Users' Mathboxes Mathbox for Jeff Hankins < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tailfval Structured version   Visualization version   GIF version

Theorem tailfval 35560
Description: The tail function for a directed set. (Contributed by Jeff Hankins, 25-Nov-2009.) (Revised by Mario Carneiro, 24-Nov-2013.)
Hypothesis
Ref Expression
tailfval.1 𝑋 = dom 𝐷
Assertion
Ref Expression
tailfval (𝐷 ∈ DirRel β†’ (tailβ€˜π·) = (π‘₯ ∈ 𝑋 ↦ (𝐷 β€œ {π‘₯})))
Distinct variable groups:   π‘₯,𝐷   π‘₯,𝑋

Proof of Theorem tailfval
Dummy variable 𝑑 is distinct from all other variables.
StepHypRef Expression
1 uniexg 7732 . . . 4 (𝐷 ∈ DirRel β†’ βˆͺ 𝐷 ∈ V)
2 uniexg 7732 . . . 4 (βˆͺ 𝐷 ∈ V β†’ βˆͺ βˆͺ 𝐷 ∈ V)
3 mptexg 7224 . . . 4 (βˆͺ βˆͺ 𝐷 ∈ V β†’ (π‘₯ ∈ βˆͺ βˆͺ 𝐷 ↦ (𝐷 β€œ {π‘₯})) ∈ V)
41, 2, 33syl 18 . . 3 (𝐷 ∈ DirRel β†’ (π‘₯ ∈ βˆͺ βˆͺ 𝐷 ↦ (𝐷 β€œ {π‘₯})) ∈ V)
5 unieq 4918 . . . . . 6 (𝑑 = 𝐷 β†’ βˆͺ 𝑑 = βˆͺ 𝐷)
65unieqd 4921 . . . . 5 (𝑑 = 𝐷 β†’ βˆͺ βˆͺ 𝑑 = βˆͺ βˆͺ 𝐷)
7 imaeq1 6053 . . . . 5 (𝑑 = 𝐷 β†’ (𝑑 β€œ {π‘₯}) = (𝐷 β€œ {π‘₯}))
86, 7mpteq12dv 5238 . . . 4 (𝑑 = 𝐷 β†’ (π‘₯ ∈ βˆͺ βˆͺ 𝑑 ↦ (𝑑 β€œ {π‘₯})) = (π‘₯ ∈ βˆͺ βˆͺ 𝐷 ↦ (𝐷 β€œ {π‘₯})))
9 df-tail 18554 . . . 4 tail = (𝑑 ∈ DirRel ↦ (π‘₯ ∈ βˆͺ βˆͺ 𝑑 ↦ (𝑑 β€œ {π‘₯})))
108, 9fvmptg 6995 . . 3 ((𝐷 ∈ DirRel ∧ (π‘₯ ∈ βˆͺ βˆͺ 𝐷 ↦ (𝐷 β€œ {π‘₯})) ∈ V) β†’ (tailβ€˜π·) = (π‘₯ ∈ βˆͺ βˆͺ 𝐷 ↦ (𝐷 β€œ {π‘₯})))
114, 10mpdan 683 . 2 (𝐷 ∈ DirRel β†’ (tailβ€˜π·) = (π‘₯ ∈ βˆͺ βˆͺ 𝐷 ↦ (𝐷 β€œ {π‘₯})))
12 tailfval.1 . . . 4 𝑋 = dom 𝐷
13 dirdm 18557 . . . 4 (𝐷 ∈ DirRel β†’ dom 𝐷 = βˆͺ βˆͺ 𝐷)
1412, 13eqtr2id 2783 . . 3 (𝐷 ∈ DirRel β†’ βˆͺ βˆͺ 𝐷 = 𝑋)
1514mpteq1d 5242 . 2 (𝐷 ∈ DirRel β†’ (π‘₯ ∈ βˆͺ βˆͺ 𝐷 ↦ (𝐷 β€œ {π‘₯})) = (π‘₯ ∈ 𝑋 ↦ (𝐷 β€œ {π‘₯})))
1611, 15eqtrd 2770 1 (𝐷 ∈ DirRel β†’ (tailβ€˜π·) = (π‘₯ ∈ 𝑋 ↦ (𝐷 β€œ {π‘₯})))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   = wceq 1539   ∈ wcel 2104  Vcvv 3472  {csn 4627  βˆͺ cuni 4907   ↦ cmpt 5230  dom cdm 5675   β€œ cima 5678  β€˜cfv 6542  DirRelcdir 18551  tailctail 18552
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pr 5426  ax-un 7727
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ne 2939  df-ral 3060  df-rex 3069  df-reu 3375  df-rab 3431  df-v 3474  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-dir 18553  df-tail 18554
This theorem is referenced by:  tailval  35561  tailf  35563
  Copyright terms: Public domain W3C validator