Users' Mathboxes Mathbox for Jeff Hankins < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tailfval Structured version   Visualization version   GIF version

Theorem tailfval 36360
Description: The tail function for a directed set. (Contributed by Jeff Hankins, 25-Nov-2009.) (Revised by Mario Carneiro, 24-Nov-2013.)
Hypothesis
Ref Expression
tailfval.1 𝑋 = dom 𝐷
Assertion
Ref Expression
tailfval (𝐷 ∈ DirRel → (tail‘𝐷) = (𝑥𝑋 ↦ (𝐷 “ {𝑥})))
Distinct variable groups:   𝑥,𝐷   𝑥,𝑋

Proof of Theorem tailfval
Dummy variable 𝑑 is distinct from all other variables.
StepHypRef Expression
1 uniexg 7716 . . . 4 (𝐷 ∈ DirRel → 𝐷 ∈ V)
2 uniexg 7716 . . . 4 ( 𝐷 ∈ V → 𝐷 ∈ V)
3 mptexg 7195 . . . 4 ( 𝐷 ∈ V → (𝑥 𝐷 ↦ (𝐷 “ {𝑥})) ∈ V)
41, 2, 33syl 18 . . 3 (𝐷 ∈ DirRel → (𝑥 𝐷 ↦ (𝐷 “ {𝑥})) ∈ V)
5 unieq 4882 . . . . . 6 (𝑑 = 𝐷 𝑑 = 𝐷)
65unieqd 4884 . . . . 5 (𝑑 = 𝐷 𝑑 = 𝐷)
7 imaeq1 6026 . . . . 5 (𝑑 = 𝐷 → (𝑑 “ {𝑥}) = (𝐷 “ {𝑥}))
86, 7mpteq12dv 5194 . . . 4 (𝑑 = 𝐷 → (𝑥 𝑑 ↦ (𝑑 “ {𝑥})) = (𝑥 𝐷 ↦ (𝐷 “ {𝑥})))
9 df-tail 18556 . . . 4 tail = (𝑑 ∈ DirRel ↦ (𝑥 𝑑 ↦ (𝑑 “ {𝑥})))
108, 9fvmptg 6966 . . 3 ((𝐷 ∈ DirRel ∧ (𝑥 𝐷 ↦ (𝐷 “ {𝑥})) ∈ V) → (tail‘𝐷) = (𝑥 𝐷 ↦ (𝐷 “ {𝑥})))
114, 10mpdan 687 . 2 (𝐷 ∈ DirRel → (tail‘𝐷) = (𝑥 𝐷 ↦ (𝐷 “ {𝑥})))
12 tailfval.1 . . . 4 𝑋 = dom 𝐷
13 dirdm 18559 . . . 4 (𝐷 ∈ DirRel → dom 𝐷 = 𝐷)
1412, 13eqtr2id 2777 . . 3 (𝐷 ∈ DirRel → 𝐷 = 𝑋)
1514mpteq1d 5197 . 2 (𝐷 ∈ DirRel → (𝑥 𝐷 ↦ (𝐷 “ {𝑥})) = (𝑥𝑋 ↦ (𝐷 “ {𝑥})))
1611, 15eqtrd 2764 1 (𝐷 ∈ DirRel → (tail‘𝐷) = (𝑥𝑋 ↦ (𝐷 “ {𝑥})))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  Vcvv 3447  {csn 4589   cuni 4871  cmpt 5188  dom cdm 5638  cima 5641  cfv 6511  DirRelcdir 18553  tailctail 18554
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-dir 18555  df-tail 18556
This theorem is referenced by:  tailval  36361  tailf  36363
  Copyright terms: Public domain W3C validator