Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  df-thinc Structured version   Visualization version   GIF version

Definition df-thinc 46301
Description: Definition of the class of thin categories, or posetal categories, whose hom-sets each contain at most one morphism. Example 3.26(2) of [Adamek] p. 33. "ThinCat" was taken instead of "PosCat" because the latter might mean the category of posets. (Contributed by Zhi Wang, 17-Sep-2024.)
Assertion
Ref Expression
df-thinc ThinCat = {𝑐 ∈ Cat ∣ [(Base‘𝑐) / 𝑏][(Hom ‘𝑐) / ]𝑥𝑏𝑦𝑏 ∃*𝑓 𝑓 ∈ (𝑥𝑦)}
Distinct variable group:   𝑏,𝑐,𝑓,,𝑥,𝑦

Detailed syntax breakdown of Definition df-thinc
StepHypRef Expression
1 cthinc 46300 . 2 class ThinCat
2 vf . . . . . . . . . 10 setvar 𝑓
32cv 1538 . . . . . . . . 9 class 𝑓
4 vx . . . . . . . . . . 11 setvar 𝑥
54cv 1538 . . . . . . . . . 10 class 𝑥
6 vy . . . . . . . . . . 11 setvar 𝑦
76cv 1538 . . . . . . . . . 10 class 𝑦
8 vh . . . . . . . . . . 11 setvar
98cv 1538 . . . . . . . . . 10 class
105, 7, 9co 7275 . . . . . . . . 9 class (𝑥𝑦)
113, 10wcel 2106 . . . . . . . 8 wff 𝑓 ∈ (𝑥𝑦)
1211, 2wmo 2538 . . . . . . 7 wff ∃*𝑓 𝑓 ∈ (𝑥𝑦)
13 vb . . . . . . . 8 setvar 𝑏
1413cv 1538 . . . . . . 7 class 𝑏
1512, 6, 14wral 3064 . . . . . 6 wff 𝑦𝑏 ∃*𝑓 𝑓 ∈ (𝑥𝑦)
1615, 4, 14wral 3064 . . . . 5 wff 𝑥𝑏𝑦𝑏 ∃*𝑓 𝑓 ∈ (𝑥𝑦)
17 vc . . . . . . 7 setvar 𝑐
1817cv 1538 . . . . . 6 class 𝑐
19 chom 16973 . . . . . 6 class Hom
2018, 19cfv 6433 . . . . 5 class (Hom ‘𝑐)
2116, 8, 20wsbc 3716 . . . 4 wff [(Hom ‘𝑐) / ]𝑥𝑏𝑦𝑏 ∃*𝑓 𝑓 ∈ (𝑥𝑦)
22 cbs 16912 . . . . 5 class Base
2318, 22cfv 6433 . . . 4 class (Base‘𝑐)
2421, 13, 23wsbc 3716 . . 3 wff [(Base‘𝑐) / 𝑏][(Hom ‘𝑐) / ]𝑥𝑏𝑦𝑏 ∃*𝑓 𝑓 ∈ (𝑥𝑦)
25 ccat 17373 . . 3 class Cat
2624, 17, 25crab 3068 . 2 class {𝑐 ∈ Cat ∣ [(Base‘𝑐) / 𝑏][(Hom ‘𝑐) / ]𝑥𝑏𝑦𝑏 ∃*𝑓 𝑓 ∈ (𝑥𝑦)}
271, 26wceq 1539 1 wff ThinCat = {𝑐 ∈ Cat ∣ [(Base‘𝑐) / 𝑏][(Hom ‘𝑐) / ]𝑥𝑏𝑦𝑏 ∃*𝑓 𝑓 ∈ (𝑥𝑦)}
Colors of variables: wff setvar class
This definition is referenced by:  isthinc  46302
  Copyright terms: Public domain W3C validator