Step | Hyp | Ref
| Expression |
1 | | fvexd 6771 |
. . 3
⊢ (𝑐 = 𝐶 → (Base‘𝑐) ∈ V) |
2 | | fveq2 6756 |
. . . 4
⊢ (𝑐 = 𝐶 → (Base‘𝑐) = (Base‘𝐶)) |
3 | | isthinc.b |
. . . 4
⊢ 𝐵 = (Base‘𝐶) |
4 | 2, 3 | eqtr4di 2797 |
. . 3
⊢ (𝑐 = 𝐶 → (Base‘𝑐) = 𝐵) |
5 | | fvexd 6771 |
. . . 4
⊢ ((𝑐 = 𝐶 ∧ 𝑏 = 𝐵) → (Hom ‘𝑐) ∈ V) |
6 | | fveq2 6756 |
. . . . . 6
⊢ (𝑐 = 𝐶 → (Hom ‘𝑐) = (Hom ‘𝐶)) |
7 | | isthinc.h |
. . . . . 6
⊢ 𝐻 = (Hom ‘𝐶) |
8 | 6, 7 | eqtr4di 2797 |
. . . . 5
⊢ (𝑐 = 𝐶 → (Hom ‘𝑐) = 𝐻) |
9 | 8 | adantr 480 |
. . . 4
⊢ ((𝑐 = 𝐶 ∧ 𝑏 = 𝐵) → (Hom ‘𝑐) = 𝐻) |
10 | | raleq 3333 |
. . . . . . 7
⊢ (𝑏 = 𝐵 → (∀𝑦 ∈ 𝑏 ∃*𝑓 𝑓 ∈ (𝑥ℎ𝑦) ↔ ∀𝑦 ∈ 𝐵 ∃*𝑓 𝑓 ∈ (𝑥ℎ𝑦))) |
11 | 10 | raleqbi1dv 3331 |
. . . . . 6
⊢ (𝑏 = 𝐵 → (∀𝑥 ∈ 𝑏 ∀𝑦 ∈ 𝑏 ∃*𝑓 𝑓 ∈ (𝑥ℎ𝑦) ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ∃*𝑓 𝑓 ∈ (𝑥ℎ𝑦))) |
12 | 11 | ad2antlr 723 |
. . . . 5
⊢ (((𝑐 = 𝐶 ∧ 𝑏 = 𝐵) ∧ ℎ = 𝐻) → (∀𝑥 ∈ 𝑏 ∀𝑦 ∈ 𝑏 ∃*𝑓 𝑓 ∈ (𝑥ℎ𝑦) ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ∃*𝑓 𝑓 ∈ (𝑥ℎ𝑦))) |
13 | | oveq 7261 |
. . . . . . . . 9
⊢ (ℎ = 𝐻 → (𝑥ℎ𝑦) = (𝑥𝐻𝑦)) |
14 | 13 | eleq2d 2824 |
. . . . . . . 8
⊢ (ℎ = 𝐻 → (𝑓 ∈ (𝑥ℎ𝑦) ↔ 𝑓 ∈ (𝑥𝐻𝑦))) |
15 | 14 | mobidv 2549 |
. . . . . . 7
⊢ (ℎ = 𝐻 → (∃*𝑓 𝑓 ∈ (𝑥ℎ𝑦) ↔ ∃*𝑓 𝑓 ∈ (𝑥𝐻𝑦))) |
16 | 15 | 2ralbidv 3122 |
. . . . . 6
⊢ (ℎ = 𝐻 → (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ∃*𝑓 𝑓 ∈ (𝑥ℎ𝑦) ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ∃*𝑓 𝑓 ∈ (𝑥𝐻𝑦))) |
17 | 16 | adantl 481 |
. . . . 5
⊢ (((𝑐 = 𝐶 ∧ 𝑏 = 𝐵) ∧ ℎ = 𝐻) → (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ∃*𝑓 𝑓 ∈ (𝑥ℎ𝑦) ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ∃*𝑓 𝑓 ∈ (𝑥𝐻𝑦))) |
18 | 12, 17 | bitrd 278 |
. . . 4
⊢ (((𝑐 = 𝐶 ∧ 𝑏 = 𝐵) ∧ ℎ = 𝐻) → (∀𝑥 ∈ 𝑏 ∀𝑦 ∈ 𝑏 ∃*𝑓 𝑓 ∈ (𝑥ℎ𝑦) ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ∃*𝑓 𝑓 ∈ (𝑥𝐻𝑦))) |
19 | 5, 9, 18 | sbcied2 3758 |
. . 3
⊢ ((𝑐 = 𝐶 ∧ 𝑏 = 𝐵) → ([(Hom ‘𝑐) / ℎ]∀𝑥 ∈ 𝑏 ∀𝑦 ∈ 𝑏 ∃*𝑓 𝑓 ∈ (𝑥ℎ𝑦) ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ∃*𝑓 𝑓 ∈ (𝑥𝐻𝑦))) |
20 | 1, 4, 19 | sbcied2 3758 |
. 2
⊢ (𝑐 = 𝐶 → ([(Base‘𝑐) / 𝑏][(Hom ‘𝑐) / ℎ]∀𝑥 ∈ 𝑏 ∀𝑦 ∈ 𝑏 ∃*𝑓 𝑓 ∈ (𝑥ℎ𝑦) ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ∃*𝑓 𝑓 ∈ (𝑥𝐻𝑦))) |
21 | | df-thinc 46189 |
. 2
⊢ ThinCat =
{𝑐 ∈ Cat ∣
[(Base‘𝑐) /
𝑏][(Hom
‘𝑐) / ℎ]∀𝑥 ∈ 𝑏 ∀𝑦 ∈ 𝑏 ∃*𝑓 𝑓 ∈ (𝑥ℎ𝑦)} |
22 | 20, 21 | elrab2 3620 |
1
⊢ (𝐶 ∈ ThinCat ↔ (𝐶 ∈ Cat ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ∃*𝑓 𝑓 ∈ (𝑥𝐻𝑦))) |