![]() |
Mathbox for David A. Wheeler |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > tanhval-named | Structured version Visualization version GIF version |
Description: Value of the named tanh function. Here we show the simple conversion to the conventional form used in set.mm, using the definition given by df-tanh 48827. (Contributed by David A. Wheeler, 10-May-2015.) |
Ref | Expression |
---|---|
tanhval-named | ⊢ (𝐴 ∈ (◡cosh “ (ℂ ∖ {0})) → (tanh‘𝐴) = ((tan‘(i · 𝐴)) / i)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq2 7456 | . . . 4 ⊢ (𝑥 = 𝐴 → (i · 𝑥) = (i · 𝐴)) | |
2 | 1 | fveq2d 6924 | . . 3 ⊢ (𝑥 = 𝐴 → (tan‘(i · 𝑥)) = (tan‘(i · 𝐴))) |
3 | 2 | oveq1d 7463 | . 2 ⊢ (𝑥 = 𝐴 → ((tan‘(i · 𝑥)) / i) = ((tan‘(i · 𝐴)) / i)) |
4 | df-tanh 48827 | . 2 ⊢ tanh = (𝑥 ∈ (◡cosh “ (ℂ ∖ {0})) ↦ ((tan‘(i · 𝑥)) / i)) | |
5 | ovex 7481 | . 2 ⊢ ((tan‘(i · 𝐴)) / i) ∈ V | |
6 | 3, 4, 5 | fvmpt 7029 | 1 ⊢ (𝐴 ∈ (◡cosh “ (ℂ ∖ {0})) → (tanh‘𝐴) = ((tan‘(i · 𝐴)) / i)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2108 ∖ cdif 3973 {csn 4648 ◡ccnv 5699 “ cima 5703 ‘cfv 6573 (class class class)co 7448 ℂcc 11182 0cc0 11184 ici 11186 · cmul 11189 / cdiv 11947 tanctan 16113 coshccosh 48823 tanhctanh 48824 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-iota 6525 df-fun 6575 df-fv 6581 df-ov 7451 df-tanh 48827 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |