![]() |
Mathbox for Jeff Hankins |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > tailfval | Structured version Visualization version GIF version |
Description: The tail function for a directed set. (Contributed by Jeff Hankins, 25-Nov-2009.) (Revised by Mario Carneiro, 24-Nov-2013.) |
Ref | Expression |
---|---|
tailfval.1 | ⊢ 𝑋 = dom 𝐷 |
Ref | Expression |
---|---|
tailfval | ⊢ (𝐷 ∈ DirRel → (tail‘𝐷) = (𝑥 ∈ 𝑋 ↦ (𝐷 “ {𝑥}))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uniexg 7775 | . . . 4 ⊢ (𝐷 ∈ DirRel → ∪ 𝐷 ∈ V) | |
2 | uniexg 7775 | . . . 4 ⊢ (∪ 𝐷 ∈ V → ∪ ∪ 𝐷 ∈ V) | |
3 | mptexg 7258 | . . . 4 ⊢ (∪ ∪ 𝐷 ∈ V → (𝑥 ∈ ∪ ∪ 𝐷 ↦ (𝐷 “ {𝑥})) ∈ V) | |
4 | 1, 2, 3 | 3syl 18 | . . 3 ⊢ (𝐷 ∈ DirRel → (𝑥 ∈ ∪ ∪ 𝐷 ↦ (𝐷 “ {𝑥})) ∈ V) |
5 | unieq 4942 | . . . . . 6 ⊢ (𝑑 = 𝐷 → ∪ 𝑑 = ∪ 𝐷) | |
6 | 5 | unieqd 4944 | . . . . 5 ⊢ (𝑑 = 𝐷 → ∪ ∪ 𝑑 = ∪ ∪ 𝐷) |
7 | imaeq1 6084 | . . . . 5 ⊢ (𝑑 = 𝐷 → (𝑑 “ {𝑥}) = (𝐷 “ {𝑥})) | |
8 | 6, 7 | mpteq12dv 5257 | . . . 4 ⊢ (𝑑 = 𝐷 → (𝑥 ∈ ∪ ∪ 𝑑 ↦ (𝑑 “ {𝑥})) = (𝑥 ∈ ∪ ∪ 𝐷 ↦ (𝐷 “ {𝑥}))) |
9 | df-tail 18667 | . . . 4 ⊢ tail = (𝑑 ∈ DirRel ↦ (𝑥 ∈ ∪ ∪ 𝑑 ↦ (𝑑 “ {𝑥}))) | |
10 | 8, 9 | fvmptg 7027 | . . 3 ⊢ ((𝐷 ∈ DirRel ∧ (𝑥 ∈ ∪ ∪ 𝐷 ↦ (𝐷 “ {𝑥})) ∈ V) → (tail‘𝐷) = (𝑥 ∈ ∪ ∪ 𝐷 ↦ (𝐷 “ {𝑥}))) |
11 | 4, 10 | mpdan 686 | . 2 ⊢ (𝐷 ∈ DirRel → (tail‘𝐷) = (𝑥 ∈ ∪ ∪ 𝐷 ↦ (𝐷 “ {𝑥}))) |
12 | tailfval.1 | . . . 4 ⊢ 𝑋 = dom 𝐷 | |
13 | dirdm 18670 | . . . 4 ⊢ (𝐷 ∈ DirRel → dom 𝐷 = ∪ ∪ 𝐷) | |
14 | 12, 13 | eqtr2id 2793 | . . 3 ⊢ (𝐷 ∈ DirRel → ∪ ∪ 𝐷 = 𝑋) |
15 | 14 | mpteq1d 5261 | . 2 ⊢ (𝐷 ∈ DirRel → (𝑥 ∈ ∪ ∪ 𝐷 ↦ (𝐷 “ {𝑥})) = (𝑥 ∈ 𝑋 ↦ (𝐷 “ {𝑥}))) |
16 | 11, 15 | eqtrd 2780 | 1 ⊢ (𝐷 ∈ DirRel → (tail‘𝐷) = (𝑥 ∈ 𝑋 ↦ (𝐷 “ {𝑥}))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2108 Vcvv 3488 {csn 4648 ∪ cuni 4931 ↦ cmpt 5249 dom cdm 5700 “ cima 5703 ‘cfv 6573 DirRelcdir 18664 tailctail 18665 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-dir 18666 df-tail 18667 |
This theorem is referenced by: tailval 36339 tailf 36341 |
Copyright terms: Public domain | W3C validator |