟) = (*rf‘𝑅)) | |
8 | issrng.i | . . . . . . . 8 ⊢ ∗ = (*rf‘𝑅) | |
9 | 7, 8 | eqtr4di 2790 | . . . . . . 7 ⊢ (𝑟 = 𝑅 → (*rf‘𝑟) = ∗ ) |
10 | 6, 9 | sylan9eqr 2794 | . . . . . 6 ⊢ ((𝑟 = 𝑅 ∧ 𝑖 = (*rf‘𝑟)) → 𝑖 = ∗ ) |
11 | simpl 483 | . . . . . . 7 ⊢ ((𝑟 = 𝑅 ∧ 𝑖 = (*rf‘𝑟)) → 𝑟 = 𝑅) | |
12 | 11 | fveq2d 6892 | . . . . . . . 8 ⊢ ((𝑟 = 𝑅 ∧ 𝑖 = (*rf‘𝑟)) → (oppr‘𝑟) = (oppr‘𝑅)) |
13 | issrng.o | . . . . . . . 8 ⊢ 𝑂 = (oppr‘𝑅) | |
14 | 12, 13 | eqtr4di 2790 | . . . . . . 7 ⊢ ((𝑟 = 𝑅 ∧ 𝑖 = (*rf‘𝑟)) → (oppr‘𝑟) = 𝑂) |
15 | 11, 14 | oveq12d 7423 | . . . . . 6 ⊢ ((𝑟 = 𝑅 ∧ 𝑖 = (*rf‘𝑟)) → (𝑟 RingHom (oppr‘𝑟)) = (𝑅 RingHom 𝑂)) |
16 | 10, 15 | eleq12d 2827 | . . . . 5 ⊢ ((𝑟 = 𝑅 ∧ 𝑖 = (*rf‘𝑟)) → (𝑖 ∈ (𝑟 RingHom (oppr‘𝑟)) ↔ ∗ ∈ (𝑅 RingHom 𝑂))) |
17 | 10 | cnveqd 5873 | . . . . . 6 ⊢ ((𝑟 = 𝑅 ∧ 𝑖 = (*rf‘𝑟)) → ◡𝑖 = ◡ ∗ ) |
18 | 10, 17 | eqeq12d 2748 | . . . . 5 ⊢ ((𝑟 = 𝑅 ∧ 𝑖 = (*rf‘𝑟)) → (𝑖 = ◡𝑖 ↔ ∗ = ◡ ∗ )) |
19 | 16, 18 | anbi12d 631 | . . . 4 ⊢ ((𝑟 = 𝑅 ∧ 𝑖 = (*rf‘𝑟)) → ((𝑖 ∈ (𝑟 RingHom (oppr‘𝑟)) ∧ 𝑖 = ◡𝑖) ↔ ( ∗ ∈ (𝑅 RingHom 𝑂) ∧ ∗ = ◡ ∗ ))) |
20 | 5, 19 | sbcied 3821 | . . 3 ⊢ (𝑟 = 𝑅 → ([(*rf‘𝑟) / 𝑖](𝑖 ∈ (𝑟 RingHom (oppr‘𝑟)) ∧ 𝑖 = ◡𝑖) ↔ ( ∗ ∈ (𝑅 RingHom 𝑂) ∧ ∗ = ◡ ∗ ))) |
21 | 4, 20 | elab3 3675 | . 2 ⊢ (𝑅 ∈ {𝑟 ∣ [(*rf‘𝑟) / 𝑖](𝑖 ∈ (𝑟 RingHom (oppr‘𝑟)) ∧ 𝑖 = ◡𝑖)} ↔ ( ∗ ∈ (𝑅 RingHom 𝑂) ∧ ∗ = ◡ ∗ )) |
22 | 2, 21 | bitri 274 | 1 ⊢ (𝑅 ∈ *-Ring ↔ ( ∗ ∈ (𝑅 RingHom 𝑂) ∧ ∗ = ◡ ∗ )) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 396 = wceq 1541 ∈ wcel 2106 {cab 2709 Vcvv 3474 [wsbc 3776 ◡ccnv 5674 ‘cfv 6540 (class class class)co 7405 Ringcrg 20049 opprcoppr 20141 RingHom crh 20240 *rfcstf 20443 *-Ringcsr 20444 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 ax-cnex 11162 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 ax-pre-mulgt0 11183 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6297 df-ord 6364 df-on 6365 df-lim 6366 df-suc 6367 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7852 df-2nd 7972 df-frecs 8262 df-wrecs 8293 df-recs 8367 df-rdg 8406 df-er 8699 df-map 8818 df-en 8936 df-dom 8937 df-sdom 8938 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-le 11250 df-sub 11442 df-neg 11443 df-nn 12209 df-2 12271 df-sets 17093 df-slot 17111 df-ndx 17123 df-base 17141 df-plusg 17206 df-0g 17383 df-mhm 18667 df-ghm 19084 df-mgp 19982 df-ur 19999 df-ring 20051 df-rnghom 20243 df-srng 20446 |
This theorem is referenced by: srngrhm 20451 srngcnv 20453 issrngd 20461 |
Copyright terms: Public domain | W3C validator |