MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  issrng Structured version   Visualization version   GIF version

Theorem issrng 20753
Description: The predicate "is a star ring". (Contributed by NM, 22-Sep-2011.) (Revised by Mario Carneiro, 6-Oct-2015.)
Hypotheses
Ref Expression
issrng.o 𝑂 = (oppr𝑅)
issrng.i = (*rf𝑅)
Assertion
Ref Expression
issrng (𝑅 ∈ *-Ring ↔ ( ∈ (𝑅 RingHom 𝑂) ∧ = ))

Proof of Theorem issrng
Dummy variables 𝑖 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-srng 20749 . . 3 *-Ring = {𝑟[(*rf𝑟) / 𝑖](𝑖 ∈ (𝑟 RingHom (oppr𝑟)) ∧ 𝑖 = 𝑖)}
21eleq2i 2820 . 2 (𝑅 ∈ *-Ring ↔ 𝑅 ∈ {𝑟[(*rf𝑟) / 𝑖](𝑖 ∈ (𝑟 RingHom (oppr𝑟)) ∧ 𝑖 = 𝑖)})
3 rhmrcl1 20385 . . . 4 ( ∈ (𝑅 RingHom 𝑂) → 𝑅 ∈ Ring)
43adantr 480 . . 3 (( ∈ (𝑅 RingHom 𝑂) ∧ = ) → 𝑅 ∈ Ring)
5 fvexd 6873 . . . 4 (𝑟 = 𝑅 → (*rf𝑟) ∈ V)
6 id 22 . . . . . . 7 (𝑖 = (*rf𝑟) → 𝑖 = (*rf𝑟))
7 fveq2 6858 . . . . . . . 8 (𝑟 = 𝑅 → (*rf𝑟) = (*rf𝑅))
8 issrng.i . . . . . . . 8 = (*rf𝑅)
97, 8eqtr4di 2782 . . . . . . 7 (𝑟 = 𝑅 → (*rf𝑟) = )
106, 9sylan9eqr 2786 . . . . . 6 ((𝑟 = 𝑅𝑖 = (*rf𝑟)) → 𝑖 = )
11 simpl 482 . . . . . . 7 ((𝑟 = 𝑅𝑖 = (*rf𝑟)) → 𝑟 = 𝑅)
1211fveq2d 6862 . . . . . . . 8 ((𝑟 = 𝑅𝑖 = (*rf𝑟)) → (oppr𝑟) = (oppr𝑅))
13 issrng.o . . . . . . . 8 𝑂 = (oppr𝑅)
1412, 13eqtr4di 2782 . . . . . . 7 ((𝑟 = 𝑅𝑖 = (*rf𝑟)) → (oppr𝑟) = 𝑂)
1511, 14oveq12d 7405 . . . . . 6 ((𝑟 = 𝑅𝑖 = (*rf𝑟)) → (𝑟 RingHom (oppr𝑟)) = (𝑅 RingHom 𝑂))
1610, 15eleq12d 2822 . . . . 5 ((𝑟 = 𝑅𝑖 = (*rf𝑟)) → (𝑖 ∈ (𝑟 RingHom (oppr𝑟)) ↔ ∈ (𝑅 RingHom 𝑂)))
1710cnveqd 5839 . . . . . 6 ((𝑟 = 𝑅𝑖 = (*rf𝑟)) → 𝑖 = )
1810, 17eqeq12d 2745 . . . . 5 ((𝑟 = 𝑅𝑖 = (*rf𝑟)) → (𝑖 = 𝑖 = ))
1916, 18anbi12d 632 . . . 4 ((𝑟 = 𝑅𝑖 = (*rf𝑟)) → ((𝑖 ∈ (𝑟 RingHom (oppr𝑟)) ∧ 𝑖 = 𝑖) ↔ ( ∈ (𝑅 RingHom 𝑂) ∧ = )))
205, 19sbcied 3797 . . 3 (𝑟 = 𝑅 → ([(*rf𝑟) / 𝑖](𝑖 ∈ (𝑟 RingHom (oppr𝑟)) ∧ 𝑖 = 𝑖) ↔ ( ∈ (𝑅 RingHom 𝑂) ∧ = )))
214, 20elab3 3653 . 2 (𝑅 ∈ {𝑟[(*rf𝑟) / 𝑖](𝑖 ∈ (𝑟 RingHom (oppr𝑟)) ∧ 𝑖 = 𝑖)} ↔ ( ∈ (𝑅 RingHom 𝑂) ∧ = ))
222, 21bitri 275 1 (𝑅 ∈ *-Ring ↔ ( ∈ (𝑅 RingHom 𝑂) ∧ = ))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1540  wcel 2109  {cab 2707  Vcvv 3447  [wsbc 3753  ccnv 5637  cfv 6511  (class class class)co 7387  Ringcrg 20142  opprcoppr 20245   RingHom crh 20378  *rfcstf 20746  *-Ringcsr 20747
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-er 8671  df-map 8801  df-en 8919  df-dom 8920  df-sdom 8921  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-2 12249  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-plusg 17233  df-0g 17404  df-mhm 18710  df-ghm 19145  df-mgp 20050  df-ur 20091  df-ring 20144  df-rhm 20381  df-srng 20749
This theorem is referenced by:  srngrhm  20754  srngcnv  20756  issrngd  20764
  Copyright terms: Public domain W3C validator