| Mathbox for Jeff Hankins |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > tailfval | Structured version Visualization version GIF version | ||
| Description: The tail function for a directed set. (Contributed by Jeff Hankins, 25-Nov-2009.) (Revised by Mario Carneiro, 24-Nov-2013.) |
| Ref | Expression |
|---|---|
| tailfval.1 | ⊢ 𝑋 = dom 𝐷 |
| Ref | Expression |
|---|---|
| tailfval | ⊢ (𝐷 ∈ DirRel → (tail‘𝐷) = (𝑥 ∈ 𝑋 ↦ (𝐷 “ {𝑥}))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uniexg 7739 | . . . 4 ⊢ (𝐷 ∈ DirRel → ∪ 𝐷 ∈ V) | |
| 2 | uniexg 7739 | . . . 4 ⊢ (∪ 𝐷 ∈ V → ∪ ∪ 𝐷 ∈ V) | |
| 3 | mptexg 7218 | . . . 4 ⊢ (∪ ∪ 𝐷 ∈ V → (𝑥 ∈ ∪ ∪ 𝐷 ↦ (𝐷 “ {𝑥})) ∈ V) | |
| 4 | 1, 2, 3 | 3syl 18 | . . 3 ⊢ (𝐷 ∈ DirRel → (𝑥 ∈ ∪ ∪ 𝐷 ↦ (𝐷 “ {𝑥})) ∈ V) |
| 5 | unieq 4899 | . . . . . 6 ⊢ (𝑑 = 𝐷 → ∪ 𝑑 = ∪ 𝐷) | |
| 6 | 5 | unieqd 4901 | . . . . 5 ⊢ (𝑑 = 𝐷 → ∪ ∪ 𝑑 = ∪ ∪ 𝐷) |
| 7 | imaeq1 6047 | . . . . 5 ⊢ (𝑑 = 𝐷 → (𝑑 “ {𝑥}) = (𝐷 “ {𝑥})) | |
| 8 | 6, 7 | mpteq12dv 5212 | . . . 4 ⊢ (𝑑 = 𝐷 → (𝑥 ∈ ∪ ∪ 𝑑 ↦ (𝑑 “ {𝑥})) = (𝑥 ∈ ∪ ∪ 𝐷 ↦ (𝐷 “ {𝑥}))) |
| 9 | df-tail 18612 | . . . 4 ⊢ tail = (𝑑 ∈ DirRel ↦ (𝑥 ∈ ∪ ∪ 𝑑 ↦ (𝑑 “ {𝑥}))) | |
| 10 | 8, 9 | fvmptg 6989 | . . 3 ⊢ ((𝐷 ∈ DirRel ∧ (𝑥 ∈ ∪ ∪ 𝐷 ↦ (𝐷 “ {𝑥})) ∈ V) → (tail‘𝐷) = (𝑥 ∈ ∪ ∪ 𝐷 ↦ (𝐷 “ {𝑥}))) |
| 11 | 4, 10 | mpdan 687 | . 2 ⊢ (𝐷 ∈ DirRel → (tail‘𝐷) = (𝑥 ∈ ∪ ∪ 𝐷 ↦ (𝐷 “ {𝑥}))) |
| 12 | tailfval.1 | . . . 4 ⊢ 𝑋 = dom 𝐷 | |
| 13 | dirdm 18615 | . . . 4 ⊢ (𝐷 ∈ DirRel → dom 𝐷 = ∪ ∪ 𝐷) | |
| 14 | 12, 13 | eqtr2id 2784 | . . 3 ⊢ (𝐷 ∈ DirRel → ∪ ∪ 𝐷 = 𝑋) |
| 15 | 14 | mpteq1d 5215 | . 2 ⊢ (𝐷 ∈ DirRel → (𝑥 ∈ ∪ ∪ 𝐷 ↦ (𝐷 “ {𝑥})) = (𝑥 ∈ 𝑋 ↦ (𝐷 “ {𝑥}))) |
| 16 | 11, 15 | eqtrd 2771 | 1 ⊢ (𝐷 ∈ DirRel → (tail‘𝐷) = (𝑥 ∈ 𝑋 ↦ (𝐷 “ {𝑥}))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 Vcvv 3464 {csn 4606 ∪ cuni 4888 ↦ cmpt 5206 dom cdm 5659 “ cima 5662 ‘cfv 6536 DirRelcdir 18609 tailctail 18610 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pr 5407 ax-un 7734 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-dir 18611 df-tail 18612 |
| This theorem is referenced by: tailval 36396 tailf 36398 |
| Copyright terms: Public domain | W3C validator |