Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tendofset Structured version   Visualization version   GIF version

Theorem tendofset 40168
Description: The set of all trace-preserving endomorphisms on the set of translations for a lattice 𝐾. (Contributed by NM, 8-Jun-2013.)
Hypotheses
Ref Expression
tendoset.l = (le‘𝐾)
tendoset.h 𝐻 = (LHyp‘𝐾)
Assertion
Ref Expression
tendofset (𝐾𝑉 → (TEndo‘𝐾) = (𝑤𝐻 ↦ {𝑠 ∣ (𝑠:((LTrn‘𝐾)‘𝑤)⟶((LTrn‘𝐾)‘𝑤) ∧ ∀𝑓 ∈ ((LTrn‘𝐾)‘𝑤)∀𝑔 ∈ ((LTrn‘𝐾)‘𝑤)(𝑠‘(𝑓𝑔)) = ((𝑠𝑓) ∘ (𝑠𝑔)) ∧ ∀𝑓 ∈ ((LTrn‘𝐾)‘𝑤)(((trL‘𝐾)‘𝑤)‘(𝑠𝑓)) (((trL‘𝐾)‘𝑤)‘𝑓))}))
Distinct variable groups:   𝑤,𝐻   𝑤,𝑠,𝑓,𝑔,𝐾
Allowed substitution hints:   𝐻(𝑓,𝑔,𝑠)   (𝑤,𝑓,𝑔,𝑠)   𝑉(𝑤,𝑓,𝑔,𝑠)

Proof of Theorem tendofset
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 elex 3488 . 2 (𝐾𝑉𝐾 ∈ V)
2 fveq2 6891 . . . . 5 (𝑘 = 𝐾 → (LHyp‘𝑘) = (LHyp‘𝐾))
3 tendoset.h . . . . 5 𝐻 = (LHyp‘𝐾)
42, 3eqtr4di 2785 . . . 4 (𝑘 = 𝐾 → (LHyp‘𝑘) = 𝐻)
5 fveq2 6891 . . . . . . . 8 (𝑘 = 𝐾 → (LTrn‘𝑘) = (LTrn‘𝐾))
65fveq1d 6893 . . . . . . 7 (𝑘 = 𝐾 → ((LTrn‘𝑘)‘𝑤) = ((LTrn‘𝐾)‘𝑤))
76, 6feq23d 6711 . . . . . 6 (𝑘 = 𝐾 → (𝑠:((LTrn‘𝑘)‘𝑤)⟶((LTrn‘𝑘)‘𝑤) ↔ 𝑠:((LTrn‘𝐾)‘𝑤)⟶((LTrn‘𝐾)‘𝑤)))
86raleqdv 3320 . . . . . . 7 (𝑘 = 𝐾 → (∀𝑔 ∈ ((LTrn‘𝑘)‘𝑤)(𝑠‘(𝑓𝑔)) = ((𝑠𝑓) ∘ (𝑠𝑔)) ↔ ∀𝑔 ∈ ((LTrn‘𝐾)‘𝑤)(𝑠‘(𝑓𝑔)) = ((𝑠𝑓) ∘ (𝑠𝑔))))
96, 8raleqbidv 3337 . . . . . 6 (𝑘 = 𝐾 → (∀𝑓 ∈ ((LTrn‘𝑘)‘𝑤)∀𝑔 ∈ ((LTrn‘𝑘)‘𝑤)(𝑠‘(𝑓𝑔)) = ((𝑠𝑓) ∘ (𝑠𝑔)) ↔ ∀𝑓 ∈ ((LTrn‘𝐾)‘𝑤)∀𝑔 ∈ ((LTrn‘𝐾)‘𝑤)(𝑠‘(𝑓𝑔)) = ((𝑠𝑓) ∘ (𝑠𝑔))))
10 fveq2 6891 . . . . . . . . . 10 (𝑘 = 𝐾 → (trL‘𝑘) = (trL‘𝐾))
1110fveq1d 6893 . . . . . . . . 9 (𝑘 = 𝐾 → ((trL‘𝑘)‘𝑤) = ((trL‘𝐾)‘𝑤))
1211fveq1d 6893 . . . . . . . 8 (𝑘 = 𝐾 → (((trL‘𝑘)‘𝑤)‘(𝑠𝑓)) = (((trL‘𝐾)‘𝑤)‘(𝑠𝑓)))
13 fveq2 6891 . . . . . . . . 9 (𝑘 = 𝐾 → (le‘𝑘) = (le‘𝐾))
14 tendoset.l . . . . . . . . 9 = (le‘𝐾)
1513, 14eqtr4di 2785 . . . . . . . 8 (𝑘 = 𝐾 → (le‘𝑘) = )
1611fveq1d 6893 . . . . . . . 8 (𝑘 = 𝐾 → (((trL‘𝑘)‘𝑤)‘𝑓) = (((trL‘𝐾)‘𝑤)‘𝑓))
1712, 15, 16breq123d 5156 . . . . . . 7 (𝑘 = 𝐾 → ((((trL‘𝑘)‘𝑤)‘(𝑠𝑓))(le‘𝑘)(((trL‘𝑘)‘𝑤)‘𝑓) ↔ (((trL‘𝐾)‘𝑤)‘(𝑠𝑓)) (((trL‘𝐾)‘𝑤)‘𝑓)))
186, 17raleqbidv 3337 . . . . . 6 (𝑘 = 𝐾 → (∀𝑓 ∈ ((LTrn‘𝑘)‘𝑤)(((trL‘𝑘)‘𝑤)‘(𝑠𝑓))(le‘𝑘)(((trL‘𝑘)‘𝑤)‘𝑓) ↔ ∀𝑓 ∈ ((LTrn‘𝐾)‘𝑤)(((trL‘𝐾)‘𝑤)‘(𝑠𝑓)) (((trL‘𝐾)‘𝑤)‘𝑓)))
197, 9, 183anbi123d 1433 . . . . 5 (𝑘 = 𝐾 → ((𝑠:((LTrn‘𝑘)‘𝑤)⟶((LTrn‘𝑘)‘𝑤) ∧ ∀𝑓 ∈ ((LTrn‘𝑘)‘𝑤)∀𝑔 ∈ ((LTrn‘𝑘)‘𝑤)(𝑠‘(𝑓𝑔)) = ((𝑠𝑓) ∘ (𝑠𝑔)) ∧ ∀𝑓 ∈ ((LTrn‘𝑘)‘𝑤)(((trL‘𝑘)‘𝑤)‘(𝑠𝑓))(le‘𝑘)(((trL‘𝑘)‘𝑤)‘𝑓)) ↔ (𝑠:((LTrn‘𝐾)‘𝑤)⟶((LTrn‘𝐾)‘𝑤) ∧ ∀𝑓 ∈ ((LTrn‘𝐾)‘𝑤)∀𝑔 ∈ ((LTrn‘𝐾)‘𝑤)(𝑠‘(𝑓𝑔)) = ((𝑠𝑓) ∘ (𝑠𝑔)) ∧ ∀𝑓 ∈ ((LTrn‘𝐾)‘𝑤)(((trL‘𝐾)‘𝑤)‘(𝑠𝑓)) (((trL‘𝐾)‘𝑤)‘𝑓))))
2019abbidv 2796 . . . 4 (𝑘 = 𝐾 → {𝑠 ∣ (𝑠:((LTrn‘𝑘)‘𝑤)⟶((LTrn‘𝑘)‘𝑤) ∧ ∀𝑓 ∈ ((LTrn‘𝑘)‘𝑤)∀𝑔 ∈ ((LTrn‘𝑘)‘𝑤)(𝑠‘(𝑓𝑔)) = ((𝑠𝑓) ∘ (𝑠𝑔)) ∧ ∀𝑓 ∈ ((LTrn‘𝑘)‘𝑤)(((trL‘𝑘)‘𝑤)‘(𝑠𝑓))(le‘𝑘)(((trL‘𝑘)‘𝑤)‘𝑓))} = {𝑠 ∣ (𝑠:((LTrn‘𝐾)‘𝑤)⟶((LTrn‘𝐾)‘𝑤) ∧ ∀𝑓 ∈ ((LTrn‘𝐾)‘𝑤)∀𝑔 ∈ ((LTrn‘𝐾)‘𝑤)(𝑠‘(𝑓𝑔)) = ((𝑠𝑓) ∘ (𝑠𝑔)) ∧ ∀𝑓 ∈ ((LTrn‘𝐾)‘𝑤)(((trL‘𝐾)‘𝑤)‘(𝑠𝑓)) (((trL‘𝐾)‘𝑤)‘𝑓))})
214, 20mpteq12dv 5233 . . 3 (𝑘 = 𝐾 → (𝑤 ∈ (LHyp‘𝑘) ↦ {𝑠 ∣ (𝑠:((LTrn‘𝑘)‘𝑤)⟶((LTrn‘𝑘)‘𝑤) ∧ ∀𝑓 ∈ ((LTrn‘𝑘)‘𝑤)∀𝑔 ∈ ((LTrn‘𝑘)‘𝑤)(𝑠‘(𝑓𝑔)) = ((𝑠𝑓) ∘ (𝑠𝑔)) ∧ ∀𝑓 ∈ ((LTrn‘𝑘)‘𝑤)(((trL‘𝑘)‘𝑤)‘(𝑠𝑓))(le‘𝑘)(((trL‘𝑘)‘𝑤)‘𝑓))}) = (𝑤𝐻 ↦ {𝑠 ∣ (𝑠:((LTrn‘𝐾)‘𝑤)⟶((LTrn‘𝐾)‘𝑤) ∧ ∀𝑓 ∈ ((LTrn‘𝐾)‘𝑤)∀𝑔 ∈ ((LTrn‘𝐾)‘𝑤)(𝑠‘(𝑓𝑔)) = ((𝑠𝑓) ∘ (𝑠𝑔)) ∧ ∀𝑓 ∈ ((LTrn‘𝐾)‘𝑤)(((trL‘𝐾)‘𝑤)‘(𝑠𝑓)) (((trL‘𝐾)‘𝑤)‘𝑓))}))
22 df-tendo 40165 . . 3 TEndo = (𝑘 ∈ V ↦ (𝑤 ∈ (LHyp‘𝑘) ↦ {𝑠 ∣ (𝑠:((LTrn‘𝑘)‘𝑤)⟶((LTrn‘𝑘)‘𝑤) ∧ ∀𝑓 ∈ ((LTrn‘𝑘)‘𝑤)∀𝑔 ∈ ((LTrn‘𝑘)‘𝑤)(𝑠‘(𝑓𝑔)) = ((𝑠𝑓) ∘ (𝑠𝑔)) ∧ ∀𝑓 ∈ ((LTrn‘𝑘)‘𝑤)(((trL‘𝑘)‘𝑤)‘(𝑠𝑓))(le‘𝑘)(((trL‘𝑘)‘𝑤)‘𝑓))}))
2321, 22, 3mptfvmpt 7234 . 2 (𝐾 ∈ V → (TEndo‘𝐾) = (𝑤𝐻 ↦ {𝑠 ∣ (𝑠:((LTrn‘𝐾)‘𝑤)⟶((LTrn‘𝐾)‘𝑤) ∧ ∀𝑓 ∈ ((LTrn‘𝐾)‘𝑤)∀𝑔 ∈ ((LTrn‘𝐾)‘𝑤)(𝑠‘(𝑓𝑔)) = ((𝑠𝑓) ∘ (𝑠𝑔)) ∧ ∀𝑓 ∈ ((LTrn‘𝐾)‘𝑤)(((trL‘𝐾)‘𝑤)‘(𝑠𝑓)) (((trL‘𝐾)‘𝑤)‘𝑓))}))
241, 23syl 17 1 (𝐾𝑉 → (TEndo‘𝐾) = (𝑤𝐻 ↦ {𝑠 ∣ (𝑠:((LTrn‘𝐾)‘𝑤)⟶((LTrn‘𝐾)‘𝑤) ∧ ∀𝑓 ∈ ((LTrn‘𝐾)‘𝑤)∀𝑔 ∈ ((LTrn‘𝐾)‘𝑤)(𝑠‘(𝑓𝑔)) = ((𝑠𝑓) ∘ (𝑠𝑔)) ∧ ∀𝑓 ∈ ((LTrn‘𝐾)‘𝑤)(((trL‘𝐾)‘𝑤)‘(𝑠𝑓)) (((trL‘𝐾)‘𝑤)‘𝑓))}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1085   = wceq 1534  wcel 2099  {cab 2704  wral 3056  Vcvv 3469   class class class wbr 5142  cmpt 5225  ccom 5676  wf 6538  cfv 6542  lecple 17231  LHypclh 39394  LTrncltrn 39511  trLctrl 39568  TEndoctendo 40162
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2164  ax-ext 2698  ax-rep 5279  ax-sep 5293  ax-nul 5300  ax-pr 5423
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2936  df-ral 3057  df-rex 3066  df-reu 3372  df-rab 3428  df-v 3471  df-sbc 3775  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-nul 4319  df-if 4525  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-iun 4993  df-br 5143  df-opab 5205  df-mpt 5226  df-id 5570  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-tendo 40165
This theorem is referenced by:  tendoset  40169
  Copyright terms: Public domain W3C validator