Users' Mathboxes Mathbox for Brendan Leahy < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dvtan Structured version   Visualization version   GIF version

Theorem dvtan 37630
Description: Derivative of tangent. (Contributed by Brendan Leahy, 7-Aug-2018.)
Assertion
Ref Expression
dvtan (ℂ D tan) = (𝑥 ∈ dom tan ↦ ((cos‘𝑥)↑-2))

Proof of Theorem dvtan
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 df-tan 16119 . . . 4 tan = (𝑥 ∈ (cos “ (ℂ ∖ {0})) ↦ ((sin‘𝑥) / (cos‘𝑥)))
2 cnvimass 6111 . . . . . . . . 9 (cos “ (ℂ ∖ {0})) ⊆ dom cos
3 cosf 16173 . . . . . . . . . 10 cos:ℂ⟶ℂ
43fdmi 6758 . . . . . . . . 9 dom cos = ℂ
52, 4sseqtri 4045 . . . . . . . 8 (cos “ (ℂ ∖ {0})) ⊆ ℂ
65sseli 4004 . . . . . . 7 (𝑥 ∈ (cos “ (ℂ ∖ {0})) → 𝑥 ∈ ℂ)
76sincld 16178 . . . . . 6 (𝑥 ∈ (cos “ (ℂ ∖ {0})) → (sin‘𝑥) ∈ ℂ)
86coscld 16179 . . . . . 6 (𝑥 ∈ (cos “ (ℂ ∖ {0})) → (cos‘𝑥) ∈ ℂ)
9 ffn 6747 . . . . . . . 8 (cos:ℂ⟶ℂ → cos Fn ℂ)
10 elpreima 7091 . . . . . . . 8 (cos Fn ℂ → (𝑥 ∈ (cos “ (ℂ ∖ {0})) ↔ (𝑥 ∈ ℂ ∧ (cos‘𝑥) ∈ (ℂ ∖ {0}))))
113, 9, 10mp2b 10 . . . . . . 7 (𝑥 ∈ (cos “ (ℂ ∖ {0})) ↔ (𝑥 ∈ ℂ ∧ (cos‘𝑥) ∈ (ℂ ∖ {0})))
12 eldifsni 4815 . . . . . . . 8 ((cos‘𝑥) ∈ (ℂ ∖ {0}) → (cos‘𝑥) ≠ 0)
1312adantl 481 . . . . . . 7 ((𝑥 ∈ ℂ ∧ (cos‘𝑥) ∈ (ℂ ∖ {0})) → (cos‘𝑥) ≠ 0)
1411, 13sylbi 217 . . . . . 6 (𝑥 ∈ (cos “ (ℂ ∖ {0})) → (cos‘𝑥) ≠ 0)
157, 8, 14divrecd 12073 . . . . 5 (𝑥 ∈ (cos “ (ℂ ∖ {0})) → ((sin‘𝑥) / (cos‘𝑥)) = ((sin‘𝑥) · (1 / (cos‘𝑥))))
1615mpteq2ia 5269 . . . 4 (𝑥 ∈ (cos “ (ℂ ∖ {0})) ↦ ((sin‘𝑥) / (cos‘𝑥))) = (𝑥 ∈ (cos “ (ℂ ∖ {0})) ↦ ((sin‘𝑥) · (1 / (cos‘𝑥))))
171, 16eqtri 2768 . . 3 tan = (𝑥 ∈ (cos “ (ℂ ∖ {0})) ↦ ((sin‘𝑥) · (1 / (cos‘𝑥))))
1817oveq2i 7459 . 2 (ℂ D tan) = (ℂ D (𝑥 ∈ (cos “ (ℂ ∖ {0})) ↦ ((sin‘𝑥) · (1 / (cos‘𝑥)))))
19 cnelprrecn 11277 . . . . 5 ℂ ∈ {ℝ, ℂ}
2019a1i 11 . . . 4 (⊤ → ℂ ∈ {ℝ, ℂ})
21 difss 4159 . . . . . . . . 9 (ℂ ∖ {0}) ⊆ ℂ
22 imass2 6132 . . . . . . . . 9 ((ℂ ∖ {0}) ⊆ ℂ → (cos “ (ℂ ∖ {0})) ⊆ (cos “ ℂ))
2321, 22ax-mp 5 . . . . . . . 8 (cos “ (ℂ ∖ {0})) ⊆ (cos “ ℂ)
24 fimacnv 6769 . . . . . . . . 9 (cos:ℂ⟶ℂ → (cos “ ℂ) = ℂ)
253, 24ax-mp 5 . . . . . . . 8 (cos “ ℂ) = ℂ
2623, 25sseqtri 4045 . . . . . . 7 (cos “ (ℂ ∖ {0})) ⊆ ℂ
2726sseli 4004 . . . . . 6 (𝑥 ∈ (cos “ (ℂ ∖ {0})) → 𝑥 ∈ ℂ)
2827sincld 16178 . . . . 5 (𝑥 ∈ (cos “ (ℂ ∖ {0})) → (sin‘𝑥) ∈ ℂ)
2928adantl 481 . . . 4 ((⊤ ∧ 𝑥 ∈ (cos “ (ℂ ∖ {0}))) → (sin‘𝑥) ∈ ℂ)
308adantl 481 . . . 4 ((⊤ ∧ 𝑥 ∈ (cos “ (ℂ ∖ {0}))) → (cos‘𝑥) ∈ ℂ)
31 sincl 16174 . . . . . 6 (𝑥 ∈ ℂ → (sin‘𝑥) ∈ ℂ)
3231adantl 481 . . . . 5 ((⊤ ∧ 𝑥 ∈ ℂ) → (sin‘𝑥) ∈ ℂ)
33 coscl 16175 . . . . . 6 (𝑥 ∈ ℂ → (cos‘𝑥) ∈ ℂ)
3433adantl 481 . . . . 5 ((⊤ ∧ 𝑥 ∈ ℂ) → (cos‘𝑥) ∈ ℂ)
35 dvsin 26040 . . . . . 6 (ℂ D sin) = cos
36 sinf 16172 . . . . . . . . 9 sin:ℂ⟶ℂ
3736a1i 11 . . . . . . . 8 (⊤ → sin:ℂ⟶ℂ)
3837feqmptd 6990 . . . . . . 7 (⊤ → sin = (𝑥 ∈ ℂ ↦ (sin‘𝑥)))
3938oveq2d 7464 . . . . . 6 (⊤ → (ℂ D sin) = (ℂ D (𝑥 ∈ ℂ ↦ (sin‘𝑥))))
403a1i 11 . . . . . . 7 (⊤ → cos:ℂ⟶ℂ)
4140feqmptd 6990 . . . . . 6 (⊤ → cos = (𝑥 ∈ ℂ ↦ (cos‘𝑥)))
4235, 39, 413eqtr3a 2804 . . . . 5 (⊤ → (ℂ D (𝑥 ∈ ℂ ↦ (sin‘𝑥))) = (𝑥 ∈ ℂ ↦ (cos‘𝑥)))
4326a1i 11 . . . . 5 (⊤ → (cos “ (ℂ ∖ {0})) ⊆ ℂ)
44 eqid 2740 . . . . . . 7 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
4544cnfldtopon 24824 . . . . . 6 (TopOpen‘ℂfld) ∈ (TopOn‘ℂ)
4645toponrestid 22948 . . . . 5 (TopOpen‘ℂfld) = ((TopOpen‘ℂfld) ↾t ℂ)
47 dvtanlem 37629 . . . . . 6 (cos “ (ℂ ∖ {0})) ∈ (TopOpen‘ℂfld)
4847a1i 11 . . . . 5 (⊤ → (cos “ (ℂ ∖ {0})) ∈ (TopOpen‘ℂfld))
4920, 32, 34, 42, 43, 46, 44, 48dvmptres 26021 . . . 4 (⊤ → (ℂ D (𝑥 ∈ (cos “ (ℂ ∖ {0})) ↦ (sin‘𝑥))) = (𝑥 ∈ (cos “ (ℂ ∖ {0})) ↦ (cos‘𝑥)))
508, 14reccld 12063 . . . . 5 (𝑥 ∈ (cos “ (ℂ ∖ {0})) → (1 / (cos‘𝑥)) ∈ ℂ)
5150adantl 481 . . . 4 ((⊤ ∧ 𝑥 ∈ (cos “ (ℂ ∖ {0}))) → (1 / (cos‘𝑥)) ∈ ℂ)
52 ovexd 7483 . . . 4 ((⊤ ∧ 𝑥 ∈ (cos “ (ℂ ∖ {0}))) → (-(1 / ((cos‘𝑥)↑2)) · -(sin‘𝑥)) ∈ V)
5311simprbi 496 . . . . . 6 (𝑥 ∈ (cos “ (ℂ ∖ {0})) → (cos‘𝑥) ∈ (ℂ ∖ {0}))
5453adantl 481 . . . . 5 ((⊤ ∧ 𝑥 ∈ (cos “ (ℂ ∖ {0}))) → (cos‘𝑥) ∈ (ℂ ∖ {0}))
5529negcld 11634 . . . . 5 ((⊤ ∧ 𝑥 ∈ (cos “ (ℂ ∖ {0}))) → -(sin‘𝑥) ∈ ℂ)
56 eldifi 4154 . . . . . . 7 (𝑦 ∈ (ℂ ∖ {0}) → 𝑦 ∈ ℂ)
57 eldifsni 4815 . . . . . . 7 (𝑦 ∈ (ℂ ∖ {0}) → 𝑦 ≠ 0)
5856, 57reccld 12063 . . . . . 6 (𝑦 ∈ (ℂ ∖ {0}) → (1 / 𝑦) ∈ ℂ)
5958adantl 481 . . . . 5 ((⊤ ∧ 𝑦 ∈ (ℂ ∖ {0})) → (1 / 𝑦) ∈ ℂ)
60 negex 11534 . . . . . 6 -(1 / (𝑦↑2)) ∈ V
6160a1i 11 . . . . 5 ((⊤ ∧ 𝑦 ∈ (ℂ ∖ {0})) → -(1 / (𝑦↑2)) ∈ V)
6232negcld 11634 . . . . . 6 ((⊤ ∧ 𝑥 ∈ ℂ) → -(sin‘𝑥) ∈ ℂ)
6341oveq2d 7464 . . . . . . 7 (⊤ → (ℂ D cos) = (ℂ D (𝑥 ∈ ℂ ↦ (cos‘𝑥))))
64 dvcos 26041 . . . . . . 7 (ℂ D cos) = (𝑥 ∈ ℂ ↦ -(sin‘𝑥))
6563, 64eqtr3di 2795 . . . . . 6 (⊤ → (ℂ D (𝑥 ∈ ℂ ↦ (cos‘𝑥))) = (𝑥 ∈ ℂ ↦ -(sin‘𝑥)))
6620, 34, 62, 65, 43, 46, 44, 48dvmptres 26021 . . . . 5 (⊤ → (ℂ D (𝑥 ∈ (cos “ (ℂ ∖ {0})) ↦ (cos‘𝑥))) = (𝑥 ∈ (cos “ (ℂ ∖ {0})) ↦ -(sin‘𝑥)))
67 ax-1cn 11242 . . . . . 6 1 ∈ ℂ
68 dvrec 26013 . . . . . 6 (1 ∈ ℂ → (ℂ D (𝑦 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑦))) = (𝑦 ∈ (ℂ ∖ {0}) ↦ -(1 / (𝑦↑2))))
6967, 68mp1i 13 . . . . 5 (⊤ → (ℂ D (𝑦 ∈ (ℂ ∖ {0}) ↦ (1 / 𝑦))) = (𝑦 ∈ (ℂ ∖ {0}) ↦ -(1 / (𝑦↑2))))
70 oveq2 7456 . . . . 5 (𝑦 = (cos‘𝑥) → (1 / 𝑦) = (1 / (cos‘𝑥)))
71 oveq1 7455 . . . . . . 7 (𝑦 = (cos‘𝑥) → (𝑦↑2) = ((cos‘𝑥)↑2))
7271oveq2d 7464 . . . . . 6 (𝑦 = (cos‘𝑥) → (1 / (𝑦↑2)) = (1 / ((cos‘𝑥)↑2)))
7372negeqd 11530 . . . . 5 (𝑦 = (cos‘𝑥) → -(1 / (𝑦↑2)) = -(1 / ((cos‘𝑥)↑2)))
7420, 20, 54, 55, 59, 61, 66, 69, 70, 73dvmptco 26030 . . . 4 (⊤ → (ℂ D (𝑥 ∈ (cos “ (ℂ ∖ {0})) ↦ (1 / (cos‘𝑥)))) = (𝑥 ∈ (cos “ (ℂ ∖ {0})) ↦ (-(1 / ((cos‘𝑥)↑2)) · -(sin‘𝑥))))
7520, 29, 30, 49, 51, 52, 74dvmptmul 26019 . . 3 (⊤ → (ℂ D (𝑥 ∈ (cos “ (ℂ ∖ {0})) ↦ ((sin‘𝑥) · (1 / (cos‘𝑥))))) = (𝑥 ∈ (cos “ (ℂ ∖ {0})) ↦ (((cos‘𝑥) · (1 / (cos‘𝑥))) + ((-(1 / ((cos‘𝑥)↑2)) · -(sin‘𝑥)) · (sin‘𝑥)))))
7675mptru 1544 . 2 (ℂ D (𝑥 ∈ (cos “ (ℂ ∖ {0})) ↦ ((sin‘𝑥) · (1 / (cos‘𝑥))))) = (𝑥 ∈ (cos “ (ℂ ∖ {0})) ↦ (((cos‘𝑥) · (1 / (cos‘𝑥))) + ((-(1 / ((cos‘𝑥)↑2)) · -(sin‘𝑥)) · (sin‘𝑥))))
77 ovex 7481 . . . . 5 ((sin‘𝑥) / (cos‘𝑥)) ∈ V
7877, 1dmmpti 6724 . . . 4 dom tan = (cos “ (ℂ ∖ {0}))
7978eqcomi 2749 . . 3 (cos “ (ℂ ∖ {0})) = dom tan
808sqcld 14194 . . . . . . 7 (𝑥 ∈ (cos “ (ℂ ∖ {0})) → ((cos‘𝑥)↑2) ∈ ℂ)
817sqcld 14194 . . . . . . 7 (𝑥 ∈ (cos “ (ℂ ∖ {0})) → ((sin‘𝑥)↑2) ∈ ℂ)
82 sqne0 14173 . . . . . . . . 9 ((cos‘𝑥) ∈ ℂ → (((cos‘𝑥)↑2) ≠ 0 ↔ (cos‘𝑥) ≠ 0))
838, 82syl 17 . . . . . . . 8 (𝑥 ∈ (cos “ (ℂ ∖ {0})) → (((cos‘𝑥)↑2) ≠ 0 ↔ (cos‘𝑥) ≠ 0))
8414, 83mpbird 257 . . . . . . 7 (𝑥 ∈ (cos “ (ℂ ∖ {0})) → ((cos‘𝑥)↑2) ≠ 0)
8580, 81, 80, 84divdird 12108 . . . . . 6 (𝑥 ∈ (cos “ (ℂ ∖ {0})) → ((((cos‘𝑥)↑2) + ((sin‘𝑥)↑2)) / ((cos‘𝑥)↑2)) = ((((cos‘𝑥)↑2) / ((cos‘𝑥)↑2)) + (((sin‘𝑥)↑2) / ((cos‘𝑥)↑2))))
8680, 81addcomd 11492 . . . . . . . 8 (𝑥 ∈ (cos “ (ℂ ∖ {0})) → (((cos‘𝑥)↑2) + ((sin‘𝑥)↑2)) = (((sin‘𝑥)↑2) + ((cos‘𝑥)↑2)))
87 sincossq 16224 . . . . . . . . 9 (𝑥 ∈ ℂ → (((sin‘𝑥)↑2) + ((cos‘𝑥)↑2)) = 1)
886, 87syl 17 . . . . . . . 8 (𝑥 ∈ (cos “ (ℂ ∖ {0})) → (((sin‘𝑥)↑2) + ((cos‘𝑥)↑2)) = 1)
8986, 88eqtrd 2780 . . . . . . 7 (𝑥 ∈ (cos “ (ℂ ∖ {0})) → (((cos‘𝑥)↑2) + ((sin‘𝑥)↑2)) = 1)
9089oveq1d 7463 . . . . . 6 (𝑥 ∈ (cos “ (ℂ ∖ {0})) → ((((cos‘𝑥)↑2) + ((sin‘𝑥)↑2)) / ((cos‘𝑥)↑2)) = (1 / ((cos‘𝑥)↑2)))
9185, 90eqtr3d 2782 . . . . 5 (𝑥 ∈ (cos “ (ℂ ∖ {0})) → ((((cos‘𝑥)↑2) / ((cos‘𝑥)↑2)) + (((sin‘𝑥)↑2) / ((cos‘𝑥)↑2))) = (1 / ((cos‘𝑥)↑2)))
928, 14recidd 12065 . . . . . . 7 (𝑥 ∈ (cos “ (ℂ ∖ {0})) → ((cos‘𝑥) · (1 / (cos‘𝑥))) = 1)
9380, 84dividd 12068 . . . . . . 7 (𝑥 ∈ (cos “ (ℂ ∖ {0})) → (((cos‘𝑥)↑2) / ((cos‘𝑥)↑2)) = 1)
9492, 93eqtr4d 2783 . . . . . 6 (𝑥 ∈ (cos “ (ℂ ∖ {0})) → ((cos‘𝑥) · (1 / (cos‘𝑥))) = (((cos‘𝑥)↑2) / ((cos‘𝑥)↑2)))
957, 7, 80, 84div23d 12107 . . . . . . 7 (𝑥 ∈ (cos “ (ℂ ∖ {0})) → (((sin‘𝑥) · (sin‘𝑥)) / ((cos‘𝑥)↑2)) = (((sin‘𝑥) / ((cos‘𝑥)↑2)) · (sin‘𝑥)))
967sqvald 14193 . . . . . . . 8 (𝑥 ∈ (cos “ (ℂ ∖ {0})) → ((sin‘𝑥)↑2) = ((sin‘𝑥) · (sin‘𝑥)))
9796oveq1d 7463 . . . . . . 7 (𝑥 ∈ (cos “ (ℂ ∖ {0})) → (((sin‘𝑥)↑2) / ((cos‘𝑥)↑2)) = (((sin‘𝑥) · (sin‘𝑥)) / ((cos‘𝑥)↑2)))
9880, 84reccld 12063 . . . . . . . . . 10 (𝑥 ∈ (cos “ (ℂ ∖ {0})) → (1 / ((cos‘𝑥)↑2)) ∈ ℂ)
9998, 7mul2negd 11745 . . . . . . . . 9 (𝑥 ∈ (cos “ (ℂ ∖ {0})) → (-(1 / ((cos‘𝑥)↑2)) · -(sin‘𝑥)) = ((1 / ((cos‘𝑥)↑2)) · (sin‘𝑥)))
1007, 80, 84divrec2d 12074 . . . . . . . . 9 (𝑥 ∈ (cos “ (ℂ ∖ {0})) → ((sin‘𝑥) / ((cos‘𝑥)↑2)) = ((1 / ((cos‘𝑥)↑2)) · (sin‘𝑥)))
10199, 100eqtr4d 2783 . . . . . . . 8 (𝑥 ∈ (cos “ (ℂ ∖ {0})) → (-(1 / ((cos‘𝑥)↑2)) · -(sin‘𝑥)) = ((sin‘𝑥) / ((cos‘𝑥)↑2)))
102101oveq1d 7463 . . . . . . 7 (𝑥 ∈ (cos “ (ℂ ∖ {0})) → ((-(1 / ((cos‘𝑥)↑2)) · -(sin‘𝑥)) · (sin‘𝑥)) = (((sin‘𝑥) / ((cos‘𝑥)↑2)) · (sin‘𝑥)))
10395, 97, 1023eqtr4rd 2791 . . . . . 6 (𝑥 ∈ (cos “ (ℂ ∖ {0})) → ((-(1 / ((cos‘𝑥)↑2)) · -(sin‘𝑥)) · (sin‘𝑥)) = (((sin‘𝑥)↑2) / ((cos‘𝑥)↑2)))
10494, 103oveq12d 7466 . . . . 5 (𝑥 ∈ (cos “ (ℂ ∖ {0})) → (((cos‘𝑥) · (1 / (cos‘𝑥))) + ((-(1 / ((cos‘𝑥)↑2)) · -(sin‘𝑥)) · (sin‘𝑥))) = ((((cos‘𝑥)↑2) / ((cos‘𝑥)↑2)) + (((sin‘𝑥)↑2) / ((cos‘𝑥)↑2))))
105 2nn0 12570 . . . . . 6 2 ∈ ℕ0
106 expneg 14120 . . . . . 6 (((cos‘𝑥) ∈ ℂ ∧ 2 ∈ ℕ0) → ((cos‘𝑥)↑-2) = (1 / ((cos‘𝑥)↑2)))
1078, 105, 106sylancl 585 . . . . 5 (𝑥 ∈ (cos “ (ℂ ∖ {0})) → ((cos‘𝑥)↑-2) = (1 / ((cos‘𝑥)↑2)))
10891, 104, 1073eqtr4d 2790 . . . 4 (𝑥 ∈ (cos “ (ℂ ∖ {0})) → (((cos‘𝑥) · (1 / (cos‘𝑥))) + ((-(1 / ((cos‘𝑥)↑2)) · -(sin‘𝑥)) · (sin‘𝑥))) = ((cos‘𝑥)↑-2))
109108rgen 3069 . . 3 𝑥 ∈ (cos “ (ℂ ∖ {0}))(((cos‘𝑥) · (1 / (cos‘𝑥))) + ((-(1 / ((cos‘𝑥)↑2)) · -(sin‘𝑥)) · (sin‘𝑥))) = ((cos‘𝑥)↑-2)
110 mpteq12 5258 . . 3 (((cos “ (ℂ ∖ {0})) = dom tan ∧ ∀𝑥 ∈ (cos “ (ℂ ∖ {0}))(((cos‘𝑥) · (1 / (cos‘𝑥))) + ((-(1 / ((cos‘𝑥)↑2)) · -(sin‘𝑥)) · (sin‘𝑥))) = ((cos‘𝑥)↑-2)) → (𝑥 ∈ (cos “ (ℂ ∖ {0})) ↦ (((cos‘𝑥) · (1 / (cos‘𝑥))) + ((-(1 / ((cos‘𝑥)↑2)) · -(sin‘𝑥)) · (sin‘𝑥)))) = (𝑥 ∈ dom tan ↦ ((cos‘𝑥)↑-2)))
11179, 109, 110mp2an 691 . 2 (𝑥 ∈ (cos “ (ℂ ∖ {0})) ↦ (((cos‘𝑥) · (1 / (cos‘𝑥))) + ((-(1 / ((cos‘𝑥)↑2)) · -(sin‘𝑥)) · (sin‘𝑥)))) = (𝑥 ∈ dom tan ↦ ((cos‘𝑥)↑-2))
11218, 76, 1113eqtri 2772 1 (ℂ D tan) = (𝑥 ∈ dom tan ↦ ((cos‘𝑥)↑-2))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1537  wtru 1538  wcel 2108  wne 2946  wral 3067  Vcvv 3488  cdif 3973  wss 3976  {csn 4648  {cpr 4650  cmpt 5249  ccnv 5699  dom cdm 5700  cima 5703   Fn wfn 6568  wf 6569  cfv 6573  (class class class)co 7448  cc 11182  cr 11183  0cc0 11184  1c1 11185   + caddc 11187   · cmul 11189  -cneg 11521   / cdiv 11947  2c2 12348  0cn0 12553  cexp 14112  sincsin 16111  cosccos 16112  tanctan 16113  TopOpenctopn 17481  fldccnfld 21387   D cdv 25918
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-inf2 9710  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262  ax-addf 11263
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-iin 5018  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-of 7714  df-om 7904  df-1st 8030  df-2nd 8031  df-supp 8202  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-er 8763  df-map 8886  df-pm 8887  df-ixp 8956  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-fsupp 9432  df-fi 9480  df-sup 9511  df-inf 9512  df-oi 9579  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-z 12640  df-dec 12759  df-uz 12904  df-q 13014  df-rp 13058  df-xneg 13175  df-xadd 13176  df-xmul 13177  df-ico 13413  df-icc 13414  df-fz 13568  df-fzo 13712  df-fl 13843  df-seq 14053  df-exp 14113  df-fac 14323  df-bc 14352  df-hash 14380  df-shft 15116  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-limsup 15517  df-clim 15534  df-rlim 15535  df-sum 15735  df-ef 16115  df-sin 16117  df-cos 16118  df-tan 16119  df-struct 17194  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-mulr 17325  df-starv 17326  df-sca 17327  df-vsca 17328  df-ip 17329  df-tset 17330  df-ple 17331  df-ds 17333  df-unif 17334  df-hom 17335  df-cco 17336  df-rest 17482  df-topn 17483  df-0g 17501  df-gsum 17502  df-topgen 17503  df-pt 17504  df-prds 17507  df-xrs 17562  df-qtop 17567  df-imas 17568  df-xps 17570  df-mre 17644  df-mrc 17645  df-acs 17647  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-submnd 18819  df-mulg 19108  df-cntz 19357  df-cmn 19824  df-psmet 21379  df-xmet 21380  df-met 21381  df-bl 21382  df-mopn 21383  df-fbas 21384  df-fg 21385  df-cnfld 21388  df-top 22921  df-topon 22938  df-topsp 22960  df-bases 22974  df-cld 23048  df-ntr 23049  df-cls 23050  df-nei 23127  df-lp 23165  df-perf 23166  df-cn 23256  df-cnp 23257  df-t1 23343  df-haus 23344  df-tx 23591  df-hmeo 23784  df-fil 23875  df-fm 23967  df-flim 23968  df-flf 23969  df-xms 24351  df-ms 24352  df-tms 24353  df-cncf 24923  df-limc 25921  df-dv 25922
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator