Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tendofset Structured version   Visualization version   GIF version

Theorem tendofset 40803
Description: The set of all trace-preserving endomorphisms on the set of translations for a lattice 𝐾. (Contributed by NM, 8-Jun-2013.)
Hypotheses
Ref Expression
tendoset.l = (le‘𝐾)
tendoset.h 𝐻 = (LHyp‘𝐾)
Assertion
Ref Expression
tendofset (𝐾𝑉 → (TEndo‘𝐾) = (𝑤𝐻 ↦ {𝑠 ∣ (𝑠:((LTrn‘𝐾)‘𝑤)⟶((LTrn‘𝐾)‘𝑤) ∧ ∀𝑓 ∈ ((LTrn‘𝐾)‘𝑤)∀𝑔 ∈ ((LTrn‘𝐾)‘𝑤)(𝑠‘(𝑓𝑔)) = ((𝑠𝑓) ∘ (𝑠𝑔)) ∧ ∀𝑓 ∈ ((LTrn‘𝐾)‘𝑤)(((trL‘𝐾)‘𝑤)‘(𝑠𝑓)) (((trL‘𝐾)‘𝑤)‘𝑓))}))
Distinct variable groups:   𝑤,𝐻   𝑤,𝑠,𝑓,𝑔,𝐾
Allowed substitution hints:   𝐻(𝑓,𝑔,𝑠)   (𝑤,𝑓,𝑔,𝑠)   𝑉(𝑤,𝑓,𝑔,𝑠)

Proof of Theorem tendofset
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 elex 3457 . 2 (𝐾𝑉𝐾 ∈ V)
2 fveq2 6822 . . . . 5 (𝑘 = 𝐾 → (LHyp‘𝑘) = (LHyp‘𝐾))
3 tendoset.h . . . . 5 𝐻 = (LHyp‘𝐾)
42, 3eqtr4di 2784 . . . 4 (𝑘 = 𝐾 → (LHyp‘𝑘) = 𝐻)
5 fveq2 6822 . . . . . . . 8 (𝑘 = 𝐾 → (LTrn‘𝑘) = (LTrn‘𝐾))
65fveq1d 6824 . . . . . . 7 (𝑘 = 𝐾 → ((LTrn‘𝑘)‘𝑤) = ((LTrn‘𝐾)‘𝑤))
76, 6feq23d 6646 . . . . . 6 (𝑘 = 𝐾 → (𝑠:((LTrn‘𝑘)‘𝑤)⟶((LTrn‘𝑘)‘𝑤) ↔ 𝑠:((LTrn‘𝐾)‘𝑤)⟶((LTrn‘𝐾)‘𝑤)))
86raleqdv 3292 . . . . . . 7 (𝑘 = 𝐾 → (∀𝑔 ∈ ((LTrn‘𝑘)‘𝑤)(𝑠‘(𝑓𝑔)) = ((𝑠𝑓) ∘ (𝑠𝑔)) ↔ ∀𝑔 ∈ ((LTrn‘𝐾)‘𝑤)(𝑠‘(𝑓𝑔)) = ((𝑠𝑓) ∘ (𝑠𝑔))))
96, 8raleqbidv 3312 . . . . . 6 (𝑘 = 𝐾 → (∀𝑓 ∈ ((LTrn‘𝑘)‘𝑤)∀𝑔 ∈ ((LTrn‘𝑘)‘𝑤)(𝑠‘(𝑓𝑔)) = ((𝑠𝑓) ∘ (𝑠𝑔)) ↔ ∀𝑓 ∈ ((LTrn‘𝐾)‘𝑤)∀𝑔 ∈ ((LTrn‘𝐾)‘𝑤)(𝑠‘(𝑓𝑔)) = ((𝑠𝑓) ∘ (𝑠𝑔))))
10 fveq2 6822 . . . . . . . . . 10 (𝑘 = 𝐾 → (trL‘𝑘) = (trL‘𝐾))
1110fveq1d 6824 . . . . . . . . 9 (𝑘 = 𝐾 → ((trL‘𝑘)‘𝑤) = ((trL‘𝐾)‘𝑤))
1211fveq1d 6824 . . . . . . . 8 (𝑘 = 𝐾 → (((trL‘𝑘)‘𝑤)‘(𝑠𝑓)) = (((trL‘𝐾)‘𝑤)‘(𝑠𝑓)))
13 fveq2 6822 . . . . . . . . 9 (𝑘 = 𝐾 → (le‘𝑘) = (le‘𝐾))
14 tendoset.l . . . . . . . . 9 = (le‘𝐾)
1513, 14eqtr4di 2784 . . . . . . . 8 (𝑘 = 𝐾 → (le‘𝑘) = )
1611fveq1d 6824 . . . . . . . 8 (𝑘 = 𝐾 → (((trL‘𝑘)‘𝑤)‘𝑓) = (((trL‘𝐾)‘𝑤)‘𝑓))
1712, 15, 16breq123d 5105 . . . . . . 7 (𝑘 = 𝐾 → ((((trL‘𝑘)‘𝑤)‘(𝑠𝑓))(le‘𝑘)(((trL‘𝑘)‘𝑤)‘𝑓) ↔ (((trL‘𝐾)‘𝑤)‘(𝑠𝑓)) (((trL‘𝐾)‘𝑤)‘𝑓)))
186, 17raleqbidv 3312 . . . . . 6 (𝑘 = 𝐾 → (∀𝑓 ∈ ((LTrn‘𝑘)‘𝑤)(((trL‘𝑘)‘𝑤)‘(𝑠𝑓))(le‘𝑘)(((trL‘𝑘)‘𝑤)‘𝑓) ↔ ∀𝑓 ∈ ((LTrn‘𝐾)‘𝑤)(((trL‘𝐾)‘𝑤)‘(𝑠𝑓)) (((trL‘𝐾)‘𝑤)‘𝑓)))
197, 9, 183anbi123d 1438 . . . . 5 (𝑘 = 𝐾 → ((𝑠:((LTrn‘𝑘)‘𝑤)⟶((LTrn‘𝑘)‘𝑤) ∧ ∀𝑓 ∈ ((LTrn‘𝑘)‘𝑤)∀𝑔 ∈ ((LTrn‘𝑘)‘𝑤)(𝑠‘(𝑓𝑔)) = ((𝑠𝑓) ∘ (𝑠𝑔)) ∧ ∀𝑓 ∈ ((LTrn‘𝑘)‘𝑤)(((trL‘𝑘)‘𝑤)‘(𝑠𝑓))(le‘𝑘)(((trL‘𝑘)‘𝑤)‘𝑓)) ↔ (𝑠:((LTrn‘𝐾)‘𝑤)⟶((LTrn‘𝐾)‘𝑤) ∧ ∀𝑓 ∈ ((LTrn‘𝐾)‘𝑤)∀𝑔 ∈ ((LTrn‘𝐾)‘𝑤)(𝑠‘(𝑓𝑔)) = ((𝑠𝑓) ∘ (𝑠𝑔)) ∧ ∀𝑓 ∈ ((LTrn‘𝐾)‘𝑤)(((trL‘𝐾)‘𝑤)‘(𝑠𝑓)) (((trL‘𝐾)‘𝑤)‘𝑓))))
2019abbidv 2797 . . . 4 (𝑘 = 𝐾 → {𝑠 ∣ (𝑠:((LTrn‘𝑘)‘𝑤)⟶((LTrn‘𝑘)‘𝑤) ∧ ∀𝑓 ∈ ((LTrn‘𝑘)‘𝑤)∀𝑔 ∈ ((LTrn‘𝑘)‘𝑤)(𝑠‘(𝑓𝑔)) = ((𝑠𝑓) ∘ (𝑠𝑔)) ∧ ∀𝑓 ∈ ((LTrn‘𝑘)‘𝑤)(((trL‘𝑘)‘𝑤)‘(𝑠𝑓))(le‘𝑘)(((trL‘𝑘)‘𝑤)‘𝑓))} = {𝑠 ∣ (𝑠:((LTrn‘𝐾)‘𝑤)⟶((LTrn‘𝐾)‘𝑤) ∧ ∀𝑓 ∈ ((LTrn‘𝐾)‘𝑤)∀𝑔 ∈ ((LTrn‘𝐾)‘𝑤)(𝑠‘(𝑓𝑔)) = ((𝑠𝑓) ∘ (𝑠𝑔)) ∧ ∀𝑓 ∈ ((LTrn‘𝐾)‘𝑤)(((trL‘𝐾)‘𝑤)‘(𝑠𝑓)) (((trL‘𝐾)‘𝑤)‘𝑓))})
214, 20mpteq12dv 5178 . . 3 (𝑘 = 𝐾 → (𝑤 ∈ (LHyp‘𝑘) ↦ {𝑠 ∣ (𝑠:((LTrn‘𝑘)‘𝑤)⟶((LTrn‘𝑘)‘𝑤) ∧ ∀𝑓 ∈ ((LTrn‘𝑘)‘𝑤)∀𝑔 ∈ ((LTrn‘𝑘)‘𝑤)(𝑠‘(𝑓𝑔)) = ((𝑠𝑓) ∘ (𝑠𝑔)) ∧ ∀𝑓 ∈ ((LTrn‘𝑘)‘𝑤)(((trL‘𝑘)‘𝑤)‘(𝑠𝑓))(le‘𝑘)(((trL‘𝑘)‘𝑤)‘𝑓))}) = (𝑤𝐻 ↦ {𝑠 ∣ (𝑠:((LTrn‘𝐾)‘𝑤)⟶((LTrn‘𝐾)‘𝑤) ∧ ∀𝑓 ∈ ((LTrn‘𝐾)‘𝑤)∀𝑔 ∈ ((LTrn‘𝐾)‘𝑤)(𝑠‘(𝑓𝑔)) = ((𝑠𝑓) ∘ (𝑠𝑔)) ∧ ∀𝑓 ∈ ((LTrn‘𝐾)‘𝑤)(((trL‘𝐾)‘𝑤)‘(𝑠𝑓)) (((trL‘𝐾)‘𝑤)‘𝑓))}))
22 df-tendo 40800 . . 3 TEndo = (𝑘 ∈ V ↦ (𝑤 ∈ (LHyp‘𝑘) ↦ {𝑠 ∣ (𝑠:((LTrn‘𝑘)‘𝑤)⟶((LTrn‘𝑘)‘𝑤) ∧ ∀𝑓 ∈ ((LTrn‘𝑘)‘𝑤)∀𝑔 ∈ ((LTrn‘𝑘)‘𝑤)(𝑠‘(𝑓𝑔)) = ((𝑠𝑓) ∘ (𝑠𝑔)) ∧ ∀𝑓 ∈ ((LTrn‘𝑘)‘𝑤)(((trL‘𝑘)‘𝑤)‘(𝑠𝑓))(le‘𝑘)(((trL‘𝑘)‘𝑤)‘𝑓))}))
2321, 22, 3mptfvmpt 7162 . 2 (𝐾 ∈ V → (TEndo‘𝐾) = (𝑤𝐻 ↦ {𝑠 ∣ (𝑠:((LTrn‘𝐾)‘𝑤)⟶((LTrn‘𝐾)‘𝑤) ∧ ∀𝑓 ∈ ((LTrn‘𝐾)‘𝑤)∀𝑔 ∈ ((LTrn‘𝐾)‘𝑤)(𝑠‘(𝑓𝑔)) = ((𝑠𝑓) ∘ (𝑠𝑔)) ∧ ∀𝑓 ∈ ((LTrn‘𝐾)‘𝑤)(((trL‘𝐾)‘𝑤)‘(𝑠𝑓)) (((trL‘𝐾)‘𝑤)‘𝑓))}))
241, 23syl 17 1 (𝐾𝑉 → (TEndo‘𝐾) = (𝑤𝐻 ↦ {𝑠 ∣ (𝑠:((LTrn‘𝐾)‘𝑤)⟶((LTrn‘𝐾)‘𝑤) ∧ ∀𝑓 ∈ ((LTrn‘𝐾)‘𝑤)∀𝑔 ∈ ((LTrn‘𝐾)‘𝑤)(𝑠‘(𝑓𝑔)) = ((𝑠𝑓) ∘ (𝑠𝑔)) ∧ ∀𝑓 ∈ ((LTrn‘𝐾)‘𝑤)(((trL‘𝐾)‘𝑤)‘(𝑠𝑓)) (((trL‘𝐾)‘𝑤)‘𝑓))}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1541  wcel 2111  {cab 2709  wral 3047  Vcvv 3436   class class class wbr 5091  cmpt 5172  ccom 5620  wf 6477  cfv 6481  lecple 17168  LHypclh 40029  LTrncltrn 40146  trLctrl 40203  TEndoctendo 40797
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pr 5370
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-tendo 40800
This theorem is referenced by:  tendoset  40804
  Copyright terms: Public domain W3C validator