| Mathbox for David A. Wheeler |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > tanhval-named | Structured version Visualization version GIF version | ||
| Description: Value of the named tanh function. Here we show the simple conversion to the conventional form used in set.mm, using the definition given by df-tanh 49349. (Contributed by David A. Wheeler, 10-May-2015.) |
| Ref | Expression |
|---|---|
| tanhval-named | ⊢ (𝐴 ∈ (◡cosh “ (ℂ ∖ {0})) → (tanh‘𝐴) = ((tan‘(i · 𝐴)) / i)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq2 7421 | . . . 4 ⊢ (𝑥 = 𝐴 → (i · 𝑥) = (i · 𝐴)) | |
| 2 | 1 | fveq2d 6890 | . . 3 ⊢ (𝑥 = 𝐴 → (tan‘(i · 𝑥)) = (tan‘(i · 𝐴))) |
| 3 | 2 | oveq1d 7428 | . 2 ⊢ (𝑥 = 𝐴 → ((tan‘(i · 𝑥)) / i) = ((tan‘(i · 𝐴)) / i)) |
| 4 | df-tanh 49349 | . 2 ⊢ tanh = (𝑥 ∈ (◡cosh “ (ℂ ∖ {0})) ↦ ((tan‘(i · 𝑥)) / i)) | |
| 5 | ovex 7446 | . 2 ⊢ ((tan‘(i · 𝐴)) / i) ∈ V | |
| 6 | 3, 4, 5 | fvmpt 6996 | 1 ⊢ (𝐴 ∈ (◡cosh “ (ℂ ∖ {0})) → (tanh‘𝐴) = ((tan‘(i · 𝐴)) / i)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2107 ∖ cdif 3928 {csn 4606 ◡ccnv 5664 “ cima 5668 ‘cfv 6541 (class class class)co 7413 ℂcc 11135 0cc0 11137 ici 11139 · cmul 11142 / cdiv 11902 tanctan 16084 coshccosh 49345 tanhctanh 49346 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5276 ax-nul 5286 ax-pr 5412 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-rab 3420 df-v 3465 df-dif 3934 df-un 3936 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-br 5124 df-opab 5186 df-mpt 5206 df-id 5558 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-iota 6494 df-fun 6543 df-fv 6549 df-ov 7416 df-tanh 49349 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |