Users' Mathboxes Mathbox for David A. Wheeler < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tanhval-named Structured version   Visualization version   GIF version

Theorem tanhval-named 49743
Description: Value of the named tanh function. Here we show the simple conversion to the conventional form used in set.mm, using the definition given by df-tanh 49740. (Contributed by David A. Wheeler, 10-May-2015.)
Assertion
Ref Expression
tanhval-named (𝐴 ∈ (cosh “ (ℂ ∖ {0})) → (tanh‘𝐴) = ((tan‘(i · 𝐴)) / i))

Proof of Theorem tanhval-named
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 oveq2 7361 . . . 4 (𝑥 = 𝐴 → (i · 𝑥) = (i · 𝐴))
21fveq2d 6830 . . 3 (𝑥 = 𝐴 → (tan‘(i · 𝑥)) = (tan‘(i · 𝐴)))
32oveq1d 7368 . 2 (𝑥 = 𝐴 → ((tan‘(i · 𝑥)) / i) = ((tan‘(i · 𝐴)) / i))
4 df-tanh 49740 . 2 tanh = (𝑥 ∈ (cosh “ (ℂ ∖ {0})) ↦ ((tan‘(i · 𝑥)) / i))
5 ovex 7386 . 2 ((tan‘(i · 𝐴)) / i) ∈ V
63, 4, 5fvmpt 6934 1 (𝐴 ∈ (cosh “ (ℂ ∖ {0})) → (tanh‘𝐴) = ((tan‘(i · 𝐴)) / i))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  cdif 3902  {csn 4579  ccnv 5622  cima 5626  cfv 6486  (class class class)co 7353  cc 11026  0cc0 11028  ici 11030   · cmul 11033   / cdiv 11796  tanctan 15991  coshccosh 49736  tanhctanh 49737
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-dif 3908  df-un 3910  df-ss 3922  df-nul 4287  df-if 4479  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-iota 6442  df-fun 6488  df-fv 6494  df-ov 7356  df-tanh 49740
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator