Users' Mathboxes Mathbox for Jeff Hankins < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tailfval Structured version   Visualization version   GIF version

Theorem tailfval 36338
Description: The tail function for a directed set. (Contributed by Jeff Hankins, 25-Nov-2009.) (Revised by Mario Carneiro, 24-Nov-2013.)
Hypothesis
Ref Expression
tailfval.1 𝑋 = dom 𝐷
Assertion
Ref Expression
tailfval (𝐷 ∈ DirRel → (tail‘𝐷) = (𝑥𝑋 ↦ (𝐷 “ {𝑥})))
Distinct variable groups:   𝑥,𝐷   𝑥,𝑋

Proof of Theorem tailfval
Dummy variable 𝑑 is distinct from all other variables.
StepHypRef Expression
1 uniexg 7775 . . . 4 (𝐷 ∈ DirRel → 𝐷 ∈ V)
2 uniexg 7775 . . . 4 ( 𝐷 ∈ V → 𝐷 ∈ V)
3 mptexg 7258 . . . 4 ( 𝐷 ∈ V → (𝑥 𝐷 ↦ (𝐷 “ {𝑥})) ∈ V)
41, 2, 33syl 18 . . 3 (𝐷 ∈ DirRel → (𝑥 𝐷 ↦ (𝐷 “ {𝑥})) ∈ V)
5 unieq 4942 . . . . . 6 (𝑑 = 𝐷 𝑑 = 𝐷)
65unieqd 4944 . . . . 5 (𝑑 = 𝐷 𝑑 = 𝐷)
7 imaeq1 6084 . . . . 5 (𝑑 = 𝐷 → (𝑑 “ {𝑥}) = (𝐷 “ {𝑥}))
86, 7mpteq12dv 5257 . . . 4 (𝑑 = 𝐷 → (𝑥 𝑑 ↦ (𝑑 “ {𝑥})) = (𝑥 𝐷 ↦ (𝐷 “ {𝑥})))
9 df-tail 18667 . . . 4 tail = (𝑑 ∈ DirRel ↦ (𝑥 𝑑 ↦ (𝑑 “ {𝑥})))
108, 9fvmptg 7027 . . 3 ((𝐷 ∈ DirRel ∧ (𝑥 𝐷 ↦ (𝐷 “ {𝑥})) ∈ V) → (tail‘𝐷) = (𝑥 𝐷 ↦ (𝐷 “ {𝑥})))
114, 10mpdan 686 . 2 (𝐷 ∈ DirRel → (tail‘𝐷) = (𝑥 𝐷 ↦ (𝐷 “ {𝑥})))
12 tailfval.1 . . . 4 𝑋 = dom 𝐷
13 dirdm 18670 . . . 4 (𝐷 ∈ DirRel → dom 𝐷 = 𝐷)
1412, 13eqtr2id 2793 . . 3 (𝐷 ∈ DirRel → 𝐷 = 𝑋)
1514mpteq1d 5261 . 2 (𝐷 ∈ DirRel → (𝑥 𝐷 ↦ (𝐷 “ {𝑥})) = (𝑥𝑋 ↦ (𝐷 “ {𝑥})))
1611, 15eqtrd 2780 1 (𝐷 ∈ DirRel → (tail‘𝐷) = (𝑥𝑋 ↦ (𝐷 “ {𝑥})))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2108  Vcvv 3488  {csn 4648   cuni 4931  cmpt 5249  dom cdm 5700  cima 5703  cfv 6573  DirRelcdir 18664  tailctail 18665
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-dir 18666  df-tail 18667
This theorem is referenced by:  tailval  36339  tailf  36341
  Copyright terms: Public domain W3C validator