Step | Hyp | Ref
| Expression |
1 | | elex 3440 |
. 2
⊢ (𝐾 ∈ 𝑉 → 𝐾 ∈ V) |
2 | | fveq2 6756 |
. . . . 5
⊢ (𝑘 = 𝐾 → (LHyp‘𝑘) = (LHyp‘𝐾)) |
3 | | tendoset.h |
. . . . 5
⊢ 𝐻 = (LHyp‘𝐾) |
4 | 2, 3 | eqtr4di 2797 |
. . . 4
⊢ (𝑘 = 𝐾 → (LHyp‘𝑘) = 𝐻) |
5 | | fveq2 6756 |
. . . . . . . 8
⊢ (𝑘 = 𝐾 → (LTrn‘𝑘) = (LTrn‘𝐾)) |
6 | 5 | fveq1d 6758 |
. . . . . . 7
⊢ (𝑘 = 𝐾 → ((LTrn‘𝑘)‘𝑤) = ((LTrn‘𝐾)‘𝑤)) |
7 | 6, 6 | feq23d 6579 |
. . . . . 6
⊢ (𝑘 = 𝐾 → (𝑠:((LTrn‘𝑘)‘𝑤)⟶((LTrn‘𝑘)‘𝑤) ↔ 𝑠:((LTrn‘𝐾)‘𝑤)⟶((LTrn‘𝐾)‘𝑤))) |
8 | 6 | raleqdv 3339 |
. . . . . . 7
⊢ (𝑘 = 𝐾 → (∀𝑔 ∈ ((LTrn‘𝑘)‘𝑤)(𝑠‘(𝑓 ∘ 𝑔)) = ((𝑠‘𝑓) ∘ (𝑠‘𝑔)) ↔ ∀𝑔 ∈ ((LTrn‘𝐾)‘𝑤)(𝑠‘(𝑓 ∘ 𝑔)) = ((𝑠‘𝑓) ∘ (𝑠‘𝑔)))) |
9 | 6, 8 | raleqbidv 3327 |
. . . . . 6
⊢ (𝑘 = 𝐾 → (∀𝑓 ∈ ((LTrn‘𝑘)‘𝑤)∀𝑔 ∈ ((LTrn‘𝑘)‘𝑤)(𝑠‘(𝑓 ∘ 𝑔)) = ((𝑠‘𝑓) ∘ (𝑠‘𝑔)) ↔ ∀𝑓 ∈ ((LTrn‘𝐾)‘𝑤)∀𝑔 ∈ ((LTrn‘𝐾)‘𝑤)(𝑠‘(𝑓 ∘ 𝑔)) = ((𝑠‘𝑓) ∘ (𝑠‘𝑔)))) |
10 | | fveq2 6756 |
. . . . . . . . . 10
⊢ (𝑘 = 𝐾 → (trL‘𝑘) = (trL‘𝐾)) |
11 | 10 | fveq1d 6758 |
. . . . . . . . 9
⊢ (𝑘 = 𝐾 → ((trL‘𝑘)‘𝑤) = ((trL‘𝐾)‘𝑤)) |
12 | 11 | fveq1d 6758 |
. . . . . . . 8
⊢ (𝑘 = 𝐾 → (((trL‘𝑘)‘𝑤)‘(𝑠‘𝑓)) = (((trL‘𝐾)‘𝑤)‘(𝑠‘𝑓))) |
13 | | fveq2 6756 |
. . . . . . . . 9
⊢ (𝑘 = 𝐾 → (le‘𝑘) = (le‘𝐾)) |
14 | | tendoset.l |
. . . . . . . . 9
⊢ ≤ =
(le‘𝐾) |
15 | 13, 14 | eqtr4di 2797 |
. . . . . . . 8
⊢ (𝑘 = 𝐾 → (le‘𝑘) = ≤ ) |
16 | 11 | fveq1d 6758 |
. . . . . . . 8
⊢ (𝑘 = 𝐾 → (((trL‘𝑘)‘𝑤)‘𝑓) = (((trL‘𝐾)‘𝑤)‘𝑓)) |
17 | 12, 15, 16 | breq123d 5084 |
. . . . . . 7
⊢ (𝑘 = 𝐾 → ((((trL‘𝑘)‘𝑤)‘(𝑠‘𝑓))(le‘𝑘)(((trL‘𝑘)‘𝑤)‘𝑓) ↔ (((trL‘𝐾)‘𝑤)‘(𝑠‘𝑓)) ≤ (((trL‘𝐾)‘𝑤)‘𝑓))) |
18 | 6, 17 | raleqbidv 3327 |
. . . . . 6
⊢ (𝑘 = 𝐾 → (∀𝑓 ∈ ((LTrn‘𝑘)‘𝑤)(((trL‘𝑘)‘𝑤)‘(𝑠‘𝑓))(le‘𝑘)(((trL‘𝑘)‘𝑤)‘𝑓) ↔ ∀𝑓 ∈ ((LTrn‘𝐾)‘𝑤)(((trL‘𝐾)‘𝑤)‘(𝑠‘𝑓)) ≤ (((trL‘𝐾)‘𝑤)‘𝑓))) |
19 | 7, 9, 18 | 3anbi123d 1434 |
. . . . 5
⊢ (𝑘 = 𝐾 → ((𝑠:((LTrn‘𝑘)‘𝑤)⟶((LTrn‘𝑘)‘𝑤) ∧ ∀𝑓 ∈ ((LTrn‘𝑘)‘𝑤)∀𝑔 ∈ ((LTrn‘𝑘)‘𝑤)(𝑠‘(𝑓 ∘ 𝑔)) = ((𝑠‘𝑓) ∘ (𝑠‘𝑔)) ∧ ∀𝑓 ∈ ((LTrn‘𝑘)‘𝑤)(((trL‘𝑘)‘𝑤)‘(𝑠‘𝑓))(le‘𝑘)(((trL‘𝑘)‘𝑤)‘𝑓)) ↔ (𝑠:((LTrn‘𝐾)‘𝑤)⟶((LTrn‘𝐾)‘𝑤) ∧ ∀𝑓 ∈ ((LTrn‘𝐾)‘𝑤)∀𝑔 ∈ ((LTrn‘𝐾)‘𝑤)(𝑠‘(𝑓 ∘ 𝑔)) = ((𝑠‘𝑓) ∘ (𝑠‘𝑔)) ∧ ∀𝑓 ∈ ((LTrn‘𝐾)‘𝑤)(((trL‘𝐾)‘𝑤)‘(𝑠‘𝑓)) ≤ (((trL‘𝐾)‘𝑤)‘𝑓)))) |
20 | 19 | abbidv 2808 |
. . . 4
⊢ (𝑘 = 𝐾 → {𝑠 ∣ (𝑠:((LTrn‘𝑘)‘𝑤)⟶((LTrn‘𝑘)‘𝑤) ∧ ∀𝑓 ∈ ((LTrn‘𝑘)‘𝑤)∀𝑔 ∈ ((LTrn‘𝑘)‘𝑤)(𝑠‘(𝑓 ∘ 𝑔)) = ((𝑠‘𝑓) ∘ (𝑠‘𝑔)) ∧ ∀𝑓 ∈ ((LTrn‘𝑘)‘𝑤)(((trL‘𝑘)‘𝑤)‘(𝑠‘𝑓))(le‘𝑘)(((trL‘𝑘)‘𝑤)‘𝑓))} = {𝑠 ∣ (𝑠:((LTrn‘𝐾)‘𝑤)⟶((LTrn‘𝐾)‘𝑤) ∧ ∀𝑓 ∈ ((LTrn‘𝐾)‘𝑤)∀𝑔 ∈ ((LTrn‘𝐾)‘𝑤)(𝑠‘(𝑓 ∘ 𝑔)) = ((𝑠‘𝑓) ∘ (𝑠‘𝑔)) ∧ ∀𝑓 ∈ ((LTrn‘𝐾)‘𝑤)(((trL‘𝐾)‘𝑤)‘(𝑠‘𝑓)) ≤ (((trL‘𝐾)‘𝑤)‘𝑓))}) |
21 | 4, 20 | mpteq12dv 5161 |
. . 3
⊢ (𝑘 = 𝐾 → (𝑤 ∈ (LHyp‘𝑘) ↦ {𝑠 ∣ (𝑠:((LTrn‘𝑘)‘𝑤)⟶((LTrn‘𝑘)‘𝑤) ∧ ∀𝑓 ∈ ((LTrn‘𝑘)‘𝑤)∀𝑔 ∈ ((LTrn‘𝑘)‘𝑤)(𝑠‘(𝑓 ∘ 𝑔)) = ((𝑠‘𝑓) ∘ (𝑠‘𝑔)) ∧ ∀𝑓 ∈ ((LTrn‘𝑘)‘𝑤)(((trL‘𝑘)‘𝑤)‘(𝑠‘𝑓))(le‘𝑘)(((trL‘𝑘)‘𝑤)‘𝑓))}) = (𝑤 ∈ 𝐻 ↦ {𝑠 ∣ (𝑠:((LTrn‘𝐾)‘𝑤)⟶((LTrn‘𝐾)‘𝑤) ∧ ∀𝑓 ∈ ((LTrn‘𝐾)‘𝑤)∀𝑔 ∈ ((LTrn‘𝐾)‘𝑤)(𝑠‘(𝑓 ∘ 𝑔)) = ((𝑠‘𝑓) ∘ (𝑠‘𝑔)) ∧ ∀𝑓 ∈ ((LTrn‘𝐾)‘𝑤)(((trL‘𝐾)‘𝑤)‘(𝑠‘𝑓)) ≤ (((trL‘𝐾)‘𝑤)‘𝑓))})) |
22 | | df-tendo 38696 |
. . 3
⊢ TEndo =
(𝑘 ∈ V ↦ (𝑤 ∈ (LHyp‘𝑘) ↦ {𝑠 ∣ (𝑠:((LTrn‘𝑘)‘𝑤)⟶((LTrn‘𝑘)‘𝑤) ∧ ∀𝑓 ∈ ((LTrn‘𝑘)‘𝑤)∀𝑔 ∈ ((LTrn‘𝑘)‘𝑤)(𝑠‘(𝑓 ∘ 𝑔)) = ((𝑠‘𝑓) ∘ (𝑠‘𝑔)) ∧ ∀𝑓 ∈ ((LTrn‘𝑘)‘𝑤)(((trL‘𝑘)‘𝑤)‘(𝑠‘𝑓))(le‘𝑘)(((trL‘𝑘)‘𝑤)‘𝑓))})) |
23 | 21, 22, 3 | mptfvmpt 7086 |
. 2
⊢ (𝐾 ∈ V →
(TEndo‘𝐾) = (𝑤 ∈ 𝐻 ↦ {𝑠 ∣ (𝑠:((LTrn‘𝐾)‘𝑤)⟶((LTrn‘𝐾)‘𝑤) ∧ ∀𝑓 ∈ ((LTrn‘𝐾)‘𝑤)∀𝑔 ∈ ((LTrn‘𝐾)‘𝑤)(𝑠‘(𝑓 ∘ 𝑔)) = ((𝑠‘𝑓) ∘ (𝑠‘𝑔)) ∧ ∀𝑓 ∈ ((LTrn‘𝐾)‘𝑤)(((trL‘𝐾)‘𝑤)‘(𝑠‘𝑓)) ≤ (((trL‘𝐾)‘𝑤)‘𝑓))})) |
24 | 1, 23 | syl 17 |
1
⊢ (𝐾 ∈ 𝑉 → (TEndo‘𝐾) = (𝑤 ∈ 𝐻 ↦ {𝑠 ∣ (𝑠:((LTrn‘𝐾)‘𝑤)⟶((LTrn‘𝐾)‘𝑤) ∧ ∀𝑓 ∈ ((LTrn‘𝐾)‘𝑤)∀𝑔 ∈ ((LTrn‘𝐾)‘𝑤)(𝑠‘(𝑓 ∘ 𝑔)) = ((𝑠‘𝑓) ∘ (𝑠‘𝑔)) ∧ ∀𝑓 ∈ ((LTrn‘𝐾)‘𝑤)(((trL‘𝐾)‘𝑤)‘(𝑠‘𝑓)) ≤ (((trL‘𝐾)‘𝑤)‘𝑓))})) |