Users' Mathboxes Mathbox for David A. Wheeler < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tanhval-named Structured version   Visualization version   GIF version

Theorem tanhval-named 46157
Description: Value of the named tanh function. Here we show the simple conversion to the conventional form used in set.mm, using the definition given by df-tanh 46154. (Contributed by David A. Wheeler, 10-May-2015.)
Assertion
Ref Expression
tanhval-named (𝐴 ∈ (cosh “ (ℂ ∖ {0})) → (tanh‘𝐴) = ((tan‘(i · 𝐴)) / i))

Proof of Theorem tanhval-named
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 oveq2 7243 . . . 4 (𝑥 = 𝐴 → (i · 𝑥) = (i · 𝐴))
21fveq2d 6743 . . 3 (𝑥 = 𝐴 → (tan‘(i · 𝑥)) = (tan‘(i · 𝐴)))
32oveq1d 7250 . 2 (𝑥 = 𝐴 → ((tan‘(i · 𝑥)) / i) = ((tan‘(i · 𝐴)) / i))
4 df-tanh 46154 . 2 tanh = (𝑥 ∈ (cosh “ (ℂ ∖ {0})) ↦ ((tan‘(i · 𝑥)) / i))
5 ovex 7268 . 2 ((tan‘(i · 𝐴)) / i) ∈ V
63, 4, 5fvmpt 6840 1 (𝐴 ∈ (cosh “ (ℂ ∖ {0})) → (tanh‘𝐴) = ((tan‘(i · 𝐴)) / i))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1543  wcel 2112  cdif 3880  {csn 4558  ccnv 5568  cima 5572  cfv 6401  (class class class)co 7235  cc 10757  0cc0 10759  ici 10761   · cmul 10764   / cdiv 11519  tanctan 15660  coshccosh 46150  tanhctanh 46151
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2710  ax-sep 5209  ax-nul 5216  ax-pr 5339
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2818  df-nfc 2889  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3425  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4255  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5153  df-id 5472  df-xp 5575  df-rel 5576  df-cnv 5577  df-co 5578  df-dm 5579  df-iota 6359  df-fun 6403  df-fv 6409  df-ov 7238  df-tanh 46154
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator