![]() |
Mathbox for Jeff Hankins |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > tailfval | Structured version Visualization version GIF version |
Description: The tail function for a directed set. (Contributed by Jeff Hankins, 25-Nov-2009.) (Revised by Mario Carneiro, 24-Nov-2013.) |
Ref | Expression |
---|---|
tailfval.1 | ⊢ 𝑋 = dom 𝐷 |
Ref | Expression |
---|---|
tailfval | ⊢ (𝐷 ∈ DirRel → (tail‘𝐷) = (𝑥 ∈ 𝑋 ↦ (𝐷 “ {𝑥}))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uniexg 7664 | . . . 4 ⊢ (𝐷 ∈ DirRel → ∪ 𝐷 ∈ V) | |
2 | uniexg 7664 | . . . 4 ⊢ (∪ 𝐷 ∈ V → ∪ ∪ 𝐷 ∈ V) | |
3 | mptexg 7162 | . . . 4 ⊢ (∪ ∪ 𝐷 ∈ V → (𝑥 ∈ ∪ ∪ 𝐷 ↦ (𝐷 “ {𝑥})) ∈ V) | |
4 | 1, 2, 3 | 3syl 18 | . . 3 ⊢ (𝐷 ∈ DirRel → (𝑥 ∈ ∪ ∪ 𝐷 ↦ (𝐷 “ {𝑥})) ∈ V) |
5 | unieq 4871 | . . . . . 6 ⊢ (𝑑 = 𝐷 → ∪ 𝑑 = ∪ 𝐷) | |
6 | 5 | unieqd 4874 | . . . . 5 ⊢ (𝑑 = 𝐷 → ∪ ∪ 𝑑 = ∪ ∪ 𝐷) |
7 | imaeq1 6001 | . . . . 5 ⊢ (𝑑 = 𝐷 → (𝑑 “ {𝑥}) = (𝐷 “ {𝑥})) | |
8 | 6, 7 | mpteq12dv 5191 | . . . 4 ⊢ (𝑑 = 𝐷 → (𝑥 ∈ ∪ ∪ 𝑑 ↦ (𝑑 “ {𝑥})) = (𝑥 ∈ ∪ ∪ 𝐷 ↦ (𝐷 “ {𝑥}))) |
9 | df-tail 18417 | . . . 4 ⊢ tail = (𝑑 ∈ DirRel ↦ (𝑥 ∈ ∪ ∪ 𝑑 ↦ (𝑑 “ {𝑥}))) | |
10 | 8, 9 | fvmptg 6938 | . . 3 ⊢ ((𝐷 ∈ DirRel ∧ (𝑥 ∈ ∪ ∪ 𝐷 ↦ (𝐷 “ {𝑥})) ∈ V) → (tail‘𝐷) = (𝑥 ∈ ∪ ∪ 𝐷 ↦ (𝐷 “ {𝑥}))) |
11 | 4, 10 | mpdan 685 | . 2 ⊢ (𝐷 ∈ DirRel → (tail‘𝐷) = (𝑥 ∈ ∪ ∪ 𝐷 ↦ (𝐷 “ {𝑥}))) |
12 | tailfval.1 | . . . 4 ⊢ 𝑋 = dom 𝐷 | |
13 | dirdm 18420 | . . . 4 ⊢ (𝐷 ∈ DirRel → dom 𝐷 = ∪ ∪ 𝐷) | |
14 | 12, 13 | eqtr2id 2790 | . . 3 ⊢ (𝐷 ∈ DirRel → ∪ ∪ 𝐷 = 𝑋) |
15 | 14 | mpteq1d 5195 | . 2 ⊢ (𝐷 ∈ DirRel → (𝑥 ∈ ∪ ∪ 𝐷 ↦ (𝐷 “ {𝑥})) = (𝑥 ∈ 𝑋 ↦ (𝐷 “ {𝑥}))) |
16 | 11, 15 | eqtrd 2777 | 1 ⊢ (𝐷 ∈ DirRel → (tail‘𝐷) = (𝑥 ∈ 𝑋 ↦ (𝐷 “ {𝑥}))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2106 Vcvv 3443 {csn 4581 ∪ cuni 4860 ↦ cmpt 5183 dom cdm 5627 “ cima 5630 ‘cfv 6488 DirRelcdir 18414 tailctail 18415 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2708 ax-rep 5237 ax-sep 5251 ax-nul 5258 ax-pr 5379 ax-un 7659 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-ral 3063 df-rex 3072 df-reu 3352 df-rab 3406 df-v 3445 df-sbc 3735 df-csb 3851 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4278 df-if 4482 df-sn 4582 df-pr 4584 df-op 4588 df-uni 4861 df-iun 4951 df-br 5101 df-opab 5163 df-mpt 5184 df-id 5525 df-xp 5633 df-rel 5634 df-cnv 5635 df-co 5636 df-dm 5637 df-rn 5638 df-res 5639 df-ima 5640 df-iota 6440 df-fun 6490 df-fn 6491 df-f 6492 df-f1 6493 df-fo 6494 df-f1o 6495 df-fv 6496 df-dir 18416 df-tail 18417 |
This theorem is referenced by: tailval 34701 tailf 34703 |
Copyright terms: Public domain | W3C validator |