Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isthinc Structured version   Visualization version   GIF version

Theorem isthinc 48688
Description: The predicate "is a thin category". (Contributed by Zhi Wang, 17-Sep-2024.)
Hypotheses
Ref Expression
isthinc.b 𝐵 = (Base‘𝐶)
isthinc.h 𝐻 = (Hom ‘𝐶)
Assertion
Ref Expression
isthinc (𝐶 ∈ ThinCat ↔ (𝐶 ∈ Cat ∧ ∀𝑥𝐵𝑦𝐵 ∃*𝑓 𝑓 ∈ (𝑥𝐻𝑦)))
Distinct variable groups:   𝐵,𝑓,𝑥,𝑦   𝐶,𝑓,𝑥,𝑦   𝑓,𝐻,𝑥,𝑦

Proof of Theorem isthinc
Dummy variables 𝑏 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fvexd 6935 . . 3 (𝑐 = 𝐶 → (Base‘𝑐) ∈ V)
2 fveq2 6920 . . . 4 (𝑐 = 𝐶 → (Base‘𝑐) = (Base‘𝐶))
3 isthinc.b . . . 4 𝐵 = (Base‘𝐶)
42, 3eqtr4di 2798 . . 3 (𝑐 = 𝐶 → (Base‘𝑐) = 𝐵)
5 fvexd 6935 . . . 4 ((𝑐 = 𝐶𝑏 = 𝐵) → (Hom ‘𝑐) ∈ V)
6 fveq2 6920 . . . . . 6 (𝑐 = 𝐶 → (Hom ‘𝑐) = (Hom ‘𝐶))
7 isthinc.h . . . . . 6 𝐻 = (Hom ‘𝐶)
86, 7eqtr4di 2798 . . . . 5 (𝑐 = 𝐶 → (Hom ‘𝑐) = 𝐻)
98adantr 480 . . . 4 ((𝑐 = 𝐶𝑏 = 𝐵) → (Hom ‘𝑐) = 𝐻)
10 raleq 3331 . . . . . . 7 (𝑏 = 𝐵 → (∀𝑦𝑏 ∃*𝑓 𝑓 ∈ (𝑥𝑦) ↔ ∀𝑦𝐵 ∃*𝑓 𝑓 ∈ (𝑥𝑦)))
1110raleqbi1dv 3346 . . . . . 6 (𝑏 = 𝐵 → (∀𝑥𝑏𝑦𝑏 ∃*𝑓 𝑓 ∈ (𝑥𝑦) ↔ ∀𝑥𝐵𝑦𝐵 ∃*𝑓 𝑓 ∈ (𝑥𝑦)))
1211ad2antlr 726 . . . . 5 (((𝑐 = 𝐶𝑏 = 𝐵) ∧ = 𝐻) → (∀𝑥𝑏𝑦𝑏 ∃*𝑓 𝑓 ∈ (𝑥𝑦) ↔ ∀𝑥𝐵𝑦𝐵 ∃*𝑓 𝑓 ∈ (𝑥𝑦)))
13 oveq 7454 . . . . . . . . 9 ( = 𝐻 → (𝑥𝑦) = (𝑥𝐻𝑦))
1413eleq2d 2830 . . . . . . . 8 ( = 𝐻 → (𝑓 ∈ (𝑥𝑦) ↔ 𝑓 ∈ (𝑥𝐻𝑦)))
1514mobidv 2552 . . . . . . 7 ( = 𝐻 → (∃*𝑓 𝑓 ∈ (𝑥𝑦) ↔ ∃*𝑓 𝑓 ∈ (𝑥𝐻𝑦)))
16152ralbidv 3227 . . . . . 6 ( = 𝐻 → (∀𝑥𝐵𝑦𝐵 ∃*𝑓 𝑓 ∈ (𝑥𝑦) ↔ ∀𝑥𝐵𝑦𝐵 ∃*𝑓 𝑓 ∈ (𝑥𝐻𝑦)))
1716adantl 481 . . . . 5 (((𝑐 = 𝐶𝑏 = 𝐵) ∧ = 𝐻) → (∀𝑥𝐵𝑦𝐵 ∃*𝑓 𝑓 ∈ (𝑥𝑦) ↔ ∀𝑥𝐵𝑦𝐵 ∃*𝑓 𝑓 ∈ (𝑥𝐻𝑦)))
1812, 17bitrd 279 . . . 4 (((𝑐 = 𝐶𝑏 = 𝐵) ∧ = 𝐻) → (∀𝑥𝑏𝑦𝑏 ∃*𝑓 𝑓 ∈ (𝑥𝑦) ↔ ∀𝑥𝐵𝑦𝐵 ∃*𝑓 𝑓 ∈ (𝑥𝐻𝑦)))
195, 9, 18sbcied2 3852 . . 3 ((𝑐 = 𝐶𝑏 = 𝐵) → ([(Hom ‘𝑐) / ]𝑥𝑏𝑦𝑏 ∃*𝑓 𝑓 ∈ (𝑥𝑦) ↔ ∀𝑥𝐵𝑦𝐵 ∃*𝑓 𝑓 ∈ (𝑥𝐻𝑦)))
201, 4, 19sbcied2 3852 . 2 (𝑐 = 𝐶 → ([(Base‘𝑐) / 𝑏][(Hom ‘𝑐) / ]𝑥𝑏𝑦𝑏 ∃*𝑓 𝑓 ∈ (𝑥𝑦) ↔ ∀𝑥𝐵𝑦𝐵 ∃*𝑓 𝑓 ∈ (𝑥𝐻𝑦)))
21 df-thinc 48687 . 2 ThinCat = {𝑐 ∈ Cat ∣ [(Base‘𝑐) / 𝑏][(Hom ‘𝑐) / ]𝑥𝑏𝑦𝑏 ∃*𝑓 𝑓 ∈ (𝑥𝑦)}
2220, 21elrab2 3711 1 (𝐶 ∈ ThinCat ↔ (𝐶 ∈ Cat ∧ ∀𝑥𝐵𝑦𝐵 ∃*𝑓 𝑓 ∈ (𝑥𝐻𝑦)))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1537  wcel 2108  ∃*wmo 2541  wral 3067  Vcvv 3488  [wsbc 3804  cfv 6573  (class class class)co 7448  Basecbs 17258  Hom chom 17322  Catccat 17722  ThinCatcthinc 48686
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711  ax-nul 5324
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-mo 2543  df-clab 2718  df-cleq 2732  df-clel 2819  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-dif 3979  df-un 3981  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-iota 6525  df-fv 6581  df-ov 7451  df-thinc 48687
This theorem is referenced by:  isthinc2  48689  isthinc3  48690  thincc  48691  thincmo2  48695  thincmoALT  48697  isthincd  48704  0thincg  48717
  Copyright terms: Public domain W3C validator