| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > issrng | Structured version Visualization version GIF version | ||
| Description: The predicate "is a star ring". (Contributed by NM, 22-Sep-2011.) (Revised by Mario Carneiro, 6-Oct-2015.) |
| Ref | Expression |
|---|---|
| issrng.o | ⊢ 𝑂 = (oppr‘𝑅) |
| issrng.i | ⊢ ∗ = (*rf‘𝑅) |
| Ref | Expression |
|---|---|
| issrng | ⊢ (𝑅 ∈ *-Ring ↔ ( ∗ ∈ (𝑅 RingHom 𝑂) ∧ ∗ = ◡ ∗ )) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-srng 20749 | . . 3 ⊢ *-Ring = {𝑟 ∣ [(*rf‘𝑟) / 𝑖](𝑖 ∈ (𝑟 RingHom (oppr‘𝑟)) ∧ 𝑖 = ◡𝑖)} | |
| 2 | 1 | eleq2i 2820 | . 2 ⊢ (𝑅 ∈ *-Ring ↔ 𝑅 ∈ {𝑟 ∣ [(*rf‘𝑟) / 𝑖](𝑖 ∈ (𝑟 RingHom (oppr‘𝑟)) ∧ 𝑖 = ◡𝑖)}) |
| 3 | rhmrcl1 20385 | . . . 4 ⊢ ( ∗ ∈ (𝑅 RingHom 𝑂) → 𝑅 ∈ Ring) | |
| 4 | 3 | adantr 480 | . . 3 ⊢ (( ∗ ∈ (𝑅 RingHom 𝑂) ∧ ∗ = ◡ ∗ ) → 𝑅 ∈ Ring) |
| 5 | fvexd 6873 | . . . 4 ⊢ (𝑟 = 𝑅 → (*rf‘𝑟) ∈ V) | |
| 6 | id 22 | . . . . . . 7 ⊢ (𝑖 = (*rf‘𝑟) → 𝑖 = (*rf‘𝑟)) | |
| 7 | fveq2 6858 | . . . . . . . 8 ⊢ (𝑟 = 𝑅 → (*rf‘𝑟) = (*rf‘𝑅)) | |
| 8 | issrng.i | . . . . . . . 8 ⊢ ∗ = (*rf‘𝑅) | |
| 9 | 7, 8 | eqtr4di 2782 | . . . . . . 7 ⊢ (𝑟 = 𝑅 → (*rf‘𝑟) = ∗ ) |
| 10 | 6, 9 | sylan9eqr 2786 | . . . . . 6 ⊢ ((𝑟 = 𝑅 ∧ 𝑖 = (*rf‘𝑟)) → 𝑖 = ∗ ) |
| 11 | simpl 482 | . . . . . . 7 ⊢ ((𝑟 = 𝑅 ∧ 𝑖 = (*rf‘𝑟)) → 𝑟 = 𝑅) | |
| 12 | 11 | fveq2d 6862 | . . . . . . . 8 ⊢ ((𝑟 = 𝑅 ∧ 𝑖 = (*rf‘𝑟)) → (oppr‘𝑟) = (oppr‘𝑅)) |
| 13 | issrng.o | . . . . . . . 8 ⊢ 𝑂 = (oppr‘𝑅) | |
| 14 | 12, 13 | eqtr4di 2782 | . . . . . . 7 ⊢ ((𝑟 = 𝑅 ∧ 𝑖 = (*rf‘𝑟)) → (oppr‘𝑟) = 𝑂) |
| 15 | 11, 14 | oveq12d 7405 | . . . . . 6 ⊢ ((𝑟 = 𝑅 ∧ 𝑖 = (*rf‘𝑟)) → (𝑟 RingHom (oppr‘𝑟)) = (𝑅 RingHom 𝑂)) |
| 16 | 10, 15 | eleq12d 2822 | . . . . 5 ⊢ ((𝑟 = 𝑅 ∧ 𝑖 = (*rf‘𝑟)) → (𝑖 ∈ (𝑟 RingHom (oppr‘𝑟)) ↔ ∗ ∈ (𝑅 RingHom 𝑂))) |
| 17 | 10 | cnveqd 5839 | . . . . . 6 ⊢ ((𝑟 = 𝑅 ∧ 𝑖 = (*rf‘𝑟)) → ◡𝑖 = ◡ ∗ ) |
| 18 | 10, 17 | eqeq12d 2745 | . . . . 5 ⊢ ((𝑟 = 𝑅 ∧ 𝑖 = (*rf‘𝑟)) → (𝑖 = ◡𝑖 ↔ ∗ = ◡ ∗ )) |
| 19 | 16, 18 | anbi12d 632 | . . . 4 ⊢ ((𝑟 = 𝑅 ∧ 𝑖 = (*rf‘𝑟)) → ((𝑖 ∈ (𝑟 RingHom (oppr‘𝑟)) ∧ 𝑖 = ◡𝑖) ↔ ( ∗ ∈ (𝑅 RingHom 𝑂) ∧ ∗ = ◡ ∗ ))) |
| 20 | 5, 19 | sbcied 3797 | . . 3 ⊢ (𝑟 = 𝑅 → ([(*rf‘𝑟) / 𝑖](𝑖 ∈ (𝑟 RingHom (oppr‘𝑟)) ∧ 𝑖 = ◡𝑖) ↔ ( ∗ ∈ (𝑅 RingHom 𝑂) ∧ ∗ = ◡ ∗ ))) |
| 21 | 4, 20 | elab3 3653 | . 2 ⊢ (𝑅 ∈ {𝑟 ∣ [(*rf‘𝑟) / 𝑖](𝑖 ∈ (𝑟 RingHom (oppr‘𝑟)) ∧ 𝑖 = ◡𝑖)} ↔ ( ∗ ∈ (𝑅 RingHom 𝑂) ∧ ∗ = ◡ ∗ )) |
| 22 | 2, 21 | bitri 275 | 1 ⊢ (𝑅 ∈ *-Ring ↔ ( ∗ ∈ (𝑅 RingHom 𝑂) ∧ ∗ = ◡ ∗ )) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 {cab 2707 Vcvv 3447 [wsbc 3753 ◡ccnv 5637 ‘cfv 6511 (class class class)co 7387 Ringcrg 20142 opprcoppr 20245 RingHom crh 20378 *rfcstf 20746 *-Ringcsr 20747 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-er 8671 df-map 8801 df-en 8919 df-dom 8920 df-sdom 8921 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-nn 12187 df-2 12249 df-sets 17134 df-slot 17152 df-ndx 17164 df-base 17180 df-plusg 17233 df-0g 17404 df-mhm 18710 df-ghm 19145 df-mgp 20050 df-ur 20091 df-ring 20144 df-rhm 20381 df-srng 20749 |
| This theorem is referenced by: srngrhm 20754 srngcnv 20756 issrngd 20764 |
| Copyright terms: Public domain | W3C validator |