Detailed syntax breakdown of Definition df-transport
| Step | Hyp | Ref
| Expression |
| 1 | | ctransport 35971 |
. 2
class
TransportTo |
| 2 | | vp |
. . . . . . . 8
setvar 𝑝 |
| 3 | 2 | cv 1538 |
. . . . . . 7
class 𝑝 |
| 4 | | vn |
. . . . . . . . . 10
setvar 𝑛 |
| 5 | 4 | cv 1538 |
. . . . . . . . 9
class 𝑛 |
| 6 | | cee 28852 |
. . . . . . . . 9
class
𝔼 |
| 7 | 5, 6 | cfv 6542 |
. . . . . . . 8
class
(𝔼‘𝑛) |
| 8 | 7, 7 | cxp 5665 |
. . . . . . 7
class
((𝔼‘𝑛)
× (𝔼‘𝑛)) |
| 9 | 3, 8 | wcel 2107 |
. . . . . 6
wff 𝑝 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) |
| 10 | | vq |
. . . . . . . 8
setvar 𝑞 |
| 11 | 10 | cv 1538 |
. . . . . . 7
class 𝑞 |
| 12 | 11, 8 | wcel 2107 |
. . . . . 6
wff 𝑞 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) |
| 13 | | c1st 7995 |
. . . . . . . 8
class
1st |
| 14 | 11, 13 | cfv 6542 |
. . . . . . 7
class
(1st ‘𝑞) |
| 15 | | c2nd 7996 |
. . . . . . . 8
class
2nd |
| 16 | 11, 15 | cfv 6542 |
. . . . . . 7
class
(2nd ‘𝑞) |
| 17 | 14, 16 | wne 2931 |
. . . . . 6
wff
(1st ‘𝑞) ≠ (2nd ‘𝑞) |
| 18 | 9, 12, 17 | w3a 1086 |
. . . . 5
wff (𝑝 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ 𝑞 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ (1st ‘𝑞) ≠ (2nd
‘𝑞)) |
| 19 | | vx |
. . . . . . 7
setvar 𝑥 |
| 20 | 19 | cv 1538 |
. . . . . 6
class 𝑥 |
| 21 | | vr |
. . . . . . . . . . 11
setvar 𝑟 |
| 22 | 21 | cv 1538 |
. . . . . . . . . 10
class 𝑟 |
| 23 | 14, 22 | cop 4614 |
. . . . . . . . 9
class
〈(1st ‘𝑞), 𝑟〉 |
| 24 | | cbtwn 28853 |
. . . . . . . . 9
class
Btwn |
| 25 | 16, 23, 24 | wbr 5125 |
. . . . . . . 8
wff
(2nd ‘𝑞) Btwn 〈(1st ‘𝑞), 𝑟〉 |
| 26 | 16, 22 | cop 4614 |
. . . . . . . . 9
class
〈(2nd ‘𝑞), 𝑟〉 |
| 27 | | ccgr 28854 |
. . . . . . . . 9
class
Cgr |
| 28 | 26, 3, 27 | wbr 5125 |
. . . . . . . 8
wff
〈(2nd ‘𝑞), 𝑟〉Cgr𝑝 |
| 29 | 25, 28 | wa 395 |
. . . . . . 7
wff
((2nd ‘𝑞) Btwn 〈(1st ‘𝑞), 𝑟〉 ∧ 〈(2nd
‘𝑞), 𝑟〉Cgr𝑝) |
| 30 | 29, 21, 7 | crio 7370 |
. . . . . 6
class
(℩𝑟
∈ (𝔼‘𝑛)((2nd ‘𝑞) Btwn 〈(1st ‘𝑞), 𝑟〉 ∧ 〈(2nd
‘𝑞), 𝑟〉Cgr𝑝)) |
| 31 | 20, 30 | wceq 1539 |
. . . . 5
wff 𝑥 = (℩𝑟 ∈ (𝔼‘𝑛)((2nd ‘𝑞) Btwn 〈(1st
‘𝑞), 𝑟〉 ∧
〈(2nd ‘𝑞), 𝑟〉Cgr𝑝)) |
| 32 | 18, 31 | wa 395 |
. . . 4
wff ((𝑝 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ 𝑞 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ (1st ‘𝑞) ≠ (2nd
‘𝑞)) ∧ 𝑥 = (℩𝑟 ∈ (𝔼‘𝑛)((2nd ‘𝑞) Btwn 〈(1st
‘𝑞), 𝑟〉 ∧
〈(2nd ‘𝑞), 𝑟〉Cgr𝑝))) |
| 33 | | cn 12249 |
. . . 4
class
ℕ |
| 34 | 32, 4, 33 | wrex 3059 |
. . 3
wff
∃𝑛 ∈
ℕ ((𝑝 ∈
((𝔼‘𝑛) ×
(𝔼‘𝑛)) ∧
𝑞 ∈
((𝔼‘𝑛) ×
(𝔼‘𝑛)) ∧
(1st ‘𝑞)
≠ (2nd ‘𝑞)) ∧ 𝑥 = (℩𝑟 ∈ (𝔼‘𝑛)((2nd ‘𝑞) Btwn 〈(1st ‘𝑞), 𝑟〉 ∧ 〈(2nd
‘𝑞), 𝑟〉Cgr𝑝))) |
| 35 | 34, 2, 10, 19 | coprab 7415 |
. 2
class
{〈〈𝑝,
𝑞〉, 𝑥〉 ∣ ∃𝑛 ∈ ℕ ((𝑝 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ 𝑞 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ (1st ‘𝑞) ≠ (2nd
‘𝑞)) ∧ 𝑥 = (℩𝑟 ∈ (𝔼‘𝑛)((2nd ‘𝑞) Btwn 〈(1st
‘𝑞), 𝑟〉 ∧
〈(2nd ‘𝑞), 𝑟〉Cgr𝑝)))} |
| 36 | 1, 35 | wceq 1539 |
1
wff TransportTo
= {〈〈𝑝, 𝑞〉, 𝑥〉 ∣ ∃𝑛 ∈ ℕ ((𝑝 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ 𝑞 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ (1st ‘𝑞) ≠ (2nd
‘𝑞)) ∧ 𝑥 = (℩𝑟 ∈ (𝔼‘𝑛)((2nd ‘𝑞) Btwn 〈(1st
‘𝑞), 𝑟〉 ∧
〈(2nd ‘𝑞), 𝑟〉Cgr𝑝)))} |