Users' Mathboxes Mathbox for David A. Wheeler < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tanhval-named Structured version   Visualization version   GIF version

Theorem tanhval-named 46440
Description: Value of the named tanh function. Here we show the simple conversion to the conventional form used in set.mm, using the definition given by df-tanh 46437. (Contributed by David A. Wheeler, 10-May-2015.)
Assertion
Ref Expression
tanhval-named (𝐴 ∈ (cosh “ (ℂ ∖ {0})) → (tanh‘𝐴) = ((tan‘(i · 𝐴)) / i))

Proof of Theorem tanhval-named
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 oveq2 7283 . . . 4 (𝑥 = 𝐴 → (i · 𝑥) = (i · 𝐴))
21fveq2d 6778 . . 3 (𝑥 = 𝐴 → (tan‘(i · 𝑥)) = (tan‘(i · 𝐴)))
32oveq1d 7290 . 2 (𝑥 = 𝐴 → ((tan‘(i · 𝑥)) / i) = ((tan‘(i · 𝐴)) / i))
4 df-tanh 46437 . 2 tanh = (𝑥 ∈ (cosh “ (ℂ ∖ {0})) ↦ ((tan‘(i · 𝑥)) / i))
5 ovex 7308 . 2 ((tan‘(i · 𝐴)) / i) ∈ V
63, 4, 5fvmpt 6875 1 (𝐴 ∈ (cosh “ (ℂ ∖ {0})) → (tanh‘𝐴) = ((tan‘(i · 𝐴)) / i))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2106  cdif 3884  {csn 4561  ccnv 5588  cima 5592  cfv 6433  (class class class)co 7275  cc 10869  0cc0 10871  ici 10873   · cmul 10876   / cdiv 11632  tanctan 15775  coshccosh 46433  tanhctanh 46434
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-iota 6391  df-fun 6435  df-fv 6441  df-ov 7278  df-tanh 46437
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator