Mathbox for Jeff Hankins |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > tailfval | Structured version Visualization version GIF version |
Description: The tail function for a directed set. (Contributed by Jeff Hankins, 25-Nov-2009.) (Revised by Mario Carneiro, 24-Nov-2013.) |
Ref | Expression |
---|---|
tailfval.1 | ⊢ 𝑋 = dom 𝐷 |
Ref | Expression |
---|---|
tailfval | ⊢ (𝐷 ∈ DirRel → (tail‘𝐷) = (𝑥 ∈ 𝑋 ↦ (𝐷 “ {𝑥}))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uniexg 7571 | . . . 4 ⊢ (𝐷 ∈ DirRel → ∪ 𝐷 ∈ V) | |
2 | uniexg 7571 | . . . 4 ⊢ (∪ 𝐷 ∈ V → ∪ ∪ 𝐷 ∈ V) | |
3 | mptexg 7079 | . . . 4 ⊢ (∪ ∪ 𝐷 ∈ V → (𝑥 ∈ ∪ ∪ 𝐷 ↦ (𝐷 “ {𝑥})) ∈ V) | |
4 | 1, 2, 3 | 3syl 18 | . . 3 ⊢ (𝐷 ∈ DirRel → (𝑥 ∈ ∪ ∪ 𝐷 ↦ (𝐷 “ {𝑥})) ∈ V) |
5 | unieq 4847 | . . . . . 6 ⊢ (𝑑 = 𝐷 → ∪ 𝑑 = ∪ 𝐷) | |
6 | 5 | unieqd 4850 | . . . . 5 ⊢ (𝑑 = 𝐷 → ∪ ∪ 𝑑 = ∪ ∪ 𝐷) |
7 | imaeq1 5953 | . . . . 5 ⊢ (𝑑 = 𝐷 → (𝑑 “ {𝑥}) = (𝐷 “ {𝑥})) | |
8 | 6, 7 | mpteq12dv 5161 | . . . 4 ⊢ (𝑑 = 𝐷 → (𝑥 ∈ ∪ ∪ 𝑑 ↦ (𝑑 “ {𝑥})) = (𝑥 ∈ ∪ ∪ 𝐷 ↦ (𝐷 “ {𝑥}))) |
9 | df-tail 18230 | . . . 4 ⊢ tail = (𝑑 ∈ DirRel ↦ (𝑥 ∈ ∪ ∪ 𝑑 ↦ (𝑑 “ {𝑥}))) | |
10 | 8, 9 | fvmptg 6855 | . . 3 ⊢ ((𝐷 ∈ DirRel ∧ (𝑥 ∈ ∪ ∪ 𝐷 ↦ (𝐷 “ {𝑥})) ∈ V) → (tail‘𝐷) = (𝑥 ∈ ∪ ∪ 𝐷 ↦ (𝐷 “ {𝑥}))) |
11 | 4, 10 | mpdan 683 | . 2 ⊢ (𝐷 ∈ DirRel → (tail‘𝐷) = (𝑥 ∈ ∪ ∪ 𝐷 ↦ (𝐷 “ {𝑥}))) |
12 | tailfval.1 | . . . 4 ⊢ 𝑋 = dom 𝐷 | |
13 | dirdm 18233 | . . . 4 ⊢ (𝐷 ∈ DirRel → dom 𝐷 = ∪ ∪ 𝐷) | |
14 | 12, 13 | eqtr2id 2792 | . . 3 ⊢ (𝐷 ∈ DirRel → ∪ ∪ 𝐷 = 𝑋) |
15 | 14 | mpteq1d 5165 | . 2 ⊢ (𝐷 ∈ DirRel → (𝑥 ∈ ∪ ∪ 𝐷 ↦ (𝐷 “ {𝑥})) = (𝑥 ∈ 𝑋 ↦ (𝐷 “ {𝑥}))) |
16 | 11, 15 | eqtrd 2778 | 1 ⊢ (𝐷 ∈ DirRel → (tail‘𝐷) = (𝑥 ∈ 𝑋 ↦ (𝐷 “ {𝑥}))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2108 Vcvv 3422 {csn 4558 ∪ cuni 4836 ↦ cmpt 5153 dom cdm 5580 “ cima 5583 ‘cfv 6418 DirRelcdir 18227 tailctail 18228 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-dir 18229 df-tail 18230 |
This theorem is referenced by: tailval 34489 tailf 34491 |
Copyright terms: Public domain | W3C validator |