Users' Mathboxes Mathbox for Brendan Leahy < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dvtan Structured version   Visualization version   GIF version

Theorem dvtan 37733
Description: Derivative of tangent. (Contributed by Brendan Leahy, 7-Aug-2018.)
Assertion
Ref Expression
dvtan (ℂ D tan) = (𝑥 ∈ dom tan ↦ ((cos‘𝑥)↑-2))

Proof of Theorem dvtan
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 df-tan 15982 . . . 4 tan = (𝑥 ∈ (cos “ (ℂ ∖ {0})) ↦ ((sin‘𝑥) / (cos‘𝑥)))
2 cnvimass 6037 . . . . . . . . 9 (cos “ (ℂ ∖ {0})) ⊆ dom cos
3 cosf 16038 . . . . . . . . . 10 cos:ℂ⟶ℂ
43fdmi 6669 . . . . . . . . 9 dom cos = ℂ
52, 4sseqtri 3979 . . . . . . . 8 (cos “ (ℂ ∖ {0})) ⊆ ℂ
65sseli 3926 . . . . . . 7 (𝑥 ∈ (cos “ (ℂ ∖ {0})) → 𝑥 ∈ ℂ)
76sincld 16043 . . . . . 6 (𝑥 ∈ (cos “ (ℂ ∖ {0})) → (sin‘𝑥) ∈ ℂ)
86coscld 16044 . . . . . 6 (𝑥 ∈ (cos “ (ℂ ∖ {0})) → (cos‘𝑥) ∈ ℂ)
9 ffn 6658 . . . . . . . 8 (cos:ℂ⟶ℂ → cos Fn ℂ)
10 elpreima 6999 . . . . . . . 8 (cos Fn ℂ → (𝑥 ∈ (cos “ (ℂ ∖ {0})) ↔ (𝑥 ∈ ℂ ∧ (cos‘𝑥) ∈ (ℂ ∖ {0}))))
113, 9, 10mp2b 10 . . . . . . 7 (𝑥 ∈ (cos “ (ℂ ∖ {0})) ↔ (𝑥 ∈ ℂ ∧ (cos‘𝑥) ∈ (ℂ ∖ {0})))
12 eldifsni 4743 . . . . . . . 8 ((cos‘𝑥) ∈ (ℂ ∖ {0}) → (cos‘𝑥) ≠ 0)
1312adantl 481 . . . . . . 7 ((𝑥 ∈ ℂ ∧ (cos‘𝑥) ∈ (ℂ ∖ {0})) → (cos‘𝑥) ≠ 0)
1411, 13sylbi 217 . . . . . 6 (𝑥 ∈ (cos “ (ℂ ∖ {0})) → (cos‘𝑥) ≠ 0)
157, 8, 14divrecd 11909 . . . . 5 (𝑥 ∈ (cos “ (ℂ ∖ {0})) → ((sin‘𝑥) / (cos‘𝑥)) = ((sin‘𝑥) · (1 / (cos‘𝑥))))
1615mpteq2ia 5190 . . . 4 (𝑥 ∈ (cos “ (ℂ ∖ {0})) ↦ ((sin‘𝑥) / (cos‘𝑥))) = (𝑥 ∈ (cos “ (ℂ ∖ {0})) ↦ ((sin‘𝑥) · (1 / (cos‘𝑥))))
171, 16eqtri 2756 . . 3 tan = (𝑥 ∈ (cos “ (ℂ ∖ {0})) ↦ ((sin‘𝑥) · (1 / (cos‘𝑥))))
1817oveq2i 7365 . 2 (ℂ D tan) = (ℂ D (𝑥 ∈ (cos “ (ℂ ∖ {0})) ↦ ((sin‘𝑥) · (1 / (cos‘𝑥)))))
19 cnelprrecn 11108 . . . . 5 ℂ ∈ {ℝ, ℂ}
2019a1i 11 . . . 4 (⊤ → ℂ ∈ {ℝ, ℂ})
21 difss 4085 . . . . . . . . 9 (ℂ ∖ {0}) ⊆ ℂ
22 imass2 6057 . . . . . . . . 9 ((ℂ ∖ {0}) ⊆ ℂ → (cos “ (ℂ ∖ {0})) ⊆ (cos “ ℂ))
2321, 22ax-mp 5 . . . . . . . 8 (cos “ (ℂ ∖ {0})) ⊆ (cos “ ℂ)
24 fimacnv 6680 . . . . . . . . 9 (cos:ℂ⟶ℂ → (cos “ ℂ) = ℂ)
253, 24ax-mp 5 . . . . . . . 8 (cos “ ℂ) = ℂ
2623, 25sseqtri 3979 . . . . . . 7 (cos “ (ℂ ∖ {0})) ⊆ ℂ
2726sseli 3926 . . . . . 6 (𝑥 ∈ (cos “ (ℂ ∖ {0})) → 𝑥 ∈ ℂ)
2827sincld 16043 . . . . 5 (𝑥 ∈ (cos “ (ℂ ∖ {0})) → (sin‘𝑥) ∈ ℂ)
2928adantl 481 . . . 4 ((⊤ ∧ 𝑥 ∈ (cos “ (ℂ ∖ {0}))) → (sin‘𝑥) ∈ ℂ)
308adantl 481 . . . 4 ((⊤ ∧ 𝑥 ∈ (cos “ (ℂ ∖ {0}))) → (cos‘𝑥) ∈ ℂ)
31 sincl 16039 . . . . . 6 (𝑥 ∈ ℂ → (sin‘𝑥) ∈ ℂ)
3231adantl 481 . . . . 5 ((⊤ ∧ 𝑥 ∈ ℂ) → (sin‘𝑥) ∈ ℂ)
33 coscl 16040 . . . . . 6 (𝑥 ∈ ℂ → (cos‘𝑥) ∈ ℂ)
3433adantl 481 . . . . 5 ((⊤ ∧ 𝑥 ∈ ℂ) → (cos‘𝑥) ∈ ℂ)
35 dvsin 25916 . . . . . 6 (ℂ D sin) = cos
36 sinf 16037 . . . . . . . . 9 sin:ℂ⟶ℂ
3736a1i 11 . . . . . . . 8 (⊤ → sin:ℂ⟶ℂ)
3837feqmptd 6898 . . . . . . 7 (⊤ → sin = (𝑥 ∈ ℂ ↦ (sin‘𝑥)))
3938oveq2d 7370 . . . . . 6 (⊤ → (ℂ D sin) = (ℂ D (𝑥 ∈ ℂ ↦ (sin‘𝑥))))
403a1i 11 . . . . . . 7 (⊤ → cos:ℂ⟶ℂ)
4140feqmptd 6898 . . . . . 6 (⊤ → cos = (𝑥 ∈ ℂ ↦ (cos‘𝑥)))
4235, 39, 413eqtr3a 2792 . . . . 5 (⊤ → (ℂ D (𝑥 ∈ ℂ ↦ (sin‘𝑥))) = (𝑥 ∈ ℂ ↦ (cos‘𝑥)))
4326a1i 11 . . . . 5 (⊤ → (cos “ (ℂ ∖ {0})) ⊆ ℂ)
44 eqid 2733 . . . . . . 7 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
4544cnfldtopon 24700 . . . . . 6 (TopOpen‘ℂfld) ∈ (TopOn‘ℂ)
4645toponrestid 22839 . . . . 5 (TopOpen‘ℂfld) = ((TopOpen‘ℂfld) ↾t ℂ)
47 dvtanlem 37732 . . . . . 6 (cos “ (ℂ ∖ {0})) ∈ (TopOpen‘ℂfld)
4847a1i 11 . . . . 5 (⊤ → (cos “ (ℂ ∖ {0})) ∈ (TopOpen‘ℂfld))
4920, 32, 34, 42, 43, 46, 44, 48dvmptres 25897 . . . 4 (⊤ → (ℂ D (𝑥 ∈ (cos “ (ℂ ∖ {0})) ↦ (sin‘𝑥))) = (𝑥 ∈ (cos “ (ℂ ∖ {0})) ↦ (cos‘𝑥)))
508, 14reccld 11899 . . . . 5 (𝑥 ∈ (cos “ (ℂ ∖ {0})) → (1 / (cos‘𝑥)) ∈ ℂ)
5150adantl 481 . . . 4 ((⊤ ∧ 𝑥 ∈ (cos “ (ℂ ∖ {0}))) → (1 / (cos‘𝑥)) ∈ ℂ)
52 ovexd 7389 . . . 4 ((⊤ ∧ 𝑥 ∈ (cos “ (ℂ ∖ {0}))) → (-(1 / ((cos‘𝑥)↑2)) · -(sin‘𝑥)) ∈ V)
5311simprbi 496 . . . . . 6 (𝑥 ∈ (cos “ (ℂ ∖ {0})) → (cos‘𝑥) ∈ (ℂ ∖ {0}))
5453adantl 481 . . . . 5 ((⊤ ∧ 𝑥 ∈ (cos “ (ℂ ∖ {0}))) → (cos‘𝑥) ∈ (ℂ ∖ {0}))
5529negcld 11468 . . . . 5 ((⊤ ∧ 𝑥 ∈ (cos “ (ℂ ∖ {0}))) → -(sin‘𝑥) ∈ ℂ)
56 eldifi 4080 . . . . . . 7 (𝑦 ∈ (ℂ ∖ {0}) → 𝑦 ∈ ℂ)
57 eldifsni 4743 . . . . . . 7 (𝑦 ∈ (ℂ ∖ {0}) → 𝑦 ≠ 0)
5856, 57reccld 11899 . . . . . 6 (𝑦 ∈ (ℂ ∖ {0}) → (1 / 𝑦) ∈ ℂ)
5958adantl 481 . . . . 5 ((⊤ ∧ 𝑦 ∈ (ℂ ∖ {0})) → (1 / 𝑦) ∈ ℂ)
60 negex 11367 . . . . . 6 -(1 / (𝑦↑2)) ∈ V
6160a1i 11 . . . . 5 ((⊤ ∧ 𝑦 ∈ (ℂ ∖ {0})) → -(1 / (𝑦↑2)) ∈ V)
6232negcld 11468 . . . . . 6 ((⊤ ∧ 𝑥 ∈ ℂ) → -(sin‘𝑥) ∈ ℂ)
6341oveq2d 7370 . . . . . . 7 (⊤ → (ℂ D cos) = (ℂ D (𝑥 ∈ ℂ ↦ (cos‘𝑥))))
64 dvcos 25917 . . . . . . 7 (ℂ D cos) = (𝑥 ∈ ℂ ↦ -(sin‘𝑥))
6563, 64eqtr3di 2783 . . . . . 6 (⊤ → (ℂ D (𝑥 ∈ ℂ ↦ (cos‘𝑥))) = (𝑥 ∈ ℂ ↦ -(sin‘𝑥)))
6620, 34, 62, 65, 43, 46, 44, 48dvmptres 25897 . . . . 5 (⊤ → (ℂ D (𝑥 ∈ (cos “ (ℂ ∖ {0})) ↦ (cos‘𝑥))) = (𝑥 ∈ (cos “ (ℂ ∖ {0})) ↦ -(sin‘𝑥)))
67 ax-1cn 11073 . . . . . 6 1 ∈ ℂ
68 dvrec 25889 . . . . . 6 (1 ∈ ℂ → (ℂ D (𝑦 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑦))) = (𝑦 ∈ (ℂ ∖ {0}) ↦ -(1 / (𝑦↑2))))
6967, 68mp1i 13 . . . . 5 (⊤ → (ℂ D (𝑦 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑦))) = (𝑦 ∈ (ℂ ∖ {0}) ↦ -(1 / (𝑦↑2))))
70 oveq2 7362 . . . . 5 (𝑦 = (cos‘𝑥) → (1 / 𝑦) = (1 / (cos‘𝑥)))
71 oveq1 7361 . . . . . . 7 (𝑦 = (cos‘𝑥) → (𝑦↑2) = ((cos‘𝑥)↑2))
7271oveq2d 7370 . . . . . 6 (𝑦 = (cos‘𝑥) → (1 / (𝑦↑2)) = (1 / ((cos‘𝑥)↑2)))
7372negeqd 11363 . . . . 5 (𝑦 = (cos‘𝑥) → -(1 / (𝑦↑2)) = -(1 / ((cos‘𝑥)↑2)))
7420, 20, 54, 55, 59, 61, 66, 69, 70, 73dvmptco 25906 . . . 4 (⊤ → (ℂ D (𝑥 ∈ (cos “ (ℂ ∖ {0})) ↦ (1 / (cos‘𝑥)))) = (𝑥 ∈ (cos “ (ℂ ∖ {0})) ↦ (-(1 / ((cos‘𝑥)↑2)) · -(sin‘𝑥))))
7520, 29, 30, 49, 51, 52, 74dvmptmul 25895 . . 3 (⊤ → (ℂ D (𝑥 ∈ (cos “ (ℂ ∖ {0})) ↦ ((sin‘𝑥) · (1 / (cos‘𝑥))))) = (𝑥 ∈ (cos “ (ℂ ∖ {0})) ↦ (((cos‘𝑥) · (1 / (cos‘𝑥))) + ((-(1 / ((cos‘𝑥)↑2)) · -(sin‘𝑥)) · (sin‘𝑥)))))
7675mptru 1548 . 2 (ℂ D (𝑥 ∈ (cos “ (ℂ ∖ {0})) ↦ ((sin‘𝑥) · (1 / (cos‘𝑥))))) = (𝑥 ∈ (cos “ (ℂ ∖ {0})) ↦ (((cos‘𝑥) · (1 / (cos‘𝑥))) + ((-(1 / ((cos‘𝑥)↑2)) · -(sin‘𝑥)) · (sin‘𝑥))))
77 ovex 7387 . . . . 5 ((sin‘𝑥) / (cos‘𝑥)) ∈ V
7877, 1dmmpti 6632 . . . 4 dom tan = (cos “ (ℂ ∖ {0}))
7978eqcomi 2742 . . 3 (cos “ (ℂ ∖ {0})) = dom tan
808sqcld 14055 . . . . . . 7 (𝑥 ∈ (cos “ (ℂ ∖ {0})) → ((cos‘𝑥)↑2) ∈ ℂ)
817sqcld 14055 . . . . . . 7 (𝑥 ∈ (cos “ (ℂ ∖ {0})) → ((sin‘𝑥)↑2) ∈ ℂ)
82 sqne0 14034 . . . . . . . . 9 ((cos‘𝑥) ∈ ℂ → (((cos‘𝑥)↑2) ≠ 0 ↔ (cos‘𝑥) ≠ 0))
838, 82syl 17 . . . . . . . 8 (𝑥 ∈ (cos “ (ℂ ∖ {0})) → (((cos‘𝑥)↑2) ≠ 0 ↔ (cos‘𝑥) ≠ 0))
8414, 83mpbird 257 . . . . . . 7 (𝑥 ∈ (cos “ (ℂ ∖ {0})) → ((cos‘𝑥)↑2) ≠ 0)
8580, 81, 80, 84divdird 11944 . . . . . 6 (𝑥 ∈ (cos “ (ℂ ∖ {0})) → ((((cos‘𝑥)↑2) + ((sin‘𝑥)↑2)) / ((cos‘𝑥)↑2)) = ((((cos‘𝑥)↑2) / ((cos‘𝑥)↑2)) + (((sin‘𝑥)↑2) / ((cos‘𝑥)↑2))))
8680, 81addcomd 11324 . . . . . . . 8 (𝑥 ∈ (cos “ (ℂ ∖ {0})) → (((cos‘𝑥)↑2) + ((sin‘𝑥)↑2)) = (((sin‘𝑥)↑2) + ((cos‘𝑥)↑2)))
87 sincossq 16089 . . . . . . . . 9 (𝑥 ∈ ℂ → (((sin‘𝑥)↑2) + ((cos‘𝑥)↑2)) = 1)
886, 87syl 17 . . . . . . . 8 (𝑥 ∈ (cos “ (ℂ ∖ {0})) → (((sin‘𝑥)↑2) + ((cos‘𝑥)↑2)) = 1)
8986, 88eqtrd 2768 . . . . . . 7 (𝑥 ∈ (cos “ (ℂ ∖ {0})) → (((cos‘𝑥)↑2) + ((sin‘𝑥)↑2)) = 1)
9089oveq1d 7369 . . . . . 6 (𝑥 ∈ (cos “ (ℂ ∖ {0})) → ((((cos‘𝑥)↑2) + ((sin‘𝑥)↑2)) / ((cos‘𝑥)↑2)) = (1 / ((cos‘𝑥)↑2)))
9185, 90eqtr3d 2770 . . . . 5 (𝑥 ∈ (cos “ (ℂ ∖ {0})) → ((((cos‘𝑥)↑2) / ((cos‘𝑥)↑2)) + (((sin‘𝑥)↑2) / ((cos‘𝑥)↑2))) = (1 / ((cos‘𝑥)↑2)))
928, 14recidd 11901 . . . . . . 7 (𝑥 ∈ (cos “ (ℂ ∖ {0})) → ((cos‘𝑥) · (1 / (cos‘𝑥))) = 1)
9380, 84dividd 11904 . . . . . . 7 (𝑥 ∈ (cos “ (ℂ ∖ {0})) → (((cos‘𝑥)↑2) / ((cos‘𝑥)↑2)) = 1)
9492, 93eqtr4d 2771 . . . . . 6 (𝑥 ∈ (cos “ (ℂ ∖ {0})) → ((cos‘𝑥) · (1 / (cos‘𝑥))) = (((cos‘𝑥)↑2) / ((cos‘𝑥)↑2)))
957, 7, 80, 84div23d 11943 . . . . . . 7 (𝑥 ∈ (cos “ (ℂ ∖ {0})) → (((sin‘𝑥) · (sin‘𝑥)) / ((cos‘𝑥)↑2)) = (((sin‘𝑥) / ((cos‘𝑥)↑2)) · (sin‘𝑥)))
967sqvald 14054 . . . . . . . 8 (𝑥 ∈ (cos “ (ℂ ∖ {0})) → ((sin‘𝑥)↑2) = ((sin‘𝑥) · (sin‘𝑥)))
9796oveq1d 7369 . . . . . . 7 (𝑥 ∈ (cos “ (ℂ ∖ {0})) → (((sin‘𝑥)↑2) / ((cos‘𝑥)↑2)) = (((sin‘𝑥) · (sin‘𝑥)) / ((cos‘𝑥)↑2)))
9880, 84reccld 11899 . . . . . . . . . 10 (𝑥 ∈ (cos “ (ℂ ∖ {0})) → (1 / ((cos‘𝑥)↑2)) ∈ ℂ)
9998, 7mul2negd 11581 . . . . . . . . 9 (𝑥 ∈ (cos “ (ℂ ∖ {0})) → (-(1 / ((cos‘𝑥)↑2)) · -(sin‘𝑥)) = ((1 / ((cos‘𝑥)↑2)) · (sin‘𝑥)))
1007, 80, 84divrec2d 11910 . . . . . . . . 9 (𝑥 ∈ (cos “ (ℂ ∖ {0})) → ((sin‘𝑥) / ((cos‘𝑥)↑2)) = ((1 / ((cos‘𝑥)↑2)) · (sin‘𝑥)))
10199, 100eqtr4d 2771 . . . . . . . 8 (𝑥 ∈ (cos “ (ℂ ∖ {0})) → (-(1 / ((cos‘𝑥)↑2)) · -(sin‘𝑥)) = ((sin‘𝑥) / ((cos‘𝑥)↑2)))
102101oveq1d 7369 . . . . . . 7 (𝑥 ∈ (cos “ (ℂ ∖ {0})) → ((-(1 / ((cos‘𝑥)↑2)) · -(sin‘𝑥)) · (sin‘𝑥)) = (((sin‘𝑥) / ((cos‘𝑥)↑2)) · (sin‘𝑥)))
10395, 97, 1023eqtr4rd 2779 . . . . . 6 (𝑥 ∈ (cos “ (ℂ ∖ {0})) → ((-(1 / ((cos‘𝑥)↑2)) · -(sin‘𝑥)) · (sin‘𝑥)) = (((sin‘𝑥)↑2) / ((cos‘𝑥)↑2)))
10494, 103oveq12d 7372 . . . . 5 (𝑥 ∈ (cos “ (ℂ ∖ {0})) → (((cos‘𝑥) · (1 / (cos‘𝑥))) + ((-(1 / ((cos‘𝑥)↑2)) · -(sin‘𝑥)) · (sin‘𝑥))) = ((((cos‘𝑥)↑2) / ((cos‘𝑥)↑2)) + (((sin‘𝑥)↑2) / ((cos‘𝑥)↑2))))
105 2nn0 12407 . . . . . 6 2 ∈ ℕ0
106 expneg 13980 . . . . . 6 (((cos‘𝑥) ∈ ℂ ∧ 2 ∈ ℕ0) → ((cos‘𝑥)↑-2) = (1 / ((cos‘𝑥)↑2)))
1078, 105, 106sylancl 586 . . . . 5 (𝑥 ∈ (cos “ (ℂ ∖ {0})) → ((cos‘𝑥)↑-2) = (1 / ((cos‘𝑥)↑2)))
10891, 104, 1073eqtr4d 2778 . . . 4 (𝑥 ∈ (cos “ (ℂ ∖ {0})) → (((cos‘𝑥) · (1 / (cos‘𝑥))) + ((-(1 / ((cos‘𝑥)↑2)) · -(sin‘𝑥)) · (sin‘𝑥))) = ((cos‘𝑥)↑-2))
109108rgen 3050 . . 3 𝑥 ∈ (cos “ (ℂ ∖ {0}))(((cos‘𝑥) · (1 / (cos‘𝑥))) + ((-(1 / ((cos‘𝑥)↑2)) · -(sin‘𝑥)) · (sin‘𝑥))) = ((cos‘𝑥)↑-2)
110 mpteq12 5183 . . 3 (((cos “ (ℂ ∖ {0})) = dom tan ∧ ∀𝑥 ∈ (cos “ (ℂ ∖ {0}))(((cos‘𝑥) · (1 / (cos‘𝑥))) + ((-(1 / ((cos‘𝑥)↑2)) · -(sin‘𝑥)) · (sin‘𝑥))) = ((cos‘𝑥)↑-2)) → (𝑥 ∈ (cos “ (ℂ ∖ {0})) ↦ (((cos‘𝑥) · (1 / (cos‘𝑥))) + ((-(1 / ((cos‘𝑥)↑2)) · -(sin‘𝑥)) · (sin‘𝑥)))) = (𝑥 ∈ dom tan ↦ ((cos‘𝑥)↑-2)))
11179, 109, 110mp2an 692 . 2 (𝑥 ∈ (cos “ (ℂ ∖ {0})) ↦ (((cos‘𝑥) · (1 / (cos‘𝑥))) + ((-(1 / ((cos‘𝑥)↑2)) · -(sin‘𝑥)) · (sin‘𝑥)))) = (𝑥 ∈ dom tan ↦ ((cos‘𝑥)↑-2))
11218, 76, 1113eqtri 2760 1 (ℂ D tan) = (𝑥 ∈ dom tan ↦ ((cos‘𝑥)↑-2))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1541  wtru 1542  wcel 2113  wne 2929  wral 3048  Vcvv 3437  cdif 3895  wss 3898  {csn 4577  {cpr 4579  cmpt 5176  ccnv 5620  dom cdm 5621  cima 5624   Fn wfn 6483  wf 6484  cfv 6488  (class class class)co 7354  cc 11013  cr 11014  0cc0 11015  1c1 11016   + caddc 11018   · cmul 11020  -cneg 11354   / cdiv 11783  2c2 12189  0cn0 12390  cexp 13972  sincsin 15974  cosccos 15975  tanctan 15976  TopOpenctopn 17329  fldccnfld 21295   D cdv 25794
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7676  ax-inf2 9540  ax-cnex 11071  ax-resscn 11072  ax-1cn 11073  ax-icn 11074  ax-addcl 11075  ax-addrcl 11076  ax-mulcl 11077  ax-mulrcl 11078  ax-mulcom 11079  ax-addass 11080  ax-mulass 11081  ax-distr 11082  ax-i2m1 11083  ax-1ne0 11084  ax-1rid 11085  ax-rnegex 11086  ax-rrecex 11087  ax-cnre 11088  ax-pre-lttri 11089  ax-pre-lttrn 11090  ax-pre-ltadd 11091  ax-pre-mulgt0 11092  ax-pre-sup 11093  ax-addf 11094
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4861  df-int 4900  df-iun 4945  df-iin 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-se 5575  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6255  df-ord 6316  df-on 6317  df-lim 6318  df-suc 6319  df-iota 6444  df-fun 6490  df-fn 6491  df-f 6492  df-f1 6493  df-fo 6494  df-f1o 6495  df-fv 6496  df-isom 6497  df-riota 7311  df-ov 7357  df-oprab 7358  df-mpo 7359  df-of 7618  df-om 7805  df-1st 7929  df-2nd 7930  df-supp 8099  df-frecs 8219  df-wrecs 8250  df-recs 8299  df-rdg 8337  df-1o 8393  df-2o 8394  df-er 8630  df-map 8760  df-pm 8761  df-ixp 8830  df-en 8878  df-dom 8879  df-sdom 8880  df-fin 8881  df-fsupp 9255  df-fi 9304  df-sup 9335  df-inf 9336  df-oi 9405  df-card 9841  df-pnf 11157  df-mnf 11158  df-xr 11159  df-ltxr 11160  df-le 11161  df-sub 11355  df-neg 11356  df-div 11784  df-nn 12135  df-2 12197  df-3 12198  df-4 12199  df-5 12200  df-6 12201  df-7 12202  df-8 12203  df-9 12204  df-n0 12391  df-z 12478  df-dec 12597  df-uz 12741  df-q 12851  df-rp 12895  df-xneg 13015  df-xadd 13016  df-xmul 13017  df-ico 13255  df-icc 13256  df-fz 13412  df-fzo 13559  df-fl 13700  df-seq 13913  df-exp 13973  df-fac 14185  df-bc 14214  df-hash 14242  df-shft 14978  df-cj 15010  df-re 15011  df-im 15012  df-sqrt 15146  df-abs 15147  df-limsup 15382  df-clim 15399  df-rlim 15400  df-sum 15598  df-ef 15978  df-sin 15980  df-cos 15981  df-tan 15982  df-struct 17062  df-sets 17079  df-slot 17097  df-ndx 17109  df-base 17125  df-ress 17146  df-plusg 17178  df-mulr 17179  df-starv 17180  df-sca 17181  df-vsca 17182  df-ip 17183  df-tset 17184  df-ple 17185  df-ds 17187  df-unif 17188  df-hom 17189  df-cco 17190  df-rest 17330  df-topn 17331  df-0g 17349  df-gsum 17350  df-topgen 17351  df-pt 17352  df-prds 17355  df-xrs 17410  df-qtop 17415  df-imas 17416  df-xps 17418  df-mre 17492  df-mrc 17493  df-acs 17495  df-mgm 18552  df-sgrp 18631  df-mnd 18647  df-submnd 18696  df-mulg 18985  df-cntz 19233  df-cmn 19698  df-psmet 21287  df-xmet 21288  df-met 21289  df-bl 21290  df-mopn 21291  df-fbas 21292  df-fg 21293  df-cnfld 21296  df-top 22812  df-topon 22829  df-topsp 22851  df-bases 22864  df-cld 22937  df-ntr 22938  df-cls 22939  df-nei 23016  df-lp 23054  df-perf 23055  df-cn 23145  df-cnp 23146  df-t1 23232  df-haus 23233  df-tx 23480  df-hmeo 23673  df-fil 23764  df-fm 23856  df-flim 23857  df-flf 23858  df-xms 24238  df-ms 24239  df-tms 24240  df-cncf 24801  df-limc 25797  df-dv 25798
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator