![]() |
Mathbox for David A. Wheeler |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > tanhval-named | Structured version Visualization version GIF version |
Description: Value of the named tanh function. Here we show the simple conversion to the conventional form used in set.mm, using the definition given by df-tanh 48354. (Contributed by David A. Wheeler, 10-May-2015.) |
Ref | Expression |
---|---|
tanhval-named | ⊢ (𝐴 ∈ (◡cosh “ (ℂ ∖ {0})) → (tanh‘𝐴) = ((tan‘(i · 𝐴)) / i)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq2 7427 | . . . 4 ⊢ (𝑥 = 𝐴 → (i · 𝑥) = (i · 𝐴)) | |
2 | 1 | fveq2d 6900 | . . 3 ⊢ (𝑥 = 𝐴 → (tan‘(i · 𝑥)) = (tan‘(i · 𝐴))) |
3 | 2 | oveq1d 7434 | . 2 ⊢ (𝑥 = 𝐴 → ((tan‘(i · 𝑥)) / i) = ((tan‘(i · 𝐴)) / i)) |
4 | df-tanh 48354 | . 2 ⊢ tanh = (𝑥 ∈ (◡cosh “ (ℂ ∖ {0})) ↦ ((tan‘(i · 𝑥)) / i)) | |
5 | ovex 7452 | . 2 ⊢ ((tan‘(i · 𝐴)) / i) ∈ V | |
6 | 3, 4, 5 | fvmpt 7004 | 1 ⊢ (𝐴 ∈ (◡cosh “ (ℂ ∖ {0})) → (tanh‘𝐴) = ((tan‘(i · 𝐴)) / i)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1533 ∈ wcel 2098 ∖ cdif 3941 {csn 4630 ◡ccnv 5677 “ cima 5681 ‘cfv 6549 (class class class)co 7419 ℂcc 11143 0cc0 11145 ici 11147 · cmul 11150 / cdiv 11908 tanctan 16050 coshccosh 48350 tanhctanh 48351 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5300 ax-nul 5307 ax-pr 5429 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2930 df-ral 3051 df-rex 3060 df-rab 3419 df-v 3463 df-dif 3947 df-un 3949 df-ss 3961 df-nul 4323 df-if 4531 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4910 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5576 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-iota 6501 df-fun 6551 df-fv 6557 df-ov 7422 df-tanh 48354 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |