MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  issrng Structured version   Visualization version   GIF version

Theorem issrng 20730
Description: The predicate "is a star ring". (Contributed by NM, 22-Sep-2011.) (Revised by Mario Carneiro, 6-Oct-2015.)
Hypotheses
Ref Expression
issrng.o 𝑂 = (oppr𝑅)
issrng.i = (*rf𝑅)
Assertion
Ref Expression
issrng (𝑅 ∈ *-Ring ↔ ( ∈ (𝑅 RingHom 𝑂) ∧ = ))

Proof of Theorem issrng
Dummy variables 𝑖 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-srng 20726 . . 3 *-Ring = {𝑟[(*rf𝑟) / 𝑖](𝑖 ∈ (𝑟 RingHom (oppr𝑟)) ∧ 𝑖 = 𝑖)}
21eleq2i 2821 . 2 (𝑅 ∈ *-Ring ↔ 𝑅 ∈ {𝑟[(*rf𝑟) / 𝑖](𝑖 ∈ (𝑟 RingHom (oppr𝑟)) ∧ 𝑖 = 𝑖)})
3 rhmrcl1 20415 . . . 4 ( ∈ (𝑅 RingHom 𝑂) → 𝑅 ∈ Ring)
43adantr 480 . . 3 (( ∈ (𝑅 RingHom 𝑂) ∧ = ) → 𝑅 ∈ Ring)
5 fvexd 6912 . . . 4 (𝑟 = 𝑅 → (*rf𝑟) ∈ V)
6 id 22 . . . . . . 7 (𝑖 = (*rf𝑟) → 𝑖 = (*rf𝑟))
7 fveq2 6897 . . . . . . . 8 (𝑟 = 𝑅 → (*rf𝑟) = (*rf𝑅))
8 issrng.i . . . . . . . 8 = (*rf𝑅)
97, 8eqtr4di 2786 . . . . . . 7 (𝑟 = 𝑅 → (*rf𝑟) = )
106, 9sylan9eqr 2790 . . . . . 6 ((𝑟 = 𝑅𝑖 = (*rf𝑟)) → 𝑖 = )
11 simpl 482 . . . . . . 7 ((𝑟 = 𝑅𝑖 = (*rf𝑟)) → 𝑟 = 𝑅)
1211fveq2d 6901 . . . . . . . 8 ((𝑟 = 𝑅𝑖 = (*rf𝑟)) → (oppr𝑟) = (oppr𝑅))
13 issrng.o . . . . . . . 8 𝑂 = (oppr𝑅)
1412, 13eqtr4di 2786 . . . . . . 7 ((𝑟 = 𝑅𝑖 = (*rf𝑟)) → (oppr𝑟) = 𝑂)
1511, 14oveq12d 7438 . . . . . 6 ((𝑟 = 𝑅𝑖 = (*rf𝑟)) → (𝑟 RingHom (oppr𝑟)) = (𝑅 RingHom 𝑂))
1610, 15eleq12d 2823 . . . . 5 ((𝑟 = 𝑅𝑖 = (*rf𝑟)) → (𝑖 ∈ (𝑟 RingHom (oppr𝑟)) ↔ ∈ (𝑅 RingHom 𝑂)))
1710cnveqd 5878 . . . . . 6 ((𝑟 = 𝑅𝑖 = (*rf𝑟)) → 𝑖 = )
1810, 17eqeq12d 2744 . . . . 5 ((𝑟 = 𝑅𝑖 = (*rf𝑟)) → (𝑖 = 𝑖 = ))
1916, 18anbi12d 631 . . . 4 ((𝑟 = 𝑅𝑖 = (*rf𝑟)) → ((𝑖 ∈ (𝑟 RingHom (oppr𝑟)) ∧ 𝑖 = 𝑖) ↔ ( ∈ (𝑅 RingHom 𝑂) ∧ = )))
205, 19sbcied 3822 . . 3 (𝑟 = 𝑅 → ([(*rf𝑟) / 𝑖](𝑖 ∈ (𝑟 RingHom (oppr𝑟)) ∧ 𝑖 = 𝑖) ↔ ( ∈ (𝑅 RingHom 𝑂) ∧ = )))
214, 20elab3 3675 . 2 (𝑅 ∈ {𝑟[(*rf𝑟) / 𝑖](𝑖 ∈ (𝑟 RingHom (oppr𝑟)) ∧ 𝑖 = 𝑖)} ↔ ( ∈ (𝑅 RingHom 𝑂) ∧ = ))
222, 21bitri 275 1 (𝑅 ∈ *-Ring ↔ ( ∈ (𝑅 RingHom 𝑂) ∧ = ))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 395   = wceq 1534  wcel 2099  {cab 2705  Vcvv 3471  [wsbc 3776  ccnv 5677  cfv 6548  (class class class)co 7420  Ringcrg 20173  opprcoppr 20272   RingHom crh 20408  *rfcstf 20723  *-Ringcsr 20724
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5365  ax-pr 5429  ax-un 7740  ax-cnex 11195  ax-resscn 11196  ax-1cn 11197  ax-icn 11198  ax-addcl 11199  ax-addrcl 11200  ax-mulcl 11201  ax-mulrcl 11202  ax-mulcom 11203  ax-addass 11204  ax-mulass 11205  ax-distr 11206  ax-i2m1 11207  ax-1ne0 11208  ax-1rid 11209  ax-rnegex 11210  ax-rrecex 11211  ax-cnre 11212  ax-pre-lttri 11213  ax-pre-lttrn 11214  ax-pre-ltadd 11215  ax-pre-mulgt0 11216
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-reu 3374  df-rab 3430  df-v 3473  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4909  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6305  df-ord 6372  df-on 6373  df-lim 6374  df-suc 6375  df-iota 6500  df-fun 6550  df-fn 6551  df-f 6552  df-f1 6553  df-fo 6554  df-f1o 6555  df-fv 6556  df-riota 7376  df-ov 7423  df-oprab 7424  df-mpo 7425  df-om 7871  df-2nd 7994  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-er 8725  df-map 8847  df-en 8965  df-dom 8966  df-sdom 8967  df-pnf 11281  df-mnf 11282  df-xr 11283  df-ltxr 11284  df-le 11285  df-sub 11477  df-neg 11478  df-nn 12244  df-2 12306  df-sets 17133  df-slot 17151  df-ndx 17163  df-base 17181  df-plusg 17246  df-0g 17423  df-mhm 18740  df-ghm 19168  df-mgp 20075  df-ur 20122  df-ring 20175  df-rhm 20411  df-srng 20726
This theorem is referenced by:  srngrhm  20731  srngcnv  20733  issrngd  20741
  Copyright terms: Public domain W3C validator