Users' Mathboxes Mathbox for David A. Wheeler < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tanhval-named Structured version   Visualization version   GIF version

Theorem tanhval-named 47783
Description: Value of the named tanh function. Here we show the simple conversion to the conventional form used in set.mm, using the definition given by df-tanh 47780. (Contributed by David A. Wheeler, 10-May-2015.)
Assertion
Ref Expression
tanhval-named (𝐴 ∈ (β—‘cosh β€œ (β„‚ βˆ– {0})) β†’ (tanhβ€˜π΄) = ((tanβ€˜(i Β· 𝐴)) / i))

Proof of Theorem tanhval-named
Dummy variable π‘₯ is distinct from all other variables.
StepHypRef Expression
1 oveq2 7417 . . . 4 (π‘₯ = 𝐴 β†’ (i Β· π‘₯) = (i Β· 𝐴))
21fveq2d 6896 . . 3 (π‘₯ = 𝐴 β†’ (tanβ€˜(i Β· π‘₯)) = (tanβ€˜(i Β· 𝐴)))
32oveq1d 7424 . 2 (π‘₯ = 𝐴 β†’ ((tanβ€˜(i Β· π‘₯)) / i) = ((tanβ€˜(i Β· 𝐴)) / i))
4 df-tanh 47780 . 2 tanh = (π‘₯ ∈ (β—‘cosh β€œ (β„‚ βˆ– {0})) ↦ ((tanβ€˜(i Β· π‘₯)) / i))
5 ovex 7442 . 2 ((tanβ€˜(i Β· 𝐴)) / i) ∈ V
63, 4, 5fvmpt 6999 1 (𝐴 ∈ (β—‘cosh β€œ (β„‚ βˆ– {0})) β†’ (tanhβ€˜π΄) = ((tanβ€˜(i Β· 𝐴)) / i))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   = wceq 1542   ∈ wcel 2107   βˆ– cdif 3946  {csn 4629  β—‘ccnv 5676   β€œ cima 5680  β€˜cfv 6544  (class class class)co 7409  β„‚cc 11108  0cc0 11110  ici 11112   Β· cmul 11115   / cdiv 11871  tanctan 16009  coshccosh 47776  tanhctanh 47777
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pr 5428
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-rab 3434  df-v 3477  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-iota 6496  df-fun 6546  df-fv 6552  df-ov 7412  df-tanh 47780
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator