Detailed syntax breakdown of Definition df-thinc
Step | Hyp | Ref
| Expression |
1 | | cthinc 46188 |
. 2
class
ThinCat |
2 | | vf |
. . . . . . . . . 10
setvar 𝑓 |
3 | 2 | cv 1538 |
. . . . . . . . 9
class 𝑓 |
4 | | vx |
. . . . . . . . . . 11
setvar 𝑥 |
5 | 4 | cv 1538 |
. . . . . . . . . 10
class 𝑥 |
6 | | vy |
. . . . . . . . . . 11
setvar 𝑦 |
7 | 6 | cv 1538 |
. . . . . . . . . 10
class 𝑦 |
8 | | vh |
. . . . . . . . . . 11
setvar ℎ |
9 | 8 | cv 1538 |
. . . . . . . . . 10
class ℎ |
10 | 5, 7, 9 | co 7255 |
. . . . . . . . 9
class (𝑥ℎ𝑦) |
11 | 3, 10 | wcel 2108 |
. . . . . . . 8
wff 𝑓 ∈ (𝑥ℎ𝑦) |
12 | 11, 2 | wmo 2538 |
. . . . . . 7
wff
∃*𝑓 𝑓 ∈ (𝑥ℎ𝑦) |
13 | | vb |
. . . . . . . 8
setvar 𝑏 |
14 | 13 | cv 1538 |
. . . . . . 7
class 𝑏 |
15 | 12, 6, 14 | wral 3063 |
. . . . . 6
wff
∀𝑦 ∈
𝑏 ∃*𝑓 𝑓 ∈ (𝑥ℎ𝑦) |
16 | 15, 4, 14 | wral 3063 |
. . . . 5
wff
∀𝑥 ∈
𝑏 ∀𝑦 ∈ 𝑏 ∃*𝑓 𝑓 ∈ (𝑥ℎ𝑦) |
17 | | vc |
. . . . . . 7
setvar 𝑐 |
18 | 17 | cv 1538 |
. . . . . 6
class 𝑐 |
19 | | chom 16899 |
. . . . . 6
class
Hom |
20 | 18, 19 | cfv 6418 |
. . . . 5
class (Hom
‘𝑐) |
21 | 16, 8, 20 | wsbc 3711 |
. . . 4
wff
[(Hom ‘𝑐) / ℎ]∀𝑥 ∈ 𝑏 ∀𝑦 ∈ 𝑏 ∃*𝑓 𝑓 ∈ (𝑥ℎ𝑦) |
22 | | cbs 16840 |
. . . . 5
class
Base |
23 | 18, 22 | cfv 6418 |
. . . 4
class
(Base‘𝑐) |
24 | 21, 13, 23 | wsbc 3711 |
. . 3
wff
[(Base‘𝑐) / 𝑏][(Hom ‘𝑐) / ℎ]∀𝑥 ∈ 𝑏 ∀𝑦 ∈ 𝑏 ∃*𝑓 𝑓 ∈ (𝑥ℎ𝑦) |
25 | | ccat 17290 |
. . 3
class
Cat |
26 | 24, 17, 25 | crab 3067 |
. 2
class {𝑐 ∈ Cat ∣
[(Base‘𝑐) /
𝑏][(Hom
‘𝑐) / ℎ]∀𝑥 ∈ 𝑏 ∀𝑦 ∈ 𝑏 ∃*𝑓 𝑓 ∈ (𝑥ℎ𝑦)} |
27 | 1, 26 | wceq 1539 |
1
wff ThinCat =
{𝑐 ∈ Cat ∣
[(Base‘𝑐) /
𝑏][(Hom
‘𝑐) / ℎ]∀𝑥 ∈ 𝑏 ∀𝑦 ∈ 𝑏 ∃*𝑓 𝑓 ∈ (𝑥ℎ𝑦)} |