Detailed syntax breakdown of Definition df-transport
Step | Hyp | Ref
| Expression |
1 | | ctransport 34331 |
. 2
class
TransportTo |
2 | | vp |
. . . . . . . 8
setvar 𝑝 |
3 | 2 | cv 1538 |
. . . . . . 7
class 𝑝 |
4 | | vn |
. . . . . . . . . 10
setvar 𝑛 |
5 | 4 | cv 1538 |
. . . . . . . . 9
class 𝑛 |
6 | | cee 27256 |
. . . . . . . . 9
class
𝔼 |
7 | 5, 6 | cfv 6433 |
. . . . . . . 8
class
(𝔼‘𝑛) |
8 | 7, 7 | cxp 5587 |
. . . . . . 7
class
((𝔼‘𝑛)
× (𝔼‘𝑛)) |
9 | 3, 8 | wcel 2106 |
. . . . . 6
wff 𝑝 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) |
10 | | vq |
. . . . . . . 8
setvar 𝑞 |
11 | 10 | cv 1538 |
. . . . . . 7
class 𝑞 |
12 | 11, 8 | wcel 2106 |
. . . . . 6
wff 𝑞 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) |
13 | | c1st 7829 |
. . . . . . . 8
class
1st |
14 | 11, 13 | cfv 6433 |
. . . . . . 7
class
(1st ‘𝑞) |
15 | | c2nd 7830 |
. . . . . . . 8
class
2nd |
16 | 11, 15 | cfv 6433 |
. . . . . . 7
class
(2nd ‘𝑞) |
17 | 14, 16 | wne 2943 |
. . . . . 6
wff
(1st ‘𝑞) ≠ (2nd ‘𝑞) |
18 | 9, 12, 17 | w3a 1086 |
. . . . 5
wff (𝑝 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ 𝑞 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ (1st ‘𝑞) ≠ (2nd
‘𝑞)) |
19 | | vx |
. . . . . . 7
setvar 𝑥 |
20 | 19 | cv 1538 |
. . . . . 6
class 𝑥 |
21 | | vr |
. . . . . . . . . . 11
setvar 𝑟 |
22 | 21 | cv 1538 |
. . . . . . . . . 10
class 𝑟 |
23 | 14, 22 | cop 4567 |
. . . . . . . . 9
class
〈(1st ‘𝑞), 𝑟〉 |
24 | | cbtwn 27257 |
. . . . . . . . 9
class
Btwn |
25 | 16, 23, 24 | wbr 5074 |
. . . . . . . 8
wff
(2nd ‘𝑞) Btwn 〈(1st ‘𝑞), 𝑟〉 |
26 | 16, 22 | cop 4567 |
. . . . . . . . 9
class
〈(2nd ‘𝑞), 𝑟〉 |
27 | | ccgr 27258 |
. . . . . . . . 9
class
Cgr |
28 | 26, 3, 27 | wbr 5074 |
. . . . . . . 8
wff
〈(2nd ‘𝑞), 𝑟〉Cgr𝑝 |
29 | 25, 28 | wa 396 |
. . . . . . 7
wff
((2nd ‘𝑞) Btwn 〈(1st ‘𝑞), 𝑟〉 ∧ 〈(2nd
‘𝑞), 𝑟〉Cgr𝑝) |
30 | 29, 21, 7 | crio 7231 |
. . . . . 6
class
(℩𝑟
∈ (𝔼‘𝑛)((2nd ‘𝑞) Btwn 〈(1st ‘𝑞), 𝑟〉 ∧ 〈(2nd
‘𝑞), 𝑟〉Cgr𝑝)) |
31 | 20, 30 | wceq 1539 |
. . . . 5
wff 𝑥 = (℩𝑟 ∈ (𝔼‘𝑛)((2nd ‘𝑞) Btwn 〈(1st
‘𝑞), 𝑟〉 ∧
〈(2nd ‘𝑞), 𝑟〉Cgr𝑝)) |
32 | 18, 31 | wa 396 |
. . . 4
wff ((𝑝 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ 𝑞 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ (1st ‘𝑞) ≠ (2nd
‘𝑞)) ∧ 𝑥 = (℩𝑟 ∈ (𝔼‘𝑛)((2nd ‘𝑞) Btwn 〈(1st
‘𝑞), 𝑟〉 ∧
〈(2nd ‘𝑞), 𝑟〉Cgr𝑝))) |
33 | | cn 11973 |
. . . 4
class
ℕ |
34 | 32, 4, 33 | wrex 3065 |
. . 3
wff
∃𝑛 ∈
ℕ ((𝑝 ∈
((𝔼‘𝑛) ×
(𝔼‘𝑛)) ∧
𝑞 ∈
((𝔼‘𝑛) ×
(𝔼‘𝑛)) ∧
(1st ‘𝑞)
≠ (2nd ‘𝑞)) ∧ 𝑥 = (℩𝑟 ∈ (𝔼‘𝑛)((2nd ‘𝑞) Btwn 〈(1st ‘𝑞), 𝑟〉 ∧ 〈(2nd
‘𝑞), 𝑟〉Cgr𝑝))) |
35 | 34, 2, 10, 19 | coprab 7276 |
. 2
class
{〈〈𝑝,
𝑞〉, 𝑥〉 ∣ ∃𝑛 ∈ ℕ ((𝑝 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ 𝑞 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ (1st ‘𝑞) ≠ (2nd
‘𝑞)) ∧ 𝑥 = (℩𝑟 ∈ (𝔼‘𝑛)((2nd ‘𝑞) Btwn 〈(1st
‘𝑞), 𝑟〉 ∧
〈(2nd ‘𝑞), 𝑟〉Cgr𝑝)))} |
36 | 1, 35 | wceq 1539 |
1
wff TransportTo
= {〈〈𝑝, 𝑞〉, 𝑥〉 ∣ ∃𝑛 ∈ ℕ ((𝑝 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ 𝑞 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ (1st ‘𝑞) ≠ (2nd
‘𝑞)) ∧ 𝑥 = (℩𝑟 ∈ (𝔼‘𝑛)((2nd ‘𝑞) Btwn 〈(1st
‘𝑞), 𝑟〉 ∧
〈(2nd ‘𝑞), 𝑟〉Cgr𝑝)))} |