Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > issrng | Structured version Visualization version GIF version |
Description: The predicate "is a star ring". (Contributed by NM, 22-Sep-2011.) (Revised by Mario Carneiro, 6-Oct-2015.) |
Ref | Expression |
---|---|
issrng.o | ⊢ 𝑂 = (oppr‘𝑅) |
issrng.i | ⊢ ∗ = (*rf‘𝑅) |
Ref | Expression |
---|---|
issrng | ⊢ (𝑅 ∈ *-Ring ↔ ( ∗ ∈ (𝑅 RingHom 𝑂) ∧ ∗ = ◡ ∗ )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-srng 20021 | . . 3 ⊢ *-Ring = {𝑟 ∣ [(*rf‘𝑟) / 𝑖](𝑖 ∈ (𝑟 RingHom (oppr‘𝑟)) ∧ 𝑖 = ◡𝑖)} | |
2 | 1 | eleq2i 2830 | . 2 ⊢ (𝑅 ∈ *-Ring ↔ 𝑅 ∈ {𝑟 ∣ [(*rf‘𝑟) / 𝑖](𝑖 ∈ (𝑟 RingHom (oppr‘𝑟)) ∧ 𝑖 = ◡𝑖)}) |
3 | rhmrcl1 19878 | . . . 4 ⊢ ( ∗ ∈ (𝑅 RingHom 𝑂) → 𝑅 ∈ Ring) | |
4 | 3 | adantr 480 | . . 3 ⊢ (( ∗ ∈ (𝑅 RingHom 𝑂) ∧ ∗ = ◡ ∗ ) → 𝑅 ∈ Ring) |
5 | fvexd 6771 | . . . 4 ⊢ (𝑟 = 𝑅 → (*rf‘𝑟) ∈ V) | |
6 | id 22 | . . . . . . 7 ⊢ (𝑖 = (*rf‘𝑟) → 𝑖 = (*rf‘𝑟)) | |
7 | fveq2 6756 | . . . . . . . 8 ⊢ (𝑟 = 𝑅 → (*rf‘𝑟) = (*rf‘𝑅)) | |
8 | issrng.i | . . . . . . . 8 ⊢ ∗ = (*rf‘𝑅) | |
9 | 7, 8 | eqtr4di 2797 | . . . . . . 7 ⊢ (𝑟 = 𝑅 → (*rf‘𝑟) = ∗ ) |
10 | 6, 9 | sylan9eqr 2801 | . . . . . 6 ⊢ ((𝑟 = 𝑅 ∧ 𝑖 = (*rf‘𝑟)) → 𝑖 = ∗ ) |
11 | simpl 482 | . . . . . . 7 ⊢ ((𝑟 = 𝑅 ∧ 𝑖 = (*rf‘𝑟)) → 𝑟 = 𝑅) | |
12 | 11 | fveq2d 6760 | . . . . . . . 8 ⊢ ((𝑟 = 𝑅 ∧ 𝑖 = (*rf‘𝑟)) → (oppr‘𝑟) = (oppr‘𝑅)) |
13 | issrng.o | . . . . . . . 8 ⊢ 𝑂 = (oppr‘𝑅) | |
14 | 12, 13 | eqtr4di 2797 | . . . . . . 7 ⊢ ((𝑟 = 𝑅 ∧ 𝑖 = (*rf‘𝑟)) → (oppr‘𝑟) = 𝑂) |
15 | 11, 14 | oveq12d 7273 | . . . . . 6 ⊢ ((𝑟 = 𝑅 ∧ 𝑖 = (*rf‘𝑟)) → (𝑟 RingHom (oppr‘𝑟)) = (𝑅 RingHom 𝑂)) |
16 | 10, 15 | eleq12d 2833 | . . . . 5 ⊢ ((𝑟 = 𝑅 ∧ 𝑖 = (*rf‘𝑟)) → (𝑖 ∈ (𝑟 RingHom (oppr‘𝑟)) ↔ ∗ ∈ (𝑅 RingHom 𝑂))) |
17 | 10 | cnveqd 5773 | . . . . . 6 ⊢ ((𝑟 = 𝑅 ∧ 𝑖 = (*rf‘𝑟)) → ◡𝑖 = ◡ ∗ ) |
18 | 10, 17 | eqeq12d 2754 | . . . . 5 ⊢ ((𝑟 = 𝑅 ∧ 𝑖 = (*rf‘𝑟)) → (𝑖 = ◡𝑖 ↔ ∗ = ◡ ∗ )) |
19 | 16, 18 | anbi12d 630 | . . . 4 ⊢ ((𝑟 = 𝑅 ∧ 𝑖 = (*rf‘𝑟)) → ((𝑖 ∈ (𝑟 RingHom (oppr‘𝑟)) ∧ 𝑖 = ◡𝑖) ↔ ( ∗ ∈ (𝑅 RingHom 𝑂) ∧ ∗ = ◡ ∗ ))) |
20 | 5, 19 | sbcied 3756 | . . 3 ⊢ (𝑟 = 𝑅 → ([(*rf‘𝑟) / 𝑖](𝑖 ∈ (𝑟 RingHom (oppr‘𝑟)) ∧ 𝑖 = ◡𝑖) ↔ ( ∗ ∈ (𝑅 RingHom 𝑂) ∧ ∗ = ◡ ∗ ))) |
21 | 4, 20 | elab3 3610 | . 2 ⊢ (𝑅 ∈ {𝑟 ∣ [(*rf‘𝑟) / 𝑖](𝑖 ∈ (𝑟 RingHom (oppr‘𝑟)) ∧ 𝑖 = ◡𝑖)} ↔ ( ∗ ∈ (𝑅 RingHom 𝑂) ∧ ∗ = ◡ ∗ )) |
22 | 2, 21 | bitri 274 | 1 ⊢ (𝑅 ∈ *-Ring ↔ ( ∗ ∈ (𝑅 RingHom 𝑂) ∧ ∗ = ◡ ∗ )) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 395 = wceq 1539 ∈ wcel 2108 {cab 2715 Vcvv 3422 [wsbc 3711 ◡ccnv 5579 ‘cfv 6418 (class class class)co 7255 Ringcrg 19698 opprcoppr 19776 RingHom crh 19871 *rfcstf 20018 *-Ringcsr 20019 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-er 8456 df-map 8575 df-en 8692 df-dom 8693 df-sdom 8694 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-2 11966 df-sets 16793 df-slot 16811 df-ndx 16823 df-base 16841 df-plusg 16901 df-0g 17069 df-mhm 18345 df-ghm 18747 df-mgp 19636 df-ur 19653 df-ring 19700 df-rnghom 19874 df-srng 20021 |
This theorem is referenced by: srngrhm 20026 srngcnv 20028 issrngd 20036 |
Copyright terms: Public domain | W3C validator |