Mathbox for David A. Wheeler |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > tanhval-named | Structured version Visualization version GIF version |
Description: Value of the named tanh function. Here we show the simple conversion to the conventional form used in set.mm, using the definition given by df-tanh 46154. (Contributed by David A. Wheeler, 10-May-2015.) |
Ref | Expression |
---|---|
tanhval-named | ⊢ (𝐴 ∈ (◡cosh “ (ℂ ∖ {0})) → (tanh‘𝐴) = ((tan‘(i · 𝐴)) / i)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq2 7243 | . . . 4 ⊢ (𝑥 = 𝐴 → (i · 𝑥) = (i · 𝐴)) | |
2 | 1 | fveq2d 6743 | . . 3 ⊢ (𝑥 = 𝐴 → (tan‘(i · 𝑥)) = (tan‘(i · 𝐴))) |
3 | 2 | oveq1d 7250 | . 2 ⊢ (𝑥 = 𝐴 → ((tan‘(i · 𝑥)) / i) = ((tan‘(i · 𝐴)) / i)) |
4 | df-tanh 46154 | . 2 ⊢ tanh = (𝑥 ∈ (◡cosh “ (ℂ ∖ {0})) ↦ ((tan‘(i · 𝑥)) / i)) | |
5 | ovex 7268 | . 2 ⊢ ((tan‘(i · 𝐴)) / i) ∈ V | |
6 | 3, 4, 5 | fvmpt 6840 | 1 ⊢ (𝐴 ∈ (◡cosh “ (ℂ ∖ {0})) → (tanh‘𝐴) = ((tan‘(i · 𝐴)) / i)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1543 ∈ wcel 2112 ∖ cdif 3880 {csn 4558 ◡ccnv 5568 “ cima 5572 ‘cfv 6401 (class class class)co 7235 ℂcc 10757 0cc0 10759 ici 10761 · cmul 10764 / cdiv 11519 tanctan 15660 coshccosh 46150 tanhctanh 46151 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2160 ax-12 2177 ax-ext 2710 ax-sep 5209 ax-nul 5216 ax-pr 5339 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2073 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2818 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3425 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4255 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5153 df-id 5472 df-xp 5575 df-rel 5576 df-cnv 5577 df-co 5578 df-dm 5579 df-iota 6359 df-fun 6403 df-fv 6409 df-ov 7238 df-tanh 46154 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |