Users' Mathboxes Mathbox for David A. Wheeler < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tanhval-named Structured version   Visualization version   GIF version

Theorem tanhval-named 49352
Description: Value of the named tanh function. Here we show the simple conversion to the conventional form used in set.mm, using the definition given by df-tanh 49349. (Contributed by David A. Wheeler, 10-May-2015.)
Assertion
Ref Expression
tanhval-named (𝐴 ∈ (cosh “ (ℂ ∖ {0})) → (tanh‘𝐴) = ((tan‘(i · 𝐴)) / i))

Proof of Theorem tanhval-named
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 oveq2 7421 . . . 4 (𝑥 = 𝐴 → (i · 𝑥) = (i · 𝐴))
21fveq2d 6890 . . 3 (𝑥 = 𝐴 → (tan‘(i · 𝑥)) = (tan‘(i · 𝐴)))
32oveq1d 7428 . 2 (𝑥 = 𝐴 → ((tan‘(i · 𝑥)) / i) = ((tan‘(i · 𝐴)) / i))
4 df-tanh 49349 . 2 tanh = (𝑥 ∈ (cosh “ (ℂ ∖ {0})) ↦ ((tan‘(i · 𝑥)) / i))
5 ovex 7446 . 2 ((tan‘(i · 𝐴)) / i) ∈ V
63, 4, 5fvmpt 6996 1 (𝐴 ∈ (cosh “ (ℂ ∖ {0})) → (tanh‘𝐴) = ((tan‘(i · 𝐴)) / i))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2107  cdif 3928  {csn 4606  ccnv 5664  cima 5668  cfv 6541  (class class class)co 7413  cc 11135  0cc0 11137  ici 11139   · cmul 11142   / cdiv 11902  tanctan 16084  coshccosh 49345  tanhctanh 49346
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5276  ax-nul 5286  ax-pr 5412
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-rab 3420  df-v 3465  df-dif 3934  df-un 3936  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-br 5124  df-opab 5186  df-mpt 5206  df-id 5558  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-iota 6494  df-fun 6543  df-fv 6549  df-ov 7416  df-tanh 49349
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator