![]() |
Mathbox for Jeff Hankins |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > tailfval | Structured version Visualization version GIF version |
Description: The tail function for a directed set. (Contributed by Jeff Hankins, 25-Nov-2009.) (Revised by Mario Carneiro, 24-Nov-2013.) |
Ref | Expression |
---|---|
tailfval.1 | β’ π = dom π· |
Ref | Expression |
---|---|
tailfval | β’ (π· β DirRel β (tailβπ·) = (π₯ β π β¦ (π· β {π₯}))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uniexg 7732 | . . . 4 β’ (π· β DirRel β βͺ π· β V) | |
2 | uniexg 7732 | . . . 4 β’ (βͺ π· β V β βͺ βͺ π· β V) | |
3 | mptexg 7224 | . . . 4 β’ (βͺ βͺ π· β V β (π₯ β βͺ βͺ π· β¦ (π· β {π₯})) β V) | |
4 | 1, 2, 3 | 3syl 18 | . . 3 β’ (π· β DirRel β (π₯ β βͺ βͺ π· β¦ (π· β {π₯})) β V) |
5 | unieq 4918 | . . . . . 6 β’ (π = π· β βͺ π = βͺ π·) | |
6 | 5 | unieqd 4921 | . . . . 5 β’ (π = π· β βͺ βͺ π = βͺ βͺ π·) |
7 | imaeq1 6053 | . . . . 5 β’ (π = π· β (π β {π₯}) = (π· β {π₯})) | |
8 | 6, 7 | mpteq12dv 5238 | . . . 4 β’ (π = π· β (π₯ β βͺ βͺ π β¦ (π β {π₯})) = (π₯ β βͺ βͺ π· β¦ (π· β {π₯}))) |
9 | df-tail 18554 | . . . 4 β’ tail = (π β DirRel β¦ (π₯ β βͺ βͺ π β¦ (π β {π₯}))) | |
10 | 8, 9 | fvmptg 6995 | . . 3 β’ ((π· β DirRel β§ (π₯ β βͺ βͺ π· β¦ (π· β {π₯})) β V) β (tailβπ·) = (π₯ β βͺ βͺ π· β¦ (π· β {π₯}))) |
11 | 4, 10 | mpdan 683 | . 2 β’ (π· β DirRel β (tailβπ·) = (π₯ β βͺ βͺ π· β¦ (π· β {π₯}))) |
12 | tailfval.1 | . . . 4 β’ π = dom π· | |
13 | dirdm 18557 | . . . 4 β’ (π· β DirRel β dom π· = βͺ βͺ π·) | |
14 | 12, 13 | eqtr2id 2783 | . . 3 β’ (π· β DirRel β βͺ βͺ π· = π) |
15 | 14 | mpteq1d 5242 | . 2 β’ (π· β DirRel β (π₯ β βͺ βͺ π· β¦ (π· β {π₯})) = (π₯ β π β¦ (π· β {π₯}))) |
16 | 11, 15 | eqtrd 2770 | 1 β’ (π· β DirRel β (tailβπ·) = (π₯ β π β¦ (π· β {π₯}))) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 = wceq 1539 β wcel 2104 Vcvv 3472 {csn 4627 βͺ cuni 4907 β¦ cmpt 5230 dom cdm 5675 β cima 5678 βcfv 6542 DirRelcdir 18551 tailctail 18552 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pr 5426 ax-un 7727 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-ral 3060 df-rex 3069 df-reu 3375 df-rab 3431 df-v 3474 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-dir 18553 df-tail 18554 |
This theorem is referenced by: tailval 35561 tailf 35563 |
Copyright terms: Public domain | W3C validator |