| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > tanval | Structured version Visualization version GIF version | ||
| Description: Value of the tangent function. (Contributed by Mario Carneiro, 14-Mar-2014.) |
| Ref | Expression |
|---|---|
| tanval | ⊢ ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → (tan‘𝐴) = ((sin‘𝐴) / (cos‘𝐴))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 482 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → 𝐴 ∈ ℂ) | |
| 2 | coscl 16038 | . . . . 5 ⊢ (𝐴 ∈ ℂ → (cos‘𝐴) ∈ ℂ) | |
| 3 | 2 | anim1i 615 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → ((cos‘𝐴) ∈ ℂ ∧ (cos‘𝐴) ≠ 0)) |
| 4 | eldifsn 4737 | . . . 4 ⊢ ((cos‘𝐴) ∈ (ℂ ∖ {0}) ↔ ((cos‘𝐴) ∈ ℂ ∧ (cos‘𝐴) ≠ 0)) | |
| 5 | 3, 4 | sylibr 234 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → (cos‘𝐴) ∈ (ℂ ∖ {0})) |
| 6 | cosf 16036 | . . . 4 ⊢ cos:ℂ⟶ℂ | |
| 7 | ffn 6656 | . . . 4 ⊢ (cos:ℂ⟶ℂ → cos Fn ℂ) | |
| 8 | elpreima 6997 | . . . 4 ⊢ (cos Fn ℂ → (𝐴 ∈ (◡cos “ (ℂ ∖ {0})) ↔ (𝐴 ∈ ℂ ∧ (cos‘𝐴) ∈ (ℂ ∖ {0})))) | |
| 9 | 6, 7, 8 | mp2b 10 | . . 3 ⊢ (𝐴 ∈ (◡cos “ (ℂ ∖ {0})) ↔ (𝐴 ∈ ℂ ∧ (cos‘𝐴) ∈ (ℂ ∖ {0}))) |
| 10 | 1, 5, 9 | sylanbrc 583 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → 𝐴 ∈ (◡cos “ (ℂ ∖ {0}))) |
| 11 | fveq2 6828 | . . . 4 ⊢ (𝑥 = 𝐴 → (sin‘𝑥) = (sin‘𝐴)) | |
| 12 | fveq2 6828 | . . . 4 ⊢ (𝑥 = 𝐴 → (cos‘𝑥) = (cos‘𝐴)) | |
| 13 | 11, 12 | oveq12d 7370 | . . 3 ⊢ (𝑥 = 𝐴 → ((sin‘𝑥) / (cos‘𝑥)) = ((sin‘𝐴) / (cos‘𝐴))) |
| 14 | df-tan 15980 | . . 3 ⊢ tan = (𝑥 ∈ (◡cos “ (ℂ ∖ {0})) ↦ ((sin‘𝑥) / (cos‘𝑥))) | |
| 15 | ovex 7385 | . . 3 ⊢ ((sin‘𝐴) / (cos‘𝐴)) ∈ V | |
| 16 | 13, 14, 15 | fvmpt 6935 | . 2 ⊢ (𝐴 ∈ (◡cos “ (ℂ ∖ {0})) → (tan‘𝐴) = ((sin‘𝐴) / (cos‘𝐴))) |
| 17 | 10, 16 | syl 17 | 1 ⊢ ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → (tan‘𝐴) = ((sin‘𝐴) / (cos‘𝐴))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2113 ≠ wne 2929 ∖ cdif 3895 {csn 4575 ◡ccnv 5618 “ cima 5622 Fn wfn 6481 ⟶wf 6482 ‘cfv 6486 (class class class)co 7352 ℂcc 11011 0cc0 11013 / cdiv 11781 sincsin 15972 cosccos 15973 tanctan 15974 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-inf2 9538 ax-cnex 11069 ax-resscn 11070 ax-1cn 11071 ax-icn 11072 ax-addcl 11073 ax-addrcl 11074 ax-mulcl 11075 ax-mulrcl 11076 ax-mulcom 11077 ax-addass 11078 ax-mulass 11079 ax-distr 11080 ax-i2m1 11081 ax-1ne0 11082 ax-1rid 11083 ax-rnegex 11084 ax-rrecex 11085 ax-cnre 11086 ax-pre-lttri 11087 ax-pre-lttrn 11088 ax-pre-ltadd 11089 ax-pre-mulgt0 11090 ax-pre-sup 11091 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-int 4898 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-se 5573 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-isom 6495 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-om 7803 df-1st 7927 df-2nd 7928 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-1o 8391 df-er 8628 df-pm 8759 df-en 8876 df-dom 8877 df-sdom 8878 df-fin 8879 df-sup 9333 df-inf 9334 df-oi 9403 df-card 9839 df-pnf 11155 df-mnf 11156 df-xr 11157 df-ltxr 11158 df-le 11159 df-sub 11353 df-neg 11354 df-div 11782 df-nn 12133 df-2 12195 df-3 12196 df-n0 12389 df-z 12476 df-uz 12739 df-rp 12893 df-ico 13253 df-fz 13410 df-fzo 13557 df-fl 13698 df-seq 13911 df-exp 13971 df-fac 14183 df-hash 14240 df-shft 14976 df-cj 15008 df-re 15009 df-im 15010 df-sqrt 15144 df-abs 15145 df-limsup 15380 df-clim 15397 df-rlim 15398 df-sum 15596 df-ef 15976 df-cos 15979 df-tan 15980 |
| This theorem is referenced by: tancl 16040 tanval2 16044 retancl 16053 tanneg 16059 tan0 16062 retanhcl 16070 tanhlt1 16071 tanaddlem 16077 tanadd 16078 tanrpcl 26441 tangtx 26442 tan4thpi 26451 tan4thpiOLD 26452 tanord1 26474 atandmtan 26858 atantan 26861 basellem3 27021 basellem8 27026 tan2h 37672 tanhalfpim 42467 tan3rdpi 42470 reccot 49883 rectan 49884 onetansqsecsq 49886 |
| Copyright terms: Public domain | W3C validator |