Users' Mathboxes Mathbox for Brendan Leahy < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dvtan Structured version   Visualization version   GIF version

Theorem dvtan 34957
Description: Derivative of tangent. (Contributed by Brendan Leahy, 7-Aug-2018.)
Assertion
Ref Expression
dvtan (ℂ D tan) = (𝑥 ∈ dom tan ↦ ((cos‘𝑥)↑-2))

Proof of Theorem dvtan
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 df-tan 15425 . . . 4 tan = (𝑥 ∈ (cos “ (ℂ ∖ {0})) ↦ ((sin‘𝑥) / (cos‘𝑥)))
2 cnvimass 5949 . . . . . . . . 9 (cos “ (ℂ ∖ {0})) ⊆ dom cos
3 cosf 15478 . . . . . . . . . 10 cos:ℂ⟶ℂ
43fdmi 6524 . . . . . . . . 9 dom cos = ℂ
52, 4sseqtri 4003 . . . . . . . 8 (cos “ (ℂ ∖ {0})) ⊆ ℂ
65sseli 3963 . . . . . . 7 (𝑥 ∈ (cos “ (ℂ ∖ {0})) → 𝑥 ∈ ℂ)
76sincld 15483 . . . . . 6 (𝑥 ∈ (cos “ (ℂ ∖ {0})) → (sin‘𝑥) ∈ ℂ)
86coscld 15484 . . . . . 6 (𝑥 ∈ (cos “ (ℂ ∖ {0})) → (cos‘𝑥) ∈ ℂ)
9 ffn 6514 . . . . . . . 8 (cos:ℂ⟶ℂ → cos Fn ℂ)
10 elpreima 6828 . . . . . . . 8 (cos Fn ℂ → (𝑥 ∈ (cos “ (ℂ ∖ {0})) ↔ (𝑥 ∈ ℂ ∧ (cos‘𝑥) ∈ (ℂ ∖ {0}))))
113, 9, 10mp2b 10 . . . . . . 7 (𝑥 ∈ (cos “ (ℂ ∖ {0})) ↔ (𝑥 ∈ ℂ ∧ (cos‘𝑥) ∈ (ℂ ∖ {0})))
12 eldifsni 4722 . . . . . . . 8 ((cos‘𝑥) ∈ (ℂ ∖ {0}) → (cos‘𝑥) ≠ 0)
1312adantl 484 . . . . . . 7 ((𝑥 ∈ ℂ ∧ (cos‘𝑥) ∈ (ℂ ∖ {0})) → (cos‘𝑥) ≠ 0)
1411, 13sylbi 219 . . . . . 6 (𝑥 ∈ (cos “ (ℂ ∖ {0})) → (cos‘𝑥) ≠ 0)
157, 8, 14divrecd 11419 . . . . 5 (𝑥 ∈ (cos “ (ℂ ∖ {0})) → ((sin‘𝑥) / (cos‘𝑥)) = ((sin‘𝑥) · (1 / (cos‘𝑥))))
1615mpteq2ia 5157 . . . 4 (𝑥 ∈ (cos “ (ℂ ∖ {0})) ↦ ((sin‘𝑥) / (cos‘𝑥))) = (𝑥 ∈ (cos “ (ℂ ∖ {0})) ↦ ((sin‘𝑥) · (1 / (cos‘𝑥))))
171, 16eqtri 2844 . . 3 tan = (𝑥 ∈ (cos “ (ℂ ∖ {0})) ↦ ((sin‘𝑥) · (1 / (cos‘𝑥))))
1817oveq2i 7167 . 2 (ℂ D tan) = (ℂ D (𝑥 ∈ (cos “ (ℂ ∖ {0})) ↦ ((sin‘𝑥) · (1 / (cos‘𝑥)))))
19 cnelprrecn 10630 . . . . 5 ℂ ∈ {ℝ, ℂ}
2019a1i 11 . . . 4 (⊤ → ℂ ∈ {ℝ, ℂ})
21 difss 4108 . . . . . . . . 9 (ℂ ∖ {0}) ⊆ ℂ
22 imass2 5965 . . . . . . . . 9 ((ℂ ∖ {0}) ⊆ ℂ → (cos “ (ℂ ∖ {0})) ⊆ (cos “ ℂ))
2321, 22ax-mp 5 . . . . . . . 8 (cos “ (ℂ ∖ {0})) ⊆ (cos “ ℂ)
24 fimacnv 6839 . . . . . . . . 9 (cos:ℂ⟶ℂ → (cos “ ℂ) = ℂ)
253, 24ax-mp 5 . . . . . . . 8 (cos “ ℂ) = ℂ
2623, 25sseqtri 4003 . . . . . . 7 (cos “ (ℂ ∖ {0})) ⊆ ℂ
2726sseli 3963 . . . . . 6 (𝑥 ∈ (cos “ (ℂ ∖ {0})) → 𝑥 ∈ ℂ)
2827sincld 15483 . . . . 5 (𝑥 ∈ (cos “ (ℂ ∖ {0})) → (sin‘𝑥) ∈ ℂ)
2928adantl 484 . . . 4 ((⊤ ∧ 𝑥 ∈ (cos “ (ℂ ∖ {0}))) → (sin‘𝑥) ∈ ℂ)
308adantl 484 . . . 4 ((⊤ ∧ 𝑥 ∈ (cos “ (ℂ ∖ {0}))) → (cos‘𝑥) ∈ ℂ)
31 sincl 15479 . . . . . 6 (𝑥 ∈ ℂ → (sin‘𝑥) ∈ ℂ)
3231adantl 484 . . . . 5 ((⊤ ∧ 𝑥 ∈ ℂ) → (sin‘𝑥) ∈ ℂ)
33 coscl 15480 . . . . . 6 (𝑥 ∈ ℂ → (cos‘𝑥) ∈ ℂ)
3433adantl 484 . . . . 5 ((⊤ ∧ 𝑥 ∈ ℂ) → (cos‘𝑥) ∈ ℂ)
35 dvsin 24579 . . . . . 6 (ℂ D sin) = cos
36 sinf 15477 . . . . . . . . 9 sin:ℂ⟶ℂ
3736a1i 11 . . . . . . . 8 (⊤ → sin:ℂ⟶ℂ)
3837feqmptd 6733 . . . . . . 7 (⊤ → sin = (𝑥 ∈ ℂ ↦ (sin‘𝑥)))
3938oveq2d 7172 . . . . . 6 (⊤ → (ℂ D sin) = (ℂ D (𝑥 ∈ ℂ ↦ (sin‘𝑥))))
403a1i 11 . . . . . . 7 (⊤ → cos:ℂ⟶ℂ)
4140feqmptd 6733 . . . . . 6 (⊤ → cos = (𝑥 ∈ ℂ ↦ (cos‘𝑥)))
4235, 39, 413eqtr3a 2880 . . . . 5 (⊤ → (ℂ D (𝑥 ∈ ℂ ↦ (sin‘𝑥))) = (𝑥 ∈ ℂ ↦ (cos‘𝑥)))
4326a1i 11 . . . . 5 (⊤ → (cos “ (ℂ ∖ {0})) ⊆ ℂ)
44 eqid 2821 . . . . . . 7 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
4544cnfldtopon 23391 . . . . . 6 (TopOpen‘ℂfld) ∈ (TopOn‘ℂ)
4645toponrestid 21529 . . . . 5 (TopOpen‘ℂfld) = ((TopOpen‘ℂfld) ↾t ℂ)
47 dvtanlem 34956 . . . . . 6 (cos “ (ℂ ∖ {0})) ∈ (TopOpen‘ℂfld)
4847a1i 11 . . . . 5 (⊤ → (cos “ (ℂ ∖ {0})) ∈ (TopOpen‘ℂfld))
4920, 32, 34, 42, 43, 46, 44, 48dvmptres 24560 . . . 4 (⊤ → (ℂ D (𝑥 ∈ (cos “ (ℂ ∖ {0})) ↦ (sin‘𝑥))) = (𝑥 ∈ (cos “ (ℂ ∖ {0})) ↦ (cos‘𝑥)))
508, 14reccld 11409 . . . . 5 (𝑥 ∈ (cos “ (ℂ ∖ {0})) → (1 / (cos‘𝑥)) ∈ ℂ)
5150adantl 484 . . . 4 ((⊤ ∧ 𝑥 ∈ (cos “ (ℂ ∖ {0}))) → (1 / (cos‘𝑥)) ∈ ℂ)
52 ovexd 7191 . . . 4 ((⊤ ∧ 𝑥 ∈ (cos “ (ℂ ∖ {0}))) → (-(1 / ((cos‘𝑥)↑2)) · -(sin‘𝑥)) ∈ V)
5311simprbi 499 . . . . . 6 (𝑥 ∈ (cos “ (ℂ ∖ {0})) → (cos‘𝑥) ∈ (ℂ ∖ {0}))
5453adantl 484 . . . . 5 ((⊤ ∧ 𝑥 ∈ (cos “ (ℂ ∖ {0}))) → (cos‘𝑥) ∈ (ℂ ∖ {0}))
5529negcld 10984 . . . . 5 ((⊤ ∧ 𝑥 ∈ (cos “ (ℂ ∖ {0}))) → -(sin‘𝑥) ∈ ℂ)
56 eldifi 4103 . . . . . . 7 (𝑦 ∈ (ℂ ∖ {0}) → 𝑦 ∈ ℂ)
57 eldifsni 4722 . . . . . . 7 (𝑦 ∈ (ℂ ∖ {0}) → 𝑦 ≠ 0)
5856, 57reccld 11409 . . . . . 6 (𝑦 ∈ (ℂ ∖ {0}) → (1 / 𝑦) ∈ ℂ)
5958adantl 484 . . . . 5 ((⊤ ∧ 𝑦 ∈ (ℂ ∖ {0})) → (1 / 𝑦) ∈ ℂ)
60 negex 10884 . . . . . 6 -(1 / (𝑦↑2)) ∈ V
6160a1i 11 . . . . 5 ((⊤ ∧ 𝑦 ∈ (ℂ ∖ {0})) → -(1 / (𝑦↑2)) ∈ V)
6232negcld 10984 . . . . . 6 ((⊤ ∧ 𝑥 ∈ ℂ) → -(sin‘𝑥) ∈ ℂ)
63 dvcos 24580 . . . . . . 7 (ℂ D cos) = (𝑥 ∈ ℂ ↦ -(sin‘𝑥))
6441oveq2d 7172 . . . . . . 7 (⊤ → (ℂ D cos) = (ℂ D (𝑥 ∈ ℂ ↦ (cos‘𝑥))))
6563, 64syl5reqr 2871 . . . . . 6 (⊤ → (ℂ D (𝑥 ∈ ℂ ↦ (cos‘𝑥))) = (𝑥 ∈ ℂ ↦ -(sin‘𝑥)))
6620, 34, 62, 65, 43, 46, 44, 48dvmptres 24560 . . . . 5 (⊤ → (ℂ D (𝑥 ∈ (cos “ (ℂ ∖ {0})) ↦ (cos‘𝑥))) = (𝑥 ∈ (cos “ (ℂ ∖ {0})) ↦ -(sin‘𝑥)))
67 ax-1cn 10595 . . . . . 6 1 ∈ ℂ
68 dvrec 24552 . . . . . 6 (1 ∈ ℂ → (ℂ D (𝑦 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑦))) = (𝑦 ∈ (ℂ ∖ {0}) ↦ -(1 / (𝑦↑2))))
6967, 68mp1i 13 . . . . 5 (⊤ → (ℂ D (𝑦 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑦))) = (𝑦 ∈ (ℂ ∖ {0}) ↦ -(1 / (𝑦↑2))))
70 oveq2 7164 . . . . 5 (𝑦 = (cos‘𝑥) → (1 / 𝑦) = (1 / (cos‘𝑥)))
71 oveq1 7163 . . . . . . 7 (𝑦 = (cos‘𝑥) → (𝑦↑2) = ((cos‘𝑥)↑2))
7271oveq2d 7172 . . . . . 6 (𝑦 = (cos‘𝑥) → (1 / (𝑦↑2)) = (1 / ((cos‘𝑥)↑2)))
7372negeqd 10880 . . . . 5 (𝑦 = (cos‘𝑥) → -(1 / (𝑦↑2)) = -(1 / ((cos‘𝑥)↑2)))
7420, 20, 54, 55, 59, 61, 66, 69, 70, 73dvmptco 24569 . . . 4 (⊤ → (ℂ D (𝑥 ∈ (cos “ (ℂ ∖ {0})) ↦ (1 / (cos‘𝑥)))) = (𝑥 ∈ (cos “ (ℂ ∖ {0})) ↦ (-(1 / ((cos‘𝑥)↑2)) · -(sin‘𝑥))))
7520, 29, 30, 49, 51, 52, 74dvmptmul 24558 . . 3 (⊤ → (ℂ D (𝑥 ∈ (cos “ (ℂ ∖ {0})) ↦ ((sin‘𝑥) · (1 / (cos‘𝑥))))) = (𝑥 ∈ (cos “ (ℂ ∖ {0})) ↦ (((cos‘𝑥) · (1 / (cos‘𝑥))) + ((-(1 / ((cos‘𝑥)↑2)) · -(sin‘𝑥)) · (sin‘𝑥)))))
7675mptru 1544 . 2 (ℂ D (𝑥 ∈ (cos “ (ℂ ∖ {0})) ↦ ((sin‘𝑥) · (1 / (cos‘𝑥))))) = (𝑥 ∈ (cos “ (ℂ ∖ {0})) ↦ (((cos‘𝑥) · (1 / (cos‘𝑥))) + ((-(1 / ((cos‘𝑥)↑2)) · -(sin‘𝑥)) · (sin‘𝑥))))
77 ovex 7189 . . . . 5 ((sin‘𝑥) / (cos‘𝑥)) ∈ V
7877, 1dmmpti 6492 . . . 4 dom tan = (cos “ (ℂ ∖ {0}))
7978eqcomi 2830 . . 3 (cos “ (ℂ ∖ {0})) = dom tan
808sqcld 13509 . . . . . . 7 (𝑥 ∈ (cos “ (ℂ ∖ {0})) → ((cos‘𝑥)↑2) ∈ ℂ)
817sqcld 13509 . . . . . . 7 (𝑥 ∈ (cos “ (ℂ ∖ {0})) → ((sin‘𝑥)↑2) ∈ ℂ)
82 sqne0 13490 . . . . . . . . 9 ((cos‘𝑥) ∈ ℂ → (((cos‘𝑥)↑2) ≠ 0 ↔ (cos‘𝑥) ≠ 0))
838, 82syl 17 . . . . . . . 8 (𝑥 ∈ (cos “ (ℂ ∖ {0})) → (((cos‘𝑥)↑2) ≠ 0 ↔ (cos‘𝑥) ≠ 0))
8414, 83mpbird 259 . . . . . . 7 (𝑥 ∈ (cos “ (ℂ ∖ {0})) → ((cos‘𝑥)↑2) ≠ 0)
8580, 81, 80, 84divdird 11454 . . . . . 6 (𝑥 ∈ (cos “ (ℂ ∖ {0})) → ((((cos‘𝑥)↑2) + ((sin‘𝑥)↑2)) / ((cos‘𝑥)↑2)) = ((((cos‘𝑥)↑2) / ((cos‘𝑥)↑2)) + (((sin‘𝑥)↑2) / ((cos‘𝑥)↑2))))
8680, 81addcomd 10842 . . . . . . . 8 (𝑥 ∈ (cos “ (ℂ ∖ {0})) → (((cos‘𝑥)↑2) + ((sin‘𝑥)↑2)) = (((sin‘𝑥)↑2) + ((cos‘𝑥)↑2)))
87 sincossq 15529 . . . . . . . . 9 (𝑥 ∈ ℂ → (((sin‘𝑥)↑2) + ((cos‘𝑥)↑2)) = 1)
886, 87syl 17 . . . . . . . 8 (𝑥 ∈ (cos “ (ℂ ∖ {0})) → (((sin‘𝑥)↑2) + ((cos‘𝑥)↑2)) = 1)
8986, 88eqtrd 2856 . . . . . . 7 (𝑥 ∈ (cos “ (ℂ ∖ {0})) → (((cos‘𝑥)↑2) + ((sin‘𝑥)↑2)) = 1)
9089oveq1d 7171 . . . . . 6 (𝑥 ∈ (cos “ (ℂ ∖ {0})) → ((((cos‘𝑥)↑2) + ((sin‘𝑥)↑2)) / ((cos‘𝑥)↑2)) = (1 / ((cos‘𝑥)↑2)))
9185, 90eqtr3d 2858 . . . . 5 (𝑥 ∈ (cos “ (ℂ ∖ {0})) → ((((cos‘𝑥)↑2) / ((cos‘𝑥)↑2)) + (((sin‘𝑥)↑2) / ((cos‘𝑥)↑2))) = (1 / ((cos‘𝑥)↑2)))
928, 14recidd 11411 . . . . . . 7 (𝑥 ∈ (cos “ (ℂ ∖ {0})) → ((cos‘𝑥) · (1 / (cos‘𝑥))) = 1)
9380, 84dividd 11414 . . . . . . 7 (𝑥 ∈ (cos “ (ℂ ∖ {0})) → (((cos‘𝑥)↑2) / ((cos‘𝑥)↑2)) = 1)
9492, 93eqtr4d 2859 . . . . . 6 (𝑥 ∈ (cos “ (ℂ ∖ {0})) → ((cos‘𝑥) · (1 / (cos‘𝑥))) = (((cos‘𝑥)↑2) / ((cos‘𝑥)↑2)))
957, 7, 80, 84div23d 11453 . . . . . . 7 (𝑥 ∈ (cos “ (ℂ ∖ {0})) → (((sin‘𝑥) · (sin‘𝑥)) / ((cos‘𝑥)↑2)) = (((sin‘𝑥) / ((cos‘𝑥)↑2)) · (sin‘𝑥)))
967sqvald 13508 . . . . . . . 8 (𝑥 ∈ (cos “ (ℂ ∖ {0})) → ((sin‘𝑥)↑2) = ((sin‘𝑥) · (sin‘𝑥)))
9796oveq1d 7171 . . . . . . 7 (𝑥 ∈ (cos “ (ℂ ∖ {0})) → (((sin‘𝑥)↑2) / ((cos‘𝑥)↑2)) = (((sin‘𝑥) · (sin‘𝑥)) / ((cos‘𝑥)↑2)))
9880, 84reccld 11409 . . . . . . . . . 10 (𝑥 ∈ (cos “ (ℂ ∖ {0})) → (1 / ((cos‘𝑥)↑2)) ∈ ℂ)
9998, 7mul2negd 11095 . . . . . . . . 9 (𝑥 ∈ (cos “ (ℂ ∖ {0})) → (-(1 / ((cos‘𝑥)↑2)) · -(sin‘𝑥)) = ((1 / ((cos‘𝑥)↑2)) · (sin‘𝑥)))
1007, 80, 84divrec2d 11420 . . . . . . . . 9 (𝑥 ∈ (cos “ (ℂ ∖ {0})) → ((sin‘𝑥) / ((cos‘𝑥)↑2)) = ((1 / ((cos‘𝑥)↑2)) · (sin‘𝑥)))
10199, 100eqtr4d 2859 . . . . . . . 8 (𝑥 ∈ (cos “ (ℂ ∖ {0})) → (-(1 / ((cos‘𝑥)↑2)) · -(sin‘𝑥)) = ((sin‘𝑥) / ((cos‘𝑥)↑2)))
102101oveq1d 7171 . . . . . . 7 (𝑥 ∈ (cos “ (ℂ ∖ {0})) → ((-(1 / ((cos‘𝑥)↑2)) · -(sin‘𝑥)) · (sin‘𝑥)) = (((sin‘𝑥) / ((cos‘𝑥)↑2)) · (sin‘𝑥)))
10395, 97, 1023eqtr4rd 2867 . . . . . 6 (𝑥 ∈ (cos “ (ℂ ∖ {0})) → ((-(1 / ((cos‘𝑥)↑2)) · -(sin‘𝑥)) · (sin‘𝑥)) = (((sin‘𝑥)↑2) / ((cos‘𝑥)↑2)))
10494, 103oveq12d 7174 . . . . 5 (𝑥 ∈ (cos “ (ℂ ∖ {0})) → (((cos‘𝑥) · (1 / (cos‘𝑥))) + ((-(1 / ((cos‘𝑥)↑2)) · -(sin‘𝑥)) · (sin‘𝑥))) = ((((cos‘𝑥)↑2) / ((cos‘𝑥)↑2)) + (((sin‘𝑥)↑2) / ((cos‘𝑥)↑2))))
105 2nn0 11915 . . . . . 6 2 ∈ ℕ0
106 expneg 13438 . . . . . 6 (((cos‘𝑥) ∈ ℂ ∧ 2 ∈ ℕ0) → ((cos‘𝑥)↑-2) = (1 / ((cos‘𝑥)↑2)))
1078, 105, 106sylancl 588 . . . . 5 (𝑥 ∈ (cos “ (ℂ ∖ {0})) → ((cos‘𝑥)↑-2) = (1 / ((cos‘𝑥)↑2)))
10891, 104, 1073eqtr4d 2866 . . . 4 (𝑥 ∈ (cos “ (ℂ ∖ {0})) → (((cos‘𝑥) · (1 / (cos‘𝑥))) + ((-(1 / ((cos‘𝑥)↑2)) · -(sin‘𝑥)) · (sin‘𝑥))) = ((cos‘𝑥)↑-2))
109108rgen 3148 . . 3 𝑥 ∈ (cos “ (ℂ ∖ {0}))(((cos‘𝑥) · (1 / (cos‘𝑥))) + ((-(1 / ((cos‘𝑥)↑2)) · -(sin‘𝑥)) · (sin‘𝑥))) = ((cos‘𝑥)↑-2)
110 mpteq12 5153 . . 3 (((cos “ (ℂ ∖ {0})) = dom tan ∧ ∀𝑥 ∈ (cos “ (ℂ ∖ {0}))(((cos‘𝑥) · (1 / (cos‘𝑥))) + ((-(1 / ((cos‘𝑥)↑2)) · -(sin‘𝑥)) · (sin‘𝑥))) = ((cos‘𝑥)↑-2)) → (𝑥 ∈ (cos “ (ℂ ∖ {0})) ↦ (((cos‘𝑥) · (1 / (cos‘𝑥))) + ((-(1 / ((cos‘𝑥)↑2)) · -(sin‘𝑥)) · (sin‘𝑥)))) = (𝑥 ∈ dom tan ↦ ((cos‘𝑥)↑-2)))
11179, 109, 110mp2an 690 . 2 (𝑥 ∈ (cos “ (ℂ ∖ {0})) ↦ (((cos‘𝑥) · (1 / (cos‘𝑥))) + ((-(1 / ((cos‘𝑥)↑2)) · -(sin‘𝑥)) · (sin‘𝑥)))) = (𝑥 ∈ dom tan ↦ ((cos‘𝑥)↑-2))
11218, 76, 1113eqtri 2848 1 (ℂ D tan) = (𝑥 ∈ dom tan ↦ ((cos‘𝑥)↑-2))
Colors of variables: wff setvar class
Syntax hints:  wb 208  wa 398   = wceq 1537  wtru 1538  wcel 2114  wne 3016  wral 3138  Vcvv 3494  cdif 3933  wss 3936  {csn 4567  {cpr 4569  cmpt 5146  ccnv 5554  dom cdm 5555  cima 5558   Fn wfn 6350  wf 6351  cfv 6355  (class class class)co 7156  cc 10535  cr 10536  0cc0 10537  1c1 10538   + caddc 10540   · cmul 10542  -cneg 10871   / cdiv 11297  2c2 11693  0cn0 11898  cexp 13430  sincsin 15417  cosccos 15418  tanctan 15419  TopOpenctopn 16695  fldccnfld 20545   D cdv 24461
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-inf2 9104  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614  ax-pre-sup 10615  ax-addf 10616  ax-mulf 10617
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-fal 1550  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-iin 4922  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-se 5515  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-isom 6364  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-of 7409  df-om 7581  df-1st 7689  df-2nd 7690  df-supp 7831  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-1o 8102  df-2o 8103  df-oadd 8106  df-er 8289  df-map 8408  df-pm 8409  df-ixp 8462  df-en 8510  df-dom 8511  df-sdom 8512  df-fin 8513  df-fsupp 8834  df-fi 8875  df-sup 8906  df-inf 8907  df-oi 8974  df-card 9368  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-div 11298  df-nn 11639  df-2 11701  df-3 11702  df-4 11703  df-5 11704  df-6 11705  df-7 11706  df-8 11707  df-9 11708  df-n0 11899  df-z 11983  df-dec 12100  df-uz 12245  df-q 12350  df-rp 12391  df-xneg 12508  df-xadd 12509  df-xmul 12510  df-ico 12745  df-icc 12746  df-fz 12894  df-fzo 13035  df-fl 13163  df-seq 13371  df-exp 13431  df-fac 13635  df-bc 13664  df-hash 13692  df-shft 14426  df-cj 14458  df-re 14459  df-im 14460  df-sqrt 14594  df-abs 14595  df-limsup 14828  df-clim 14845  df-rlim 14846  df-sum 15043  df-ef 15421  df-sin 15423  df-cos 15424  df-tan 15425  df-struct 16485  df-ndx 16486  df-slot 16487  df-base 16489  df-sets 16490  df-ress 16491  df-plusg 16578  df-mulr 16579  df-starv 16580  df-sca 16581  df-vsca 16582  df-ip 16583  df-tset 16584  df-ple 16585  df-ds 16587  df-unif 16588  df-hom 16589  df-cco 16590  df-rest 16696  df-topn 16697  df-0g 16715  df-gsum 16716  df-topgen 16717  df-pt 16718  df-prds 16721  df-xrs 16775  df-qtop 16780  df-imas 16781  df-xps 16783  df-mre 16857  df-mrc 16858  df-acs 16860  df-mgm 17852  df-sgrp 17901  df-mnd 17912  df-submnd 17957  df-mulg 18225  df-cntz 18447  df-cmn 18908  df-psmet 20537  df-xmet 20538  df-met 20539  df-bl 20540  df-mopn 20541  df-fbas 20542  df-fg 20543  df-cnfld 20546  df-top 21502  df-topon 21519  df-topsp 21541  df-bases 21554  df-cld 21627  df-ntr 21628  df-cls 21629  df-nei 21706  df-lp 21744  df-perf 21745  df-cn 21835  df-cnp 21836  df-t1 21922  df-haus 21923  df-tx 22170  df-hmeo 22363  df-fil 22454  df-fm 22546  df-flim 22547  df-flf 22548  df-xms 22930  df-ms 22931  df-tms 22932  df-cncf 23486  df-limc 24464  df-dv 24465
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator