Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isthinc Structured version   Visualization version   GIF version

Theorem isthinc 49412
Description: The predicate "is a thin category". (Contributed by Zhi Wang, 17-Sep-2024.)
Hypotheses
Ref Expression
isthinc.b 𝐵 = (Base‘𝐶)
isthinc.h 𝐻 = (Hom ‘𝐶)
Assertion
Ref Expression
isthinc (𝐶 ∈ ThinCat ↔ (𝐶 ∈ Cat ∧ ∀𝑥𝐵𝑦𝐵 ∃*𝑓 𝑓 ∈ (𝑥𝐻𝑦)))
Distinct variable groups:   𝐵,𝑓,𝑥,𝑦   𝐶,𝑓,𝑥,𝑦   𝑓,𝐻,𝑥,𝑦

Proof of Theorem isthinc
Dummy variables 𝑏 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fvexd 6876 . . 3 (𝑐 = 𝐶 → (Base‘𝑐) ∈ V)
2 fveq2 6861 . . . 4 (𝑐 = 𝐶 → (Base‘𝑐) = (Base‘𝐶))
3 isthinc.b . . . 4 𝐵 = (Base‘𝐶)
42, 3eqtr4di 2783 . . 3 (𝑐 = 𝐶 → (Base‘𝑐) = 𝐵)
5 fvexd 6876 . . . 4 ((𝑐 = 𝐶𝑏 = 𝐵) → (Hom ‘𝑐) ∈ V)
6 fveq2 6861 . . . . . 6 (𝑐 = 𝐶 → (Hom ‘𝑐) = (Hom ‘𝐶))
7 isthinc.h . . . . . 6 𝐻 = (Hom ‘𝐶)
86, 7eqtr4di 2783 . . . . 5 (𝑐 = 𝐶 → (Hom ‘𝑐) = 𝐻)
98adantr 480 . . . 4 ((𝑐 = 𝐶𝑏 = 𝐵) → (Hom ‘𝑐) = 𝐻)
10 raleq 3298 . . . . . . 7 (𝑏 = 𝐵 → (∀𝑦𝑏 ∃*𝑓 𝑓 ∈ (𝑥𝑦) ↔ ∀𝑦𝐵 ∃*𝑓 𝑓 ∈ (𝑥𝑦)))
1110raleqbi1dv 3313 . . . . . 6 (𝑏 = 𝐵 → (∀𝑥𝑏𝑦𝑏 ∃*𝑓 𝑓 ∈ (𝑥𝑦) ↔ ∀𝑥𝐵𝑦𝐵 ∃*𝑓 𝑓 ∈ (𝑥𝑦)))
1211ad2antlr 727 . . . . 5 (((𝑐 = 𝐶𝑏 = 𝐵) ∧ = 𝐻) → (∀𝑥𝑏𝑦𝑏 ∃*𝑓 𝑓 ∈ (𝑥𝑦) ↔ ∀𝑥𝐵𝑦𝐵 ∃*𝑓 𝑓 ∈ (𝑥𝑦)))
13 oveq 7396 . . . . . . . . 9 ( = 𝐻 → (𝑥𝑦) = (𝑥𝐻𝑦))
1413eleq2d 2815 . . . . . . . 8 ( = 𝐻 → (𝑓 ∈ (𝑥𝑦) ↔ 𝑓 ∈ (𝑥𝐻𝑦)))
1514mobidv 2543 . . . . . . 7 ( = 𝐻 → (∃*𝑓 𝑓 ∈ (𝑥𝑦) ↔ ∃*𝑓 𝑓 ∈ (𝑥𝐻𝑦)))
16152ralbidv 3202 . . . . . 6 ( = 𝐻 → (∀𝑥𝐵𝑦𝐵 ∃*𝑓 𝑓 ∈ (𝑥𝑦) ↔ ∀𝑥𝐵𝑦𝐵 ∃*𝑓 𝑓 ∈ (𝑥𝐻𝑦)))
1716adantl 481 . . . . 5 (((𝑐 = 𝐶𝑏 = 𝐵) ∧ = 𝐻) → (∀𝑥𝐵𝑦𝐵 ∃*𝑓 𝑓 ∈ (𝑥𝑦) ↔ ∀𝑥𝐵𝑦𝐵 ∃*𝑓 𝑓 ∈ (𝑥𝐻𝑦)))
1812, 17bitrd 279 . . . 4 (((𝑐 = 𝐶𝑏 = 𝐵) ∧ = 𝐻) → (∀𝑥𝑏𝑦𝑏 ∃*𝑓 𝑓 ∈ (𝑥𝑦) ↔ ∀𝑥𝐵𝑦𝐵 ∃*𝑓 𝑓 ∈ (𝑥𝐻𝑦)))
195, 9, 18sbcied2 3801 . . 3 ((𝑐 = 𝐶𝑏 = 𝐵) → ([(Hom ‘𝑐) / ]𝑥𝑏𝑦𝑏 ∃*𝑓 𝑓 ∈ (𝑥𝑦) ↔ ∀𝑥𝐵𝑦𝐵 ∃*𝑓 𝑓 ∈ (𝑥𝐻𝑦)))
201, 4, 19sbcied2 3801 . 2 (𝑐 = 𝐶 → ([(Base‘𝑐) / 𝑏][(Hom ‘𝑐) / ]𝑥𝑏𝑦𝑏 ∃*𝑓 𝑓 ∈ (𝑥𝑦) ↔ ∀𝑥𝐵𝑦𝐵 ∃*𝑓 𝑓 ∈ (𝑥𝐻𝑦)))
21 df-thinc 49411 . 2 ThinCat = {𝑐 ∈ Cat ∣ [(Base‘𝑐) / 𝑏][(Hom ‘𝑐) / ]𝑥𝑏𝑦𝑏 ∃*𝑓 𝑓 ∈ (𝑥𝑦)}
2220, 21elrab2 3665 1 (𝐶 ∈ ThinCat ↔ (𝐶 ∈ Cat ∧ ∀𝑥𝐵𝑦𝐵 ∃*𝑓 𝑓 ∈ (𝑥𝐻𝑦)))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1540  wcel 2109  ∃*wmo 2532  wral 3045  Vcvv 3450  [wsbc 3756  cfv 6514  (class class class)co 7390  Basecbs 17186  Hom chom 17238  Catccat 17632  ThinCatcthinc 49410
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702  ax-nul 5264
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-mo 2534  df-clab 2709  df-cleq 2722  df-clel 2804  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-sbc 3757  df-dif 3920  df-un 3922  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-iota 6467  df-fv 6522  df-ov 7393  df-thinc 49411
This theorem is referenced by:  isthinc2  49413  isthinc3  49414  thincc  49415  thincmo2  49419  thincmoALT  49422  isthincd  49429  thincpropd  49435  0thincg  49451
  Copyright terms: Public domain W3C validator