Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fvtransport Structured version   Visualization version   GIF version

Theorem fvtransport 34617
Description: Calculate the value of the TransportTo function. This function takes four points, 𝐴 through 𝐷, where 𝐶 and 𝐷 are distinct. It then returns the point that extends 𝐶𝐷 by the length of 𝐴𝐵. (Contributed by Scott Fenton, 18-Oct-2013.) (Revised by Mario Carneiro, 19-Apr-2014.)
Assertion
Ref Expression
fvtransport ((𝑁 ∈ ℕ ∧ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) ∧ 𝐶𝐷)) → (⟨𝐴, 𝐵⟩TransportTo⟨𝐶, 𝐷⟩) = (𝑟 ∈ (𝔼‘𝑁)(𝐷 Btwn ⟨𝐶, 𝑟⟩ ∧ ⟨𝐷, 𝑟⟩Cgr⟨𝐴, 𝐵⟩)))
Distinct variable groups:   𝑁,𝑟   𝐴,𝑟   𝐵,𝑟   𝐶,𝑟   𝐷,𝑟

Proof of Theorem fvtransport
Dummy variables 𝑛 𝑝 𝑞 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-ov 7360 . 2 (⟨𝐴, 𝐵⟩TransportTo⟨𝐶, 𝐷⟩) = (TransportTo‘⟨⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩⟩)
2 opelxpi 5670 . . . . . . 7 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) → ⟨𝐴, 𝐵⟩ ∈ ((𝔼‘𝑁) × (𝔼‘𝑁)))
323ad2ant1 1133 . . . . . 6 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) ∧ 𝐶𝐷) → ⟨𝐴, 𝐵⟩ ∈ ((𝔼‘𝑁) × (𝔼‘𝑁)))
4 opelxpi 5670 . . . . . . 7 ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) → ⟨𝐶, 𝐷⟩ ∈ ((𝔼‘𝑁) × (𝔼‘𝑁)))
543ad2ant2 1134 . . . . . 6 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) ∧ 𝐶𝐷) → ⟨𝐶, 𝐷⟩ ∈ ((𝔼‘𝑁) × (𝔼‘𝑁)))
6 simp3 1138 . . . . . . 7 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) ∧ 𝐶𝐷) → 𝐶𝐷)
7 op1stg 7933 . . . . . . . 8 ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) → (1st ‘⟨𝐶, 𝐷⟩) = 𝐶)
873ad2ant2 1134 . . . . . . 7 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) ∧ 𝐶𝐷) → (1st ‘⟨𝐶, 𝐷⟩) = 𝐶)
9 op2ndg 7934 . . . . . . . 8 ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) → (2nd ‘⟨𝐶, 𝐷⟩) = 𝐷)
1093ad2ant2 1134 . . . . . . 7 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) ∧ 𝐶𝐷) → (2nd ‘⟨𝐶, 𝐷⟩) = 𝐷)
116, 8, 103netr4d 3021 . . . . . 6 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) ∧ 𝐶𝐷) → (1st ‘⟨𝐶, 𝐷⟩) ≠ (2nd ‘⟨𝐶, 𝐷⟩))
123, 5, 113jca 1128 . . . . 5 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) ∧ 𝐶𝐷) → (⟨𝐴, 𝐵⟩ ∈ ((𝔼‘𝑁) × (𝔼‘𝑁)) ∧ ⟨𝐶, 𝐷⟩ ∈ ((𝔼‘𝑁) × (𝔼‘𝑁)) ∧ (1st ‘⟨𝐶, 𝐷⟩) ≠ (2nd ‘⟨𝐶, 𝐷⟩)))
138opeq1d 4836 . . . . . . . . 9 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) ∧ 𝐶𝐷) → ⟨(1st ‘⟨𝐶, 𝐷⟩), 𝑟⟩ = ⟨𝐶, 𝑟⟩)
1410, 13breq12d 5118 . . . . . . . 8 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) ∧ 𝐶𝐷) → ((2nd ‘⟨𝐶, 𝐷⟩) Btwn ⟨(1st ‘⟨𝐶, 𝐷⟩), 𝑟⟩ ↔ 𝐷 Btwn ⟨𝐶, 𝑟⟩))
1510opeq1d 4836 . . . . . . . . 9 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) ∧ 𝐶𝐷) → ⟨(2nd ‘⟨𝐶, 𝐷⟩), 𝑟⟩ = ⟨𝐷, 𝑟⟩)
1615breq1d 5115 . . . . . . . 8 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) ∧ 𝐶𝐷) → (⟨(2nd ‘⟨𝐶, 𝐷⟩), 𝑟⟩Cgr⟨𝐴, 𝐵⟩ ↔ ⟨𝐷, 𝑟⟩Cgr⟨𝐴, 𝐵⟩))
1714, 16anbi12d 631 . . . . . . 7 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) ∧ 𝐶𝐷) → (((2nd ‘⟨𝐶, 𝐷⟩) Btwn ⟨(1st ‘⟨𝐶, 𝐷⟩), 𝑟⟩ ∧ ⟨(2nd ‘⟨𝐶, 𝐷⟩), 𝑟⟩Cgr⟨𝐴, 𝐵⟩) ↔ (𝐷 Btwn ⟨𝐶, 𝑟⟩ ∧ ⟨𝐷, 𝑟⟩Cgr⟨𝐴, 𝐵⟩)))
1817riotabidv 7315 . . . . . 6 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) ∧ 𝐶𝐷) → (𝑟 ∈ (𝔼‘𝑁)((2nd ‘⟨𝐶, 𝐷⟩) Btwn ⟨(1st ‘⟨𝐶, 𝐷⟩), 𝑟⟩ ∧ ⟨(2nd ‘⟨𝐶, 𝐷⟩), 𝑟⟩Cgr⟨𝐴, 𝐵⟩)) = (𝑟 ∈ (𝔼‘𝑁)(𝐷 Btwn ⟨𝐶, 𝑟⟩ ∧ ⟨𝐷, 𝑟⟩Cgr⟨𝐴, 𝐵⟩)))
1918eqcomd 2742 . . . . 5 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) ∧ 𝐶𝐷) → (𝑟 ∈ (𝔼‘𝑁)(𝐷 Btwn ⟨𝐶, 𝑟⟩ ∧ ⟨𝐷, 𝑟⟩Cgr⟨𝐴, 𝐵⟩)) = (𝑟 ∈ (𝔼‘𝑁)((2nd ‘⟨𝐶, 𝐷⟩) Btwn ⟨(1st ‘⟨𝐶, 𝐷⟩), 𝑟⟩ ∧ ⟨(2nd ‘⟨𝐶, 𝐷⟩), 𝑟⟩Cgr⟨𝐴, 𝐵⟩)))
2012, 19jca 512 . . . 4 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) ∧ 𝐶𝐷) → ((⟨𝐴, 𝐵⟩ ∈ ((𝔼‘𝑁) × (𝔼‘𝑁)) ∧ ⟨𝐶, 𝐷⟩ ∈ ((𝔼‘𝑁) × (𝔼‘𝑁)) ∧ (1st ‘⟨𝐶, 𝐷⟩) ≠ (2nd ‘⟨𝐶, 𝐷⟩)) ∧ (𝑟 ∈ (𝔼‘𝑁)(𝐷 Btwn ⟨𝐶, 𝑟⟩ ∧ ⟨𝐷, 𝑟⟩Cgr⟨𝐴, 𝐵⟩)) = (𝑟 ∈ (𝔼‘𝑁)((2nd ‘⟨𝐶, 𝐷⟩) Btwn ⟨(1st ‘⟨𝐶, 𝐷⟩), 𝑟⟩ ∧ ⟨(2nd ‘⟨𝐶, 𝐷⟩), 𝑟⟩Cgr⟨𝐴, 𝐵⟩))))
21 fveq2 6842 . . . . . . . . 9 (𝑛 = 𝑁 → (𝔼‘𝑛) = (𝔼‘𝑁))
2221sqxpeqd 5665 . . . . . . . 8 (𝑛 = 𝑁 → ((𝔼‘𝑛) × (𝔼‘𝑛)) = ((𝔼‘𝑁) × (𝔼‘𝑁)))
2322eleq2d 2823 . . . . . . 7 (𝑛 = 𝑁 → (⟨𝐴, 𝐵⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ↔ ⟨𝐴, 𝐵⟩ ∈ ((𝔼‘𝑁) × (𝔼‘𝑁))))
2422eleq2d 2823 . . . . . . 7 (𝑛 = 𝑁 → (⟨𝐶, 𝐷⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ↔ ⟨𝐶, 𝐷⟩ ∈ ((𝔼‘𝑁) × (𝔼‘𝑁))))
2523, 243anbi12d 1437 . . . . . 6 (𝑛 = 𝑁 → ((⟨𝐴, 𝐵⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ ⟨𝐶, 𝐷⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ (1st ‘⟨𝐶, 𝐷⟩) ≠ (2nd ‘⟨𝐶, 𝐷⟩)) ↔ (⟨𝐴, 𝐵⟩ ∈ ((𝔼‘𝑁) × (𝔼‘𝑁)) ∧ ⟨𝐶, 𝐷⟩ ∈ ((𝔼‘𝑁) × (𝔼‘𝑁)) ∧ (1st ‘⟨𝐶, 𝐷⟩) ≠ (2nd ‘⟨𝐶, 𝐷⟩))))
2621riotaeqdv 7314 . . . . . . 7 (𝑛 = 𝑁 → (𝑟 ∈ (𝔼‘𝑛)((2nd ‘⟨𝐶, 𝐷⟩) Btwn ⟨(1st ‘⟨𝐶, 𝐷⟩), 𝑟⟩ ∧ ⟨(2nd ‘⟨𝐶, 𝐷⟩), 𝑟⟩Cgr⟨𝐴, 𝐵⟩)) = (𝑟 ∈ (𝔼‘𝑁)((2nd ‘⟨𝐶, 𝐷⟩) Btwn ⟨(1st ‘⟨𝐶, 𝐷⟩), 𝑟⟩ ∧ ⟨(2nd ‘⟨𝐶, 𝐷⟩), 𝑟⟩Cgr⟨𝐴, 𝐵⟩)))
2726eqeq2d 2747 . . . . . 6 (𝑛 = 𝑁 → ((𝑟 ∈ (𝔼‘𝑁)(𝐷 Btwn ⟨𝐶, 𝑟⟩ ∧ ⟨𝐷, 𝑟⟩Cgr⟨𝐴, 𝐵⟩)) = (𝑟 ∈ (𝔼‘𝑛)((2nd ‘⟨𝐶, 𝐷⟩) Btwn ⟨(1st ‘⟨𝐶, 𝐷⟩), 𝑟⟩ ∧ ⟨(2nd ‘⟨𝐶, 𝐷⟩), 𝑟⟩Cgr⟨𝐴, 𝐵⟩)) ↔ (𝑟 ∈ (𝔼‘𝑁)(𝐷 Btwn ⟨𝐶, 𝑟⟩ ∧ ⟨𝐷, 𝑟⟩Cgr⟨𝐴, 𝐵⟩)) = (𝑟 ∈ (𝔼‘𝑁)((2nd ‘⟨𝐶, 𝐷⟩) Btwn ⟨(1st ‘⟨𝐶, 𝐷⟩), 𝑟⟩ ∧ ⟨(2nd ‘⟨𝐶, 𝐷⟩), 𝑟⟩Cgr⟨𝐴, 𝐵⟩))))
2825, 27anbi12d 631 . . . . 5 (𝑛 = 𝑁 → (((⟨𝐴, 𝐵⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ ⟨𝐶, 𝐷⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ (1st ‘⟨𝐶, 𝐷⟩) ≠ (2nd ‘⟨𝐶, 𝐷⟩)) ∧ (𝑟 ∈ (𝔼‘𝑁)(𝐷 Btwn ⟨𝐶, 𝑟⟩ ∧ ⟨𝐷, 𝑟⟩Cgr⟨𝐴, 𝐵⟩)) = (𝑟 ∈ (𝔼‘𝑛)((2nd ‘⟨𝐶, 𝐷⟩) Btwn ⟨(1st ‘⟨𝐶, 𝐷⟩), 𝑟⟩ ∧ ⟨(2nd ‘⟨𝐶, 𝐷⟩), 𝑟⟩Cgr⟨𝐴, 𝐵⟩))) ↔ ((⟨𝐴, 𝐵⟩ ∈ ((𝔼‘𝑁) × (𝔼‘𝑁)) ∧ ⟨𝐶, 𝐷⟩ ∈ ((𝔼‘𝑁) × (𝔼‘𝑁)) ∧ (1st ‘⟨𝐶, 𝐷⟩) ≠ (2nd ‘⟨𝐶, 𝐷⟩)) ∧ (𝑟 ∈ (𝔼‘𝑁)(𝐷 Btwn ⟨𝐶, 𝑟⟩ ∧ ⟨𝐷, 𝑟⟩Cgr⟨𝐴, 𝐵⟩)) = (𝑟 ∈ (𝔼‘𝑁)((2nd ‘⟨𝐶, 𝐷⟩) Btwn ⟨(1st ‘⟨𝐶, 𝐷⟩), 𝑟⟩ ∧ ⟨(2nd ‘⟨𝐶, 𝐷⟩), 𝑟⟩Cgr⟨𝐴, 𝐵⟩)))))
2928rspcev 3581 . . . 4 ((𝑁 ∈ ℕ ∧ ((⟨𝐴, 𝐵⟩ ∈ ((𝔼‘𝑁) × (𝔼‘𝑁)) ∧ ⟨𝐶, 𝐷⟩ ∈ ((𝔼‘𝑁) × (𝔼‘𝑁)) ∧ (1st ‘⟨𝐶, 𝐷⟩) ≠ (2nd ‘⟨𝐶, 𝐷⟩)) ∧ (𝑟 ∈ (𝔼‘𝑁)(𝐷 Btwn ⟨𝐶, 𝑟⟩ ∧ ⟨𝐷, 𝑟⟩Cgr⟨𝐴, 𝐵⟩)) = (𝑟 ∈ (𝔼‘𝑁)((2nd ‘⟨𝐶, 𝐷⟩) Btwn ⟨(1st ‘⟨𝐶, 𝐷⟩), 𝑟⟩ ∧ ⟨(2nd ‘⟨𝐶, 𝐷⟩), 𝑟⟩Cgr⟨𝐴, 𝐵⟩)))) → ∃𝑛 ∈ ℕ ((⟨𝐴, 𝐵⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ ⟨𝐶, 𝐷⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ (1st ‘⟨𝐶, 𝐷⟩) ≠ (2nd ‘⟨𝐶, 𝐷⟩)) ∧ (𝑟 ∈ (𝔼‘𝑁)(𝐷 Btwn ⟨𝐶, 𝑟⟩ ∧ ⟨𝐷, 𝑟⟩Cgr⟨𝐴, 𝐵⟩)) = (𝑟 ∈ (𝔼‘𝑛)((2nd ‘⟨𝐶, 𝐷⟩) Btwn ⟨(1st ‘⟨𝐶, 𝐷⟩), 𝑟⟩ ∧ ⟨(2nd ‘⟨𝐶, 𝐷⟩), 𝑟⟩Cgr⟨𝐴, 𝐵⟩))))
3020, 29sylan2 593 . . 3 ((𝑁 ∈ ℕ ∧ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) ∧ 𝐶𝐷)) → ∃𝑛 ∈ ℕ ((⟨𝐴, 𝐵⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ ⟨𝐶, 𝐷⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ (1st ‘⟨𝐶, 𝐷⟩) ≠ (2nd ‘⟨𝐶, 𝐷⟩)) ∧ (𝑟 ∈ (𝔼‘𝑁)(𝐷 Btwn ⟨𝐶, 𝑟⟩ ∧ ⟨𝐷, 𝑟⟩Cgr⟨𝐴, 𝐵⟩)) = (𝑟 ∈ (𝔼‘𝑛)((2nd ‘⟨𝐶, 𝐷⟩) Btwn ⟨(1st ‘⟨𝐶, 𝐷⟩), 𝑟⟩ ∧ ⟨(2nd ‘⟨𝐶, 𝐷⟩), 𝑟⟩Cgr⟨𝐴, 𝐵⟩))))
31 df-br 5106 . . . . 5 (⟨⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩⟩TransportTo(𝑟 ∈ (𝔼‘𝑁)(𝐷 Btwn ⟨𝐶, 𝑟⟩ ∧ ⟨𝐷, 𝑟⟩Cgr⟨𝐴, 𝐵⟩)) ↔ ⟨⟨⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩⟩, (𝑟 ∈ (𝔼‘𝑁)(𝐷 Btwn ⟨𝐶, 𝑟⟩ ∧ ⟨𝐷, 𝑟⟩Cgr⟨𝐴, 𝐵⟩))⟩ ∈ TransportTo)
32 df-transport 34615 . . . . . 6 TransportTo = {⟨⟨𝑝, 𝑞⟩, 𝑥⟩ ∣ ∃𝑛 ∈ ℕ ((𝑝 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ 𝑞 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ (1st𝑞) ≠ (2nd𝑞)) ∧ 𝑥 = (𝑟 ∈ (𝔼‘𝑛)((2nd𝑞) Btwn ⟨(1st𝑞), 𝑟⟩ ∧ ⟨(2nd𝑞), 𝑟⟩Cgr𝑝)))}
3332eleq2i 2829 . . . . 5 (⟨⟨⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩⟩, (𝑟 ∈ (𝔼‘𝑁)(𝐷 Btwn ⟨𝐶, 𝑟⟩ ∧ ⟨𝐷, 𝑟⟩Cgr⟨𝐴, 𝐵⟩))⟩ ∈ TransportTo ↔ ⟨⟨⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩⟩, (𝑟 ∈ (𝔼‘𝑁)(𝐷 Btwn ⟨𝐶, 𝑟⟩ ∧ ⟨𝐷, 𝑟⟩Cgr⟨𝐴, 𝐵⟩))⟩ ∈ {⟨⟨𝑝, 𝑞⟩, 𝑥⟩ ∣ ∃𝑛 ∈ ℕ ((𝑝 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ 𝑞 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ (1st𝑞) ≠ (2nd𝑞)) ∧ 𝑥 = (𝑟 ∈ (𝔼‘𝑛)((2nd𝑞) Btwn ⟨(1st𝑞), 𝑟⟩ ∧ ⟨(2nd𝑞), 𝑟⟩Cgr𝑝)))})
34 opex 5421 . . . . . 6 𝐴, 𝐵⟩ ∈ V
35 opex 5421 . . . . . 6 𝐶, 𝐷⟩ ∈ V
36 riotaex 7317 . . . . . 6 (𝑟 ∈ (𝔼‘𝑁)(𝐷 Btwn ⟨𝐶, 𝑟⟩ ∧ ⟨𝐷, 𝑟⟩Cgr⟨𝐴, 𝐵⟩)) ∈ V
37 eleq1 2825 . . . . . . . . . 10 (𝑝 = ⟨𝐴, 𝐵⟩ → (𝑝 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ↔ ⟨𝐴, 𝐵⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛))))
38373anbi1d 1440 . . . . . . . . 9 (𝑝 = ⟨𝐴, 𝐵⟩ → ((𝑝 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ 𝑞 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ (1st𝑞) ≠ (2nd𝑞)) ↔ (⟨𝐴, 𝐵⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ 𝑞 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ (1st𝑞) ≠ (2nd𝑞))))
39 breq2 5109 . . . . . . . . . . . 12 (𝑝 = ⟨𝐴, 𝐵⟩ → (⟨(2nd𝑞), 𝑟⟩Cgr𝑝 ↔ ⟨(2nd𝑞), 𝑟⟩Cgr⟨𝐴, 𝐵⟩))
4039anbi2d 629 . . . . . . . . . . 11 (𝑝 = ⟨𝐴, 𝐵⟩ → (((2nd𝑞) Btwn ⟨(1st𝑞), 𝑟⟩ ∧ ⟨(2nd𝑞), 𝑟⟩Cgr𝑝) ↔ ((2nd𝑞) Btwn ⟨(1st𝑞), 𝑟⟩ ∧ ⟨(2nd𝑞), 𝑟⟩Cgr⟨𝐴, 𝐵⟩)))
4140riotabidv 7315 . . . . . . . . . 10 (𝑝 = ⟨𝐴, 𝐵⟩ → (𝑟 ∈ (𝔼‘𝑛)((2nd𝑞) Btwn ⟨(1st𝑞), 𝑟⟩ ∧ ⟨(2nd𝑞), 𝑟⟩Cgr𝑝)) = (𝑟 ∈ (𝔼‘𝑛)((2nd𝑞) Btwn ⟨(1st𝑞), 𝑟⟩ ∧ ⟨(2nd𝑞), 𝑟⟩Cgr⟨𝐴, 𝐵⟩)))
4241eqeq2d 2747 . . . . . . . . 9 (𝑝 = ⟨𝐴, 𝐵⟩ → (𝑥 = (𝑟 ∈ (𝔼‘𝑛)((2nd𝑞) Btwn ⟨(1st𝑞), 𝑟⟩ ∧ ⟨(2nd𝑞), 𝑟⟩Cgr𝑝)) ↔ 𝑥 = (𝑟 ∈ (𝔼‘𝑛)((2nd𝑞) Btwn ⟨(1st𝑞), 𝑟⟩ ∧ ⟨(2nd𝑞), 𝑟⟩Cgr⟨𝐴, 𝐵⟩))))
4338, 42anbi12d 631 . . . . . . . 8 (𝑝 = ⟨𝐴, 𝐵⟩ → (((𝑝 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ 𝑞 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ (1st𝑞) ≠ (2nd𝑞)) ∧ 𝑥 = (𝑟 ∈ (𝔼‘𝑛)((2nd𝑞) Btwn ⟨(1st𝑞), 𝑟⟩ ∧ ⟨(2nd𝑞), 𝑟⟩Cgr𝑝))) ↔ ((⟨𝐴, 𝐵⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ 𝑞 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ (1st𝑞) ≠ (2nd𝑞)) ∧ 𝑥 = (𝑟 ∈ (𝔼‘𝑛)((2nd𝑞) Btwn ⟨(1st𝑞), 𝑟⟩ ∧ ⟨(2nd𝑞), 𝑟⟩Cgr⟨𝐴, 𝐵⟩)))))
4443rexbidv 3175 . . . . . . 7 (𝑝 = ⟨𝐴, 𝐵⟩ → (∃𝑛 ∈ ℕ ((𝑝 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ 𝑞 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ (1st𝑞) ≠ (2nd𝑞)) ∧ 𝑥 = (𝑟 ∈ (𝔼‘𝑛)((2nd𝑞) Btwn ⟨(1st𝑞), 𝑟⟩ ∧ ⟨(2nd𝑞), 𝑟⟩Cgr𝑝))) ↔ ∃𝑛 ∈ ℕ ((⟨𝐴, 𝐵⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ 𝑞 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ (1st𝑞) ≠ (2nd𝑞)) ∧ 𝑥 = (𝑟 ∈ (𝔼‘𝑛)((2nd𝑞) Btwn ⟨(1st𝑞), 𝑟⟩ ∧ ⟨(2nd𝑞), 𝑟⟩Cgr⟨𝐴, 𝐵⟩)))))
45 eleq1 2825 . . . . . . . . . 10 (𝑞 = ⟨𝐶, 𝐷⟩ → (𝑞 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ↔ ⟨𝐶, 𝐷⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛))))
46 fveq2 6842 . . . . . . . . . . 11 (𝑞 = ⟨𝐶, 𝐷⟩ → (1st𝑞) = (1st ‘⟨𝐶, 𝐷⟩))
47 fveq2 6842 . . . . . . . . . . 11 (𝑞 = ⟨𝐶, 𝐷⟩ → (2nd𝑞) = (2nd ‘⟨𝐶, 𝐷⟩))
4846, 47neeq12d 3005 . . . . . . . . . 10 (𝑞 = ⟨𝐶, 𝐷⟩ → ((1st𝑞) ≠ (2nd𝑞) ↔ (1st ‘⟨𝐶, 𝐷⟩) ≠ (2nd ‘⟨𝐶, 𝐷⟩)))
4945, 483anbi23d 1439 . . . . . . . . 9 (𝑞 = ⟨𝐶, 𝐷⟩ → ((⟨𝐴, 𝐵⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ 𝑞 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ (1st𝑞) ≠ (2nd𝑞)) ↔ (⟨𝐴, 𝐵⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ ⟨𝐶, 𝐷⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ (1st ‘⟨𝐶, 𝐷⟩) ≠ (2nd ‘⟨𝐶, 𝐷⟩))))
5046opeq1d 4836 . . . . . . . . . . . . 13 (𝑞 = ⟨𝐶, 𝐷⟩ → ⟨(1st𝑞), 𝑟⟩ = ⟨(1st ‘⟨𝐶, 𝐷⟩), 𝑟⟩)
5147, 50breq12d 5118 . . . . . . . . . . . 12 (𝑞 = ⟨𝐶, 𝐷⟩ → ((2nd𝑞) Btwn ⟨(1st𝑞), 𝑟⟩ ↔ (2nd ‘⟨𝐶, 𝐷⟩) Btwn ⟨(1st ‘⟨𝐶, 𝐷⟩), 𝑟⟩))
5247opeq1d 4836 . . . . . . . . . . . . 13 (𝑞 = ⟨𝐶, 𝐷⟩ → ⟨(2nd𝑞), 𝑟⟩ = ⟨(2nd ‘⟨𝐶, 𝐷⟩), 𝑟⟩)
5352breq1d 5115 . . . . . . . . . . . 12 (𝑞 = ⟨𝐶, 𝐷⟩ → (⟨(2nd𝑞), 𝑟⟩Cgr⟨𝐴, 𝐵⟩ ↔ ⟨(2nd ‘⟨𝐶, 𝐷⟩), 𝑟⟩Cgr⟨𝐴, 𝐵⟩))
5451, 53anbi12d 631 . . . . . . . . . . 11 (𝑞 = ⟨𝐶, 𝐷⟩ → (((2nd𝑞) Btwn ⟨(1st𝑞), 𝑟⟩ ∧ ⟨(2nd𝑞), 𝑟⟩Cgr⟨𝐴, 𝐵⟩) ↔ ((2nd ‘⟨𝐶, 𝐷⟩) Btwn ⟨(1st ‘⟨𝐶, 𝐷⟩), 𝑟⟩ ∧ ⟨(2nd ‘⟨𝐶, 𝐷⟩), 𝑟⟩Cgr⟨𝐴, 𝐵⟩)))
5554riotabidv 7315 . . . . . . . . . 10 (𝑞 = ⟨𝐶, 𝐷⟩ → (𝑟 ∈ (𝔼‘𝑛)((2nd𝑞) Btwn ⟨(1st𝑞), 𝑟⟩ ∧ ⟨(2nd𝑞), 𝑟⟩Cgr⟨𝐴, 𝐵⟩)) = (𝑟 ∈ (𝔼‘𝑛)((2nd ‘⟨𝐶, 𝐷⟩) Btwn ⟨(1st ‘⟨𝐶, 𝐷⟩), 𝑟⟩ ∧ ⟨(2nd ‘⟨𝐶, 𝐷⟩), 𝑟⟩Cgr⟨𝐴, 𝐵⟩)))
5655eqeq2d 2747 . . . . . . . . 9 (𝑞 = ⟨𝐶, 𝐷⟩ → (𝑥 = (𝑟 ∈ (𝔼‘𝑛)((2nd𝑞) Btwn ⟨(1st𝑞), 𝑟⟩ ∧ ⟨(2nd𝑞), 𝑟⟩Cgr⟨𝐴, 𝐵⟩)) ↔ 𝑥 = (𝑟 ∈ (𝔼‘𝑛)((2nd ‘⟨𝐶, 𝐷⟩) Btwn ⟨(1st ‘⟨𝐶, 𝐷⟩), 𝑟⟩ ∧ ⟨(2nd ‘⟨𝐶, 𝐷⟩), 𝑟⟩Cgr⟨𝐴, 𝐵⟩))))
5749, 56anbi12d 631 . . . . . . . 8 (𝑞 = ⟨𝐶, 𝐷⟩ → (((⟨𝐴, 𝐵⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ 𝑞 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ (1st𝑞) ≠ (2nd𝑞)) ∧ 𝑥 = (𝑟 ∈ (𝔼‘𝑛)((2nd𝑞) Btwn ⟨(1st𝑞), 𝑟⟩ ∧ ⟨(2nd𝑞), 𝑟⟩Cgr⟨𝐴, 𝐵⟩))) ↔ ((⟨𝐴, 𝐵⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ ⟨𝐶, 𝐷⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ (1st ‘⟨𝐶, 𝐷⟩) ≠ (2nd ‘⟨𝐶, 𝐷⟩)) ∧ 𝑥 = (𝑟 ∈ (𝔼‘𝑛)((2nd ‘⟨𝐶, 𝐷⟩) Btwn ⟨(1st ‘⟨𝐶, 𝐷⟩), 𝑟⟩ ∧ ⟨(2nd ‘⟨𝐶, 𝐷⟩), 𝑟⟩Cgr⟨𝐴, 𝐵⟩)))))
5857rexbidv 3175 . . . . . . 7 (𝑞 = ⟨𝐶, 𝐷⟩ → (∃𝑛 ∈ ℕ ((⟨𝐴, 𝐵⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ 𝑞 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ (1st𝑞) ≠ (2nd𝑞)) ∧ 𝑥 = (𝑟 ∈ (𝔼‘𝑛)((2nd𝑞) Btwn ⟨(1st𝑞), 𝑟⟩ ∧ ⟨(2nd𝑞), 𝑟⟩Cgr⟨𝐴, 𝐵⟩))) ↔ ∃𝑛 ∈ ℕ ((⟨𝐴, 𝐵⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ ⟨𝐶, 𝐷⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ (1st ‘⟨𝐶, 𝐷⟩) ≠ (2nd ‘⟨𝐶, 𝐷⟩)) ∧ 𝑥 = (𝑟 ∈ (𝔼‘𝑛)((2nd ‘⟨𝐶, 𝐷⟩) Btwn ⟨(1st ‘⟨𝐶, 𝐷⟩), 𝑟⟩ ∧ ⟨(2nd ‘⟨𝐶, 𝐷⟩), 𝑟⟩Cgr⟨𝐴, 𝐵⟩)))))
59 eqeq1 2740 . . . . . . . . 9 (𝑥 = (𝑟 ∈ (𝔼‘𝑁)(𝐷 Btwn ⟨𝐶, 𝑟⟩ ∧ ⟨𝐷, 𝑟⟩Cgr⟨𝐴, 𝐵⟩)) → (𝑥 = (𝑟 ∈ (𝔼‘𝑛)((2nd ‘⟨𝐶, 𝐷⟩) Btwn ⟨(1st ‘⟨𝐶, 𝐷⟩), 𝑟⟩ ∧ ⟨(2nd ‘⟨𝐶, 𝐷⟩), 𝑟⟩Cgr⟨𝐴, 𝐵⟩)) ↔ (𝑟 ∈ (𝔼‘𝑁)(𝐷 Btwn ⟨𝐶, 𝑟⟩ ∧ ⟨𝐷, 𝑟⟩Cgr⟨𝐴, 𝐵⟩)) = (𝑟 ∈ (𝔼‘𝑛)((2nd ‘⟨𝐶, 𝐷⟩) Btwn ⟨(1st ‘⟨𝐶, 𝐷⟩), 𝑟⟩ ∧ ⟨(2nd ‘⟨𝐶, 𝐷⟩), 𝑟⟩Cgr⟨𝐴, 𝐵⟩))))
6059anbi2d 629 . . . . . . . 8 (𝑥 = (𝑟 ∈ (𝔼‘𝑁)(𝐷 Btwn ⟨𝐶, 𝑟⟩ ∧ ⟨𝐷, 𝑟⟩Cgr⟨𝐴, 𝐵⟩)) → (((⟨𝐴, 𝐵⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ ⟨𝐶, 𝐷⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ (1st ‘⟨𝐶, 𝐷⟩) ≠ (2nd ‘⟨𝐶, 𝐷⟩)) ∧ 𝑥 = (𝑟 ∈ (𝔼‘𝑛)((2nd ‘⟨𝐶, 𝐷⟩) Btwn ⟨(1st ‘⟨𝐶, 𝐷⟩), 𝑟⟩ ∧ ⟨(2nd ‘⟨𝐶, 𝐷⟩), 𝑟⟩Cgr⟨𝐴, 𝐵⟩))) ↔ ((⟨𝐴, 𝐵⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ ⟨𝐶, 𝐷⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ (1st ‘⟨𝐶, 𝐷⟩) ≠ (2nd ‘⟨𝐶, 𝐷⟩)) ∧ (𝑟 ∈ (𝔼‘𝑁)(𝐷 Btwn ⟨𝐶, 𝑟⟩ ∧ ⟨𝐷, 𝑟⟩Cgr⟨𝐴, 𝐵⟩)) = (𝑟 ∈ (𝔼‘𝑛)((2nd ‘⟨𝐶, 𝐷⟩) Btwn ⟨(1st ‘⟨𝐶, 𝐷⟩), 𝑟⟩ ∧ ⟨(2nd ‘⟨𝐶, 𝐷⟩), 𝑟⟩Cgr⟨𝐴, 𝐵⟩)))))
6160rexbidv 3175 . . . . . . 7 (𝑥 = (𝑟 ∈ (𝔼‘𝑁)(𝐷 Btwn ⟨𝐶, 𝑟⟩ ∧ ⟨𝐷, 𝑟⟩Cgr⟨𝐴, 𝐵⟩)) → (∃𝑛 ∈ ℕ ((⟨𝐴, 𝐵⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ ⟨𝐶, 𝐷⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ (1st ‘⟨𝐶, 𝐷⟩) ≠ (2nd ‘⟨𝐶, 𝐷⟩)) ∧ 𝑥 = (𝑟 ∈ (𝔼‘𝑛)((2nd ‘⟨𝐶, 𝐷⟩) Btwn ⟨(1st ‘⟨𝐶, 𝐷⟩), 𝑟⟩ ∧ ⟨(2nd ‘⟨𝐶, 𝐷⟩), 𝑟⟩Cgr⟨𝐴, 𝐵⟩))) ↔ ∃𝑛 ∈ ℕ ((⟨𝐴, 𝐵⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ ⟨𝐶, 𝐷⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ (1st ‘⟨𝐶, 𝐷⟩) ≠ (2nd ‘⟨𝐶, 𝐷⟩)) ∧ (𝑟 ∈ (𝔼‘𝑁)(𝐷 Btwn ⟨𝐶, 𝑟⟩ ∧ ⟨𝐷, 𝑟⟩Cgr⟨𝐴, 𝐵⟩)) = (𝑟 ∈ (𝔼‘𝑛)((2nd ‘⟨𝐶, 𝐷⟩) Btwn ⟨(1st ‘⟨𝐶, 𝐷⟩), 𝑟⟩ ∧ ⟨(2nd ‘⟨𝐶, 𝐷⟩), 𝑟⟩Cgr⟨𝐴, 𝐵⟩)))))
6244, 58, 61eloprabg 7466 . . . . . 6 ((⟨𝐴, 𝐵⟩ ∈ V ∧ ⟨𝐶, 𝐷⟩ ∈ V ∧ (𝑟 ∈ (𝔼‘𝑁)(𝐷 Btwn ⟨𝐶, 𝑟⟩ ∧ ⟨𝐷, 𝑟⟩Cgr⟨𝐴, 𝐵⟩)) ∈ V) → (⟨⟨⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩⟩, (𝑟 ∈ (𝔼‘𝑁)(𝐷 Btwn ⟨𝐶, 𝑟⟩ ∧ ⟨𝐷, 𝑟⟩Cgr⟨𝐴, 𝐵⟩))⟩ ∈ {⟨⟨𝑝, 𝑞⟩, 𝑥⟩ ∣ ∃𝑛 ∈ ℕ ((𝑝 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ 𝑞 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ (1st𝑞) ≠ (2nd𝑞)) ∧ 𝑥 = (𝑟 ∈ (𝔼‘𝑛)((2nd𝑞) Btwn ⟨(1st𝑞), 𝑟⟩ ∧ ⟨(2nd𝑞), 𝑟⟩Cgr𝑝)))} ↔ ∃𝑛 ∈ ℕ ((⟨𝐴, 𝐵⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ ⟨𝐶, 𝐷⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ (1st ‘⟨𝐶, 𝐷⟩) ≠ (2nd ‘⟨𝐶, 𝐷⟩)) ∧ (𝑟 ∈ (𝔼‘𝑁)(𝐷 Btwn ⟨𝐶, 𝑟⟩ ∧ ⟨𝐷, 𝑟⟩Cgr⟨𝐴, 𝐵⟩)) = (𝑟 ∈ (𝔼‘𝑛)((2nd ‘⟨𝐶, 𝐷⟩) Btwn ⟨(1st ‘⟨𝐶, 𝐷⟩), 𝑟⟩ ∧ ⟨(2nd ‘⟨𝐶, 𝐷⟩), 𝑟⟩Cgr⟨𝐴, 𝐵⟩)))))
6334, 35, 36, 62mp3an 1461 . . . . 5 (⟨⟨⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩⟩, (𝑟 ∈ (𝔼‘𝑁)(𝐷 Btwn ⟨𝐶, 𝑟⟩ ∧ ⟨𝐷, 𝑟⟩Cgr⟨𝐴, 𝐵⟩))⟩ ∈ {⟨⟨𝑝, 𝑞⟩, 𝑥⟩ ∣ ∃𝑛 ∈ ℕ ((𝑝 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ 𝑞 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ (1st𝑞) ≠ (2nd𝑞)) ∧ 𝑥 = (𝑟 ∈ (𝔼‘𝑛)((2nd𝑞) Btwn ⟨(1st𝑞), 𝑟⟩ ∧ ⟨(2nd𝑞), 𝑟⟩Cgr𝑝)))} ↔ ∃𝑛 ∈ ℕ ((⟨𝐴, 𝐵⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ ⟨𝐶, 𝐷⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ (1st ‘⟨𝐶, 𝐷⟩) ≠ (2nd ‘⟨𝐶, 𝐷⟩)) ∧ (𝑟 ∈ (𝔼‘𝑁)(𝐷 Btwn ⟨𝐶, 𝑟⟩ ∧ ⟨𝐷, 𝑟⟩Cgr⟨𝐴, 𝐵⟩)) = (𝑟 ∈ (𝔼‘𝑛)((2nd ‘⟨𝐶, 𝐷⟩) Btwn ⟨(1st ‘⟨𝐶, 𝐷⟩), 𝑟⟩ ∧ ⟨(2nd ‘⟨𝐶, 𝐷⟩), 𝑟⟩Cgr⟨𝐴, 𝐵⟩))))
6431, 33, 633bitri 296 . . . 4 (⟨⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩⟩TransportTo(𝑟 ∈ (𝔼‘𝑁)(𝐷 Btwn ⟨𝐶, 𝑟⟩ ∧ ⟨𝐷, 𝑟⟩Cgr⟨𝐴, 𝐵⟩)) ↔ ∃𝑛 ∈ ℕ ((⟨𝐴, 𝐵⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ ⟨𝐶, 𝐷⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ (1st ‘⟨𝐶, 𝐷⟩) ≠ (2nd ‘⟨𝐶, 𝐷⟩)) ∧ (𝑟 ∈ (𝔼‘𝑁)(𝐷 Btwn ⟨𝐶, 𝑟⟩ ∧ ⟨𝐷, 𝑟⟩Cgr⟨𝐴, 𝐵⟩)) = (𝑟 ∈ (𝔼‘𝑛)((2nd ‘⟨𝐶, 𝐷⟩) Btwn ⟨(1st ‘⟨𝐶, 𝐷⟩), 𝑟⟩ ∧ ⟨(2nd ‘⟨𝐶, 𝐷⟩), 𝑟⟩Cgr⟨𝐴, 𝐵⟩))))
65 funtransport 34616 . . . . 5 Fun TransportTo
66 funbrfv 6893 . . . . 5 (Fun TransportTo → (⟨⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩⟩TransportTo(𝑟 ∈ (𝔼‘𝑁)(𝐷 Btwn ⟨𝐶, 𝑟⟩ ∧ ⟨𝐷, 𝑟⟩Cgr⟨𝐴, 𝐵⟩)) → (TransportTo‘⟨⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩⟩) = (𝑟 ∈ (𝔼‘𝑁)(𝐷 Btwn ⟨𝐶, 𝑟⟩ ∧ ⟨𝐷, 𝑟⟩Cgr⟨𝐴, 𝐵⟩))))
6765, 66ax-mp 5 . . . 4 (⟨⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩⟩TransportTo(𝑟 ∈ (𝔼‘𝑁)(𝐷 Btwn ⟨𝐶, 𝑟⟩ ∧ ⟨𝐷, 𝑟⟩Cgr⟨𝐴, 𝐵⟩)) → (TransportTo‘⟨⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩⟩) = (𝑟 ∈ (𝔼‘𝑁)(𝐷 Btwn ⟨𝐶, 𝑟⟩ ∧ ⟨𝐷, 𝑟⟩Cgr⟨𝐴, 𝐵⟩)))
6864, 67sylbir 234 . . 3 (∃𝑛 ∈ ℕ ((⟨𝐴, 𝐵⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ ⟨𝐶, 𝐷⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ (1st ‘⟨𝐶, 𝐷⟩) ≠ (2nd ‘⟨𝐶, 𝐷⟩)) ∧ (𝑟 ∈ (𝔼‘𝑁)(𝐷 Btwn ⟨𝐶, 𝑟⟩ ∧ ⟨𝐷, 𝑟⟩Cgr⟨𝐴, 𝐵⟩)) = (𝑟 ∈ (𝔼‘𝑛)((2nd ‘⟨𝐶, 𝐷⟩) Btwn ⟨(1st ‘⟨𝐶, 𝐷⟩), 𝑟⟩ ∧ ⟨(2nd ‘⟨𝐶, 𝐷⟩), 𝑟⟩Cgr⟨𝐴, 𝐵⟩))) → (TransportTo‘⟨⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩⟩) = (𝑟 ∈ (𝔼‘𝑁)(𝐷 Btwn ⟨𝐶, 𝑟⟩ ∧ ⟨𝐷, 𝑟⟩Cgr⟨𝐴, 𝐵⟩)))
6930, 68syl 17 . 2 ((𝑁 ∈ ℕ ∧ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) ∧ 𝐶𝐷)) → (TransportTo‘⟨⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩⟩) = (𝑟 ∈ (𝔼‘𝑁)(𝐷 Btwn ⟨𝐶, 𝑟⟩ ∧ ⟨𝐷, 𝑟⟩Cgr⟨𝐴, 𝐵⟩)))
701, 69eqtrid 2788 1 ((𝑁 ∈ ℕ ∧ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) ∧ 𝐶𝐷)) → (⟨𝐴, 𝐵⟩TransportTo⟨𝐶, 𝐷⟩) = (𝑟 ∈ (𝔼‘𝑁)(𝐷 Btwn ⟨𝐶, 𝑟⟩ ∧ ⟨𝐷, 𝑟⟩Cgr⟨𝐴, 𝐵⟩)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1087   = wceq 1541  wcel 2106  wne 2943  wrex 3073  Vcvv 3445  cop 4592   class class class wbr 5105   × cxp 5631  Fun wfun 6490  cfv 6496  crio 7312  (class class class)co 7357  {coprab 7358  1st c1st 7919  2nd c2nd 7920  cn 12153  𝔼cee 27837   Btwn cbtwn 27838  Cgrccgr 27839  TransportToctransport 34614
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-1st 7921  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-er 8648  df-map 8767  df-en 8884  df-dom 8885  df-sdom 8886  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-nn 12154  df-z 12500  df-uz 12764  df-fz 13425  df-ee 27840  df-transport 34615
This theorem is referenced by:  transportcl  34618  transportprops  34619
  Copyright terms: Public domain W3C validator