Users' Mathboxes Mathbox for Jeff Hankins < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tailfval Structured version   Visualization version   GIF version

Theorem tailfval 36345
Description: The tail function for a directed set. (Contributed by Jeff Hankins, 25-Nov-2009.) (Revised by Mario Carneiro, 24-Nov-2013.)
Hypothesis
Ref Expression
tailfval.1 𝑋 = dom 𝐷
Assertion
Ref Expression
tailfval (𝐷 ∈ DirRel → (tail‘𝐷) = (𝑥𝑋 ↦ (𝐷 “ {𝑥})))
Distinct variable groups:   𝑥,𝐷   𝑥,𝑋

Proof of Theorem tailfval
Dummy variable 𝑑 is distinct from all other variables.
StepHypRef Expression
1 uniexg 7680 . . . 4 (𝐷 ∈ DirRel → 𝐷 ∈ V)
2 uniexg 7680 . . . 4 ( 𝐷 ∈ V → 𝐷 ∈ V)
3 mptexg 7161 . . . 4 ( 𝐷 ∈ V → (𝑥 𝐷 ↦ (𝐷 “ {𝑥})) ∈ V)
41, 2, 33syl 18 . . 3 (𝐷 ∈ DirRel → (𝑥 𝐷 ↦ (𝐷 “ {𝑥})) ∈ V)
5 unieq 4872 . . . . . 6 (𝑑 = 𝐷 𝑑 = 𝐷)
65unieqd 4874 . . . . 5 (𝑑 = 𝐷 𝑑 = 𝐷)
7 imaeq1 6010 . . . . 5 (𝑑 = 𝐷 → (𝑑 “ {𝑥}) = (𝐷 “ {𝑥}))
86, 7mpteq12dv 5182 . . . 4 (𝑑 = 𝐷 → (𝑥 𝑑 ↦ (𝑑 “ {𝑥})) = (𝑥 𝐷 ↦ (𝐷 “ {𝑥})))
9 df-tail 18521 . . . 4 tail = (𝑑 ∈ DirRel ↦ (𝑥 𝑑 ↦ (𝑑 “ {𝑥})))
108, 9fvmptg 6932 . . 3 ((𝐷 ∈ DirRel ∧ (𝑥 𝐷 ↦ (𝐷 “ {𝑥})) ∈ V) → (tail‘𝐷) = (𝑥 𝐷 ↦ (𝐷 “ {𝑥})))
114, 10mpdan 687 . 2 (𝐷 ∈ DirRel → (tail‘𝐷) = (𝑥 𝐷 ↦ (𝐷 “ {𝑥})))
12 tailfval.1 . . . 4 𝑋 = dom 𝐷
13 dirdm 18524 . . . 4 (𝐷 ∈ DirRel → dom 𝐷 = 𝐷)
1412, 13eqtr2id 2777 . . 3 (𝐷 ∈ DirRel → 𝐷 = 𝑋)
1514mpteq1d 5185 . 2 (𝐷 ∈ DirRel → (𝑥 𝐷 ↦ (𝐷 “ {𝑥})) = (𝑥𝑋 ↦ (𝐷 “ {𝑥})))
1611, 15eqtrd 2764 1 (𝐷 ∈ DirRel → (tail‘𝐷) = (𝑥𝑋 ↦ (𝐷 “ {𝑥})))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  Vcvv 3438  {csn 4579   cuni 4861  cmpt 5176  dom cdm 5623  cima 5626  cfv 6486  DirRelcdir 18518  tailctail 18519
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pr 5374  ax-un 7675
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-dir 18520  df-tail 18521
This theorem is referenced by:  tailval  36346  tailf  36348
  Copyright terms: Public domain W3C validator