Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fvtransport Structured version   Visualization version   GIF version

Theorem fvtransport 32455
Description: Calculate the value of the TransportTo function. This function takes four points, 𝐴 through 𝐷, where 𝐶 and 𝐷 are distinct. It then returns the point that extends 𝐶𝐷 by the length of 𝐴𝐵. (Contributed by Scott Fenton, 18-Oct-2013.) (Revised by Mario Carneiro, 19-Apr-2014.)
Assertion
Ref Expression
fvtransport ((𝑁 ∈ ℕ ∧ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) ∧ 𝐶𝐷)) → (⟨𝐴, 𝐵⟩TransportTo⟨𝐶, 𝐷⟩) = (𝑟 ∈ (𝔼‘𝑁)(𝐷 Btwn ⟨𝐶, 𝑟⟩ ∧ ⟨𝐷, 𝑟⟩Cgr⟨𝐴, 𝐵⟩)))
Distinct variable groups:   𝑁,𝑟   𝐴,𝑟   𝐵,𝑟   𝐶,𝑟   𝐷,𝑟

Proof of Theorem fvtransport
Dummy variables 𝑛 𝑝 𝑞 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-ov 6873 . 2 (⟨𝐴, 𝐵⟩TransportTo⟨𝐶, 𝐷⟩) = (TransportTo‘⟨⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩⟩)
2 opelxpi 5348 . . . . . . 7 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) → ⟨𝐴, 𝐵⟩ ∈ ((𝔼‘𝑁) × (𝔼‘𝑁)))
323ad2ant1 1156 . . . . . 6 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) ∧ 𝐶𝐷) → ⟨𝐴, 𝐵⟩ ∈ ((𝔼‘𝑁) × (𝔼‘𝑁)))
4 opelxpi 5348 . . . . . . 7 ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) → ⟨𝐶, 𝐷⟩ ∈ ((𝔼‘𝑁) × (𝔼‘𝑁)))
543ad2ant2 1157 . . . . . 6 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) ∧ 𝐶𝐷) → ⟨𝐶, 𝐷⟩ ∈ ((𝔼‘𝑁) × (𝔼‘𝑁)))
6 simp3 1161 . . . . . . 7 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) ∧ 𝐶𝐷) → 𝐶𝐷)
7 op1stg 7406 . . . . . . . 8 ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) → (1st ‘⟨𝐶, 𝐷⟩) = 𝐶)
873ad2ant2 1157 . . . . . . 7 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) ∧ 𝐶𝐷) → (1st ‘⟨𝐶, 𝐷⟩) = 𝐶)
9 op2ndg 7407 . . . . . . . 8 ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) → (2nd ‘⟨𝐶, 𝐷⟩) = 𝐷)
1093ad2ant2 1157 . . . . . . 7 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) ∧ 𝐶𝐷) → (2nd ‘⟨𝐶, 𝐷⟩) = 𝐷)
116, 8, 103netr4d 3055 . . . . . 6 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) ∧ 𝐶𝐷) → (1st ‘⟨𝐶, 𝐷⟩) ≠ (2nd ‘⟨𝐶, 𝐷⟩))
123, 5, 113jca 1151 . . . . 5 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) ∧ 𝐶𝐷) → (⟨𝐴, 𝐵⟩ ∈ ((𝔼‘𝑁) × (𝔼‘𝑁)) ∧ ⟨𝐶, 𝐷⟩ ∈ ((𝔼‘𝑁) × (𝔼‘𝑁)) ∧ (1st ‘⟨𝐶, 𝐷⟩) ≠ (2nd ‘⟨𝐶, 𝐷⟩)))
138opeq1d 4601 . . . . . . . . 9 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) ∧ 𝐶𝐷) → ⟨(1st ‘⟨𝐶, 𝐷⟩), 𝑟⟩ = ⟨𝐶, 𝑟⟩)
1410, 13breq12d 4857 . . . . . . . 8 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) ∧ 𝐶𝐷) → ((2nd ‘⟨𝐶, 𝐷⟩) Btwn ⟨(1st ‘⟨𝐶, 𝐷⟩), 𝑟⟩ ↔ 𝐷 Btwn ⟨𝐶, 𝑟⟩))
1510opeq1d 4601 . . . . . . . . 9 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) ∧ 𝐶𝐷) → ⟨(2nd ‘⟨𝐶, 𝐷⟩), 𝑟⟩ = ⟨𝐷, 𝑟⟩)
1615breq1d 4854 . . . . . . . 8 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) ∧ 𝐶𝐷) → (⟨(2nd ‘⟨𝐶, 𝐷⟩), 𝑟⟩Cgr⟨𝐴, 𝐵⟩ ↔ ⟨𝐷, 𝑟⟩Cgr⟨𝐴, 𝐵⟩))
1714, 16anbi12d 618 . . . . . . 7 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) ∧ 𝐶𝐷) → (((2nd ‘⟨𝐶, 𝐷⟩) Btwn ⟨(1st ‘⟨𝐶, 𝐷⟩), 𝑟⟩ ∧ ⟨(2nd ‘⟨𝐶, 𝐷⟩), 𝑟⟩Cgr⟨𝐴, 𝐵⟩) ↔ (𝐷 Btwn ⟨𝐶, 𝑟⟩ ∧ ⟨𝐷, 𝑟⟩Cgr⟨𝐴, 𝐵⟩)))
1817riotabidv 6833 . . . . . 6 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) ∧ 𝐶𝐷) → (𝑟 ∈ (𝔼‘𝑁)((2nd ‘⟨𝐶, 𝐷⟩) Btwn ⟨(1st ‘⟨𝐶, 𝐷⟩), 𝑟⟩ ∧ ⟨(2nd ‘⟨𝐶, 𝐷⟩), 𝑟⟩Cgr⟨𝐴, 𝐵⟩)) = (𝑟 ∈ (𝔼‘𝑁)(𝐷 Btwn ⟨𝐶, 𝑟⟩ ∧ ⟨𝐷, 𝑟⟩Cgr⟨𝐴, 𝐵⟩)))
1918eqcomd 2812 . . . . 5 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) ∧ 𝐶𝐷) → (𝑟 ∈ (𝔼‘𝑁)(𝐷 Btwn ⟨𝐶, 𝑟⟩ ∧ ⟨𝐷, 𝑟⟩Cgr⟨𝐴, 𝐵⟩)) = (𝑟 ∈ (𝔼‘𝑁)((2nd ‘⟨𝐶, 𝐷⟩) Btwn ⟨(1st ‘⟨𝐶, 𝐷⟩), 𝑟⟩ ∧ ⟨(2nd ‘⟨𝐶, 𝐷⟩), 𝑟⟩Cgr⟨𝐴, 𝐵⟩)))
2012, 19jca 503 . . . 4 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) ∧ 𝐶𝐷) → ((⟨𝐴, 𝐵⟩ ∈ ((𝔼‘𝑁) × (𝔼‘𝑁)) ∧ ⟨𝐶, 𝐷⟩ ∈ ((𝔼‘𝑁) × (𝔼‘𝑁)) ∧ (1st ‘⟨𝐶, 𝐷⟩) ≠ (2nd ‘⟨𝐶, 𝐷⟩)) ∧ (𝑟 ∈ (𝔼‘𝑁)(𝐷 Btwn ⟨𝐶, 𝑟⟩ ∧ ⟨𝐷, 𝑟⟩Cgr⟨𝐴, 𝐵⟩)) = (𝑟 ∈ (𝔼‘𝑁)((2nd ‘⟨𝐶, 𝐷⟩) Btwn ⟨(1st ‘⟨𝐶, 𝐷⟩), 𝑟⟩ ∧ ⟨(2nd ‘⟨𝐶, 𝐷⟩), 𝑟⟩Cgr⟨𝐴, 𝐵⟩))))
21 fveq2 6404 . . . . . . . . 9 (𝑛 = 𝑁 → (𝔼‘𝑛) = (𝔼‘𝑁))
2221sqxpeqd 5342 . . . . . . . 8 (𝑛 = 𝑁 → ((𝔼‘𝑛) × (𝔼‘𝑛)) = ((𝔼‘𝑁) × (𝔼‘𝑁)))
2322eleq2d 2871 . . . . . . 7 (𝑛 = 𝑁 → (⟨𝐴, 𝐵⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ↔ ⟨𝐴, 𝐵⟩ ∈ ((𝔼‘𝑁) × (𝔼‘𝑁))))
2422eleq2d 2871 . . . . . . 7 (𝑛 = 𝑁 → (⟨𝐶, 𝐷⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ↔ ⟨𝐶, 𝐷⟩ ∈ ((𝔼‘𝑁) × (𝔼‘𝑁))))
2523, 243anbi12d 1554 . . . . . 6 (𝑛 = 𝑁 → ((⟨𝐴, 𝐵⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ ⟨𝐶, 𝐷⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ (1st ‘⟨𝐶, 𝐷⟩) ≠ (2nd ‘⟨𝐶, 𝐷⟩)) ↔ (⟨𝐴, 𝐵⟩ ∈ ((𝔼‘𝑁) × (𝔼‘𝑁)) ∧ ⟨𝐶, 𝐷⟩ ∈ ((𝔼‘𝑁) × (𝔼‘𝑁)) ∧ (1st ‘⟨𝐶, 𝐷⟩) ≠ (2nd ‘⟨𝐶, 𝐷⟩))))
2621riotaeqdv 6832 . . . . . . 7 (𝑛 = 𝑁 → (𝑟 ∈ (𝔼‘𝑛)((2nd ‘⟨𝐶, 𝐷⟩) Btwn ⟨(1st ‘⟨𝐶, 𝐷⟩), 𝑟⟩ ∧ ⟨(2nd ‘⟨𝐶, 𝐷⟩), 𝑟⟩Cgr⟨𝐴, 𝐵⟩)) = (𝑟 ∈ (𝔼‘𝑁)((2nd ‘⟨𝐶, 𝐷⟩) Btwn ⟨(1st ‘⟨𝐶, 𝐷⟩), 𝑟⟩ ∧ ⟨(2nd ‘⟨𝐶, 𝐷⟩), 𝑟⟩Cgr⟨𝐴, 𝐵⟩)))
2726eqeq2d 2816 . . . . . 6 (𝑛 = 𝑁 → ((𝑟 ∈ (𝔼‘𝑁)(𝐷 Btwn ⟨𝐶, 𝑟⟩ ∧ ⟨𝐷, 𝑟⟩Cgr⟨𝐴, 𝐵⟩)) = (𝑟 ∈ (𝔼‘𝑛)((2nd ‘⟨𝐶, 𝐷⟩) Btwn ⟨(1st ‘⟨𝐶, 𝐷⟩), 𝑟⟩ ∧ ⟨(2nd ‘⟨𝐶, 𝐷⟩), 𝑟⟩Cgr⟨𝐴, 𝐵⟩)) ↔ (𝑟 ∈ (𝔼‘𝑁)(𝐷 Btwn ⟨𝐶, 𝑟⟩ ∧ ⟨𝐷, 𝑟⟩Cgr⟨𝐴, 𝐵⟩)) = (𝑟 ∈ (𝔼‘𝑁)((2nd ‘⟨𝐶, 𝐷⟩) Btwn ⟨(1st ‘⟨𝐶, 𝐷⟩), 𝑟⟩ ∧ ⟨(2nd ‘⟨𝐶, 𝐷⟩), 𝑟⟩Cgr⟨𝐴, 𝐵⟩))))
2825, 27anbi12d 618 . . . . 5 (𝑛 = 𝑁 → (((⟨𝐴, 𝐵⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ ⟨𝐶, 𝐷⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ (1st ‘⟨𝐶, 𝐷⟩) ≠ (2nd ‘⟨𝐶, 𝐷⟩)) ∧ (𝑟 ∈ (𝔼‘𝑁)(𝐷 Btwn ⟨𝐶, 𝑟⟩ ∧ ⟨𝐷, 𝑟⟩Cgr⟨𝐴, 𝐵⟩)) = (𝑟 ∈ (𝔼‘𝑛)((2nd ‘⟨𝐶, 𝐷⟩) Btwn ⟨(1st ‘⟨𝐶, 𝐷⟩), 𝑟⟩ ∧ ⟨(2nd ‘⟨𝐶, 𝐷⟩), 𝑟⟩Cgr⟨𝐴, 𝐵⟩))) ↔ ((⟨𝐴, 𝐵⟩ ∈ ((𝔼‘𝑁) × (𝔼‘𝑁)) ∧ ⟨𝐶, 𝐷⟩ ∈ ((𝔼‘𝑁) × (𝔼‘𝑁)) ∧ (1st ‘⟨𝐶, 𝐷⟩) ≠ (2nd ‘⟨𝐶, 𝐷⟩)) ∧ (𝑟 ∈ (𝔼‘𝑁)(𝐷 Btwn ⟨𝐶, 𝑟⟩ ∧ ⟨𝐷, 𝑟⟩Cgr⟨𝐴, 𝐵⟩)) = (𝑟 ∈ (𝔼‘𝑁)((2nd ‘⟨𝐶, 𝐷⟩) Btwn ⟨(1st ‘⟨𝐶, 𝐷⟩), 𝑟⟩ ∧ ⟨(2nd ‘⟨𝐶, 𝐷⟩), 𝑟⟩Cgr⟨𝐴, 𝐵⟩)))))
2928rspcev 3502 . . . 4 ((𝑁 ∈ ℕ ∧ ((⟨𝐴, 𝐵⟩ ∈ ((𝔼‘𝑁) × (𝔼‘𝑁)) ∧ ⟨𝐶, 𝐷⟩ ∈ ((𝔼‘𝑁) × (𝔼‘𝑁)) ∧ (1st ‘⟨𝐶, 𝐷⟩) ≠ (2nd ‘⟨𝐶, 𝐷⟩)) ∧ (𝑟 ∈ (𝔼‘𝑁)(𝐷 Btwn ⟨𝐶, 𝑟⟩ ∧ ⟨𝐷, 𝑟⟩Cgr⟨𝐴, 𝐵⟩)) = (𝑟 ∈ (𝔼‘𝑁)((2nd ‘⟨𝐶, 𝐷⟩) Btwn ⟨(1st ‘⟨𝐶, 𝐷⟩), 𝑟⟩ ∧ ⟨(2nd ‘⟨𝐶, 𝐷⟩), 𝑟⟩Cgr⟨𝐴, 𝐵⟩)))) → ∃𝑛 ∈ ℕ ((⟨𝐴, 𝐵⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ ⟨𝐶, 𝐷⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ (1st ‘⟨𝐶, 𝐷⟩) ≠ (2nd ‘⟨𝐶, 𝐷⟩)) ∧ (𝑟 ∈ (𝔼‘𝑁)(𝐷 Btwn ⟨𝐶, 𝑟⟩ ∧ ⟨𝐷, 𝑟⟩Cgr⟨𝐴, 𝐵⟩)) = (𝑟 ∈ (𝔼‘𝑛)((2nd ‘⟨𝐶, 𝐷⟩) Btwn ⟨(1st ‘⟨𝐶, 𝐷⟩), 𝑟⟩ ∧ ⟨(2nd ‘⟨𝐶, 𝐷⟩), 𝑟⟩Cgr⟨𝐴, 𝐵⟩))))
3020, 29sylan2 582 . . 3 ((𝑁 ∈ ℕ ∧ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) ∧ 𝐶𝐷)) → ∃𝑛 ∈ ℕ ((⟨𝐴, 𝐵⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ ⟨𝐶, 𝐷⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ (1st ‘⟨𝐶, 𝐷⟩) ≠ (2nd ‘⟨𝐶, 𝐷⟩)) ∧ (𝑟 ∈ (𝔼‘𝑁)(𝐷 Btwn ⟨𝐶, 𝑟⟩ ∧ ⟨𝐷, 𝑟⟩Cgr⟨𝐴, 𝐵⟩)) = (𝑟 ∈ (𝔼‘𝑛)((2nd ‘⟨𝐶, 𝐷⟩) Btwn ⟨(1st ‘⟨𝐶, 𝐷⟩), 𝑟⟩ ∧ ⟨(2nd ‘⟨𝐶, 𝐷⟩), 𝑟⟩Cgr⟨𝐴, 𝐵⟩))))
31 df-br 4845 . . . . 5 (⟨⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩⟩TransportTo(𝑟 ∈ (𝔼‘𝑁)(𝐷 Btwn ⟨𝐶, 𝑟⟩ ∧ ⟨𝐷, 𝑟⟩Cgr⟨𝐴, 𝐵⟩)) ↔ ⟨⟨⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩⟩, (𝑟 ∈ (𝔼‘𝑁)(𝐷 Btwn ⟨𝐶, 𝑟⟩ ∧ ⟨𝐷, 𝑟⟩Cgr⟨𝐴, 𝐵⟩))⟩ ∈ TransportTo)
32 df-transport 32453 . . . . . 6 TransportTo = {⟨⟨𝑝, 𝑞⟩, 𝑥⟩ ∣ ∃𝑛 ∈ ℕ ((𝑝 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ 𝑞 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ (1st𝑞) ≠ (2nd𝑞)) ∧ 𝑥 = (𝑟 ∈ (𝔼‘𝑛)((2nd𝑞) Btwn ⟨(1st𝑞), 𝑟⟩ ∧ ⟨(2nd𝑞), 𝑟⟩Cgr𝑝)))}
3332eleq2i 2877 . . . . 5 (⟨⟨⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩⟩, (𝑟 ∈ (𝔼‘𝑁)(𝐷 Btwn ⟨𝐶, 𝑟⟩ ∧ ⟨𝐷, 𝑟⟩Cgr⟨𝐴, 𝐵⟩))⟩ ∈ TransportTo ↔ ⟨⟨⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩⟩, (𝑟 ∈ (𝔼‘𝑁)(𝐷 Btwn ⟨𝐶, 𝑟⟩ ∧ ⟨𝐷, 𝑟⟩Cgr⟨𝐴, 𝐵⟩))⟩ ∈ {⟨⟨𝑝, 𝑞⟩, 𝑥⟩ ∣ ∃𝑛 ∈ ℕ ((𝑝 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ 𝑞 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ (1st𝑞) ≠ (2nd𝑞)) ∧ 𝑥 = (𝑟 ∈ (𝔼‘𝑛)((2nd𝑞) Btwn ⟨(1st𝑞), 𝑟⟩ ∧ ⟨(2nd𝑞), 𝑟⟩Cgr𝑝)))})
34 opex 5122 . . . . . 6 𝐴, 𝐵⟩ ∈ V
35 opex 5122 . . . . . 6 𝐶, 𝐷⟩ ∈ V
36 riotaex 6835 . . . . . 6 (𝑟 ∈ (𝔼‘𝑁)(𝐷 Btwn ⟨𝐶, 𝑟⟩ ∧ ⟨𝐷, 𝑟⟩Cgr⟨𝐴, 𝐵⟩)) ∈ V
37 eleq1 2873 . . . . . . . . . 10 (𝑝 = ⟨𝐴, 𝐵⟩ → (𝑝 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ↔ ⟨𝐴, 𝐵⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛))))
38373anbi1d 1557 . . . . . . . . 9 (𝑝 = ⟨𝐴, 𝐵⟩ → ((𝑝 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ 𝑞 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ (1st𝑞) ≠ (2nd𝑞)) ↔ (⟨𝐴, 𝐵⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ 𝑞 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ (1st𝑞) ≠ (2nd𝑞))))
39 breq2 4848 . . . . . . . . . . . 12 (𝑝 = ⟨𝐴, 𝐵⟩ → (⟨(2nd𝑞), 𝑟⟩Cgr𝑝 ↔ ⟨(2nd𝑞), 𝑟⟩Cgr⟨𝐴, 𝐵⟩))
4039anbi2d 616 . . . . . . . . . . 11 (𝑝 = ⟨𝐴, 𝐵⟩ → (((2nd𝑞) Btwn ⟨(1st𝑞), 𝑟⟩ ∧ ⟨(2nd𝑞), 𝑟⟩Cgr𝑝) ↔ ((2nd𝑞) Btwn ⟨(1st𝑞), 𝑟⟩ ∧ ⟨(2nd𝑞), 𝑟⟩Cgr⟨𝐴, 𝐵⟩)))
4140riotabidv 6833 . . . . . . . . . 10 (𝑝 = ⟨𝐴, 𝐵⟩ → (𝑟 ∈ (𝔼‘𝑛)((2nd𝑞) Btwn ⟨(1st𝑞), 𝑟⟩ ∧ ⟨(2nd𝑞), 𝑟⟩Cgr𝑝)) = (𝑟 ∈ (𝔼‘𝑛)((2nd𝑞) Btwn ⟨(1st𝑞), 𝑟⟩ ∧ ⟨(2nd𝑞), 𝑟⟩Cgr⟨𝐴, 𝐵⟩)))
4241eqeq2d 2816 . . . . . . . . 9 (𝑝 = ⟨𝐴, 𝐵⟩ → (𝑥 = (𝑟 ∈ (𝔼‘𝑛)((2nd𝑞) Btwn ⟨(1st𝑞), 𝑟⟩ ∧ ⟨(2nd𝑞), 𝑟⟩Cgr𝑝)) ↔ 𝑥 = (𝑟 ∈ (𝔼‘𝑛)((2nd𝑞) Btwn ⟨(1st𝑞), 𝑟⟩ ∧ ⟨(2nd𝑞), 𝑟⟩Cgr⟨𝐴, 𝐵⟩))))
4338, 42anbi12d 618 . . . . . . . 8 (𝑝 = ⟨𝐴, 𝐵⟩ → (((𝑝 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ 𝑞 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ (1st𝑞) ≠ (2nd𝑞)) ∧ 𝑥 = (𝑟 ∈ (𝔼‘𝑛)((2nd𝑞) Btwn ⟨(1st𝑞), 𝑟⟩ ∧ ⟨(2nd𝑞), 𝑟⟩Cgr𝑝))) ↔ ((⟨𝐴, 𝐵⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ 𝑞 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ (1st𝑞) ≠ (2nd𝑞)) ∧ 𝑥 = (𝑟 ∈ (𝔼‘𝑛)((2nd𝑞) Btwn ⟨(1st𝑞), 𝑟⟩ ∧ ⟨(2nd𝑞), 𝑟⟩Cgr⟨𝐴, 𝐵⟩)))))
4443rexbidv 3240 . . . . . . 7 (𝑝 = ⟨𝐴, 𝐵⟩ → (∃𝑛 ∈ ℕ ((𝑝 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ 𝑞 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ (1st𝑞) ≠ (2nd𝑞)) ∧ 𝑥 = (𝑟 ∈ (𝔼‘𝑛)((2nd𝑞) Btwn ⟨(1st𝑞), 𝑟⟩ ∧ ⟨(2nd𝑞), 𝑟⟩Cgr𝑝))) ↔ ∃𝑛 ∈ ℕ ((⟨𝐴, 𝐵⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ 𝑞 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ (1st𝑞) ≠ (2nd𝑞)) ∧ 𝑥 = (𝑟 ∈ (𝔼‘𝑛)((2nd𝑞) Btwn ⟨(1st𝑞), 𝑟⟩ ∧ ⟨(2nd𝑞), 𝑟⟩Cgr⟨𝐴, 𝐵⟩)))))
45 eleq1 2873 . . . . . . . . . 10 (𝑞 = ⟨𝐶, 𝐷⟩ → (𝑞 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ↔ ⟨𝐶, 𝐷⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛))))
46 fveq2 6404 . . . . . . . . . . 11 (𝑞 = ⟨𝐶, 𝐷⟩ → (1st𝑞) = (1st ‘⟨𝐶, 𝐷⟩))
47 fveq2 6404 . . . . . . . . . . 11 (𝑞 = ⟨𝐶, 𝐷⟩ → (2nd𝑞) = (2nd ‘⟨𝐶, 𝐷⟩))
4846, 47neeq12d 3039 . . . . . . . . . 10 (𝑞 = ⟨𝐶, 𝐷⟩ → ((1st𝑞) ≠ (2nd𝑞) ↔ (1st ‘⟨𝐶, 𝐷⟩) ≠ (2nd ‘⟨𝐶, 𝐷⟩)))
4945, 483anbi23d 1556 . . . . . . . . 9 (𝑞 = ⟨𝐶, 𝐷⟩ → ((⟨𝐴, 𝐵⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ 𝑞 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ (1st𝑞) ≠ (2nd𝑞)) ↔ (⟨𝐴, 𝐵⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ ⟨𝐶, 𝐷⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ (1st ‘⟨𝐶, 𝐷⟩) ≠ (2nd ‘⟨𝐶, 𝐷⟩))))
5046opeq1d 4601 . . . . . . . . . . . . 13 (𝑞 = ⟨𝐶, 𝐷⟩ → ⟨(1st𝑞), 𝑟⟩ = ⟨(1st ‘⟨𝐶, 𝐷⟩), 𝑟⟩)
5147, 50breq12d 4857 . . . . . . . . . . . 12 (𝑞 = ⟨𝐶, 𝐷⟩ → ((2nd𝑞) Btwn ⟨(1st𝑞), 𝑟⟩ ↔ (2nd ‘⟨𝐶, 𝐷⟩) Btwn ⟨(1st ‘⟨𝐶, 𝐷⟩), 𝑟⟩))
5247opeq1d 4601 . . . . . . . . . . . . 13 (𝑞 = ⟨𝐶, 𝐷⟩ → ⟨(2nd𝑞), 𝑟⟩ = ⟨(2nd ‘⟨𝐶, 𝐷⟩), 𝑟⟩)
5352breq1d 4854 . . . . . . . . . . . 12 (𝑞 = ⟨𝐶, 𝐷⟩ → (⟨(2nd𝑞), 𝑟⟩Cgr⟨𝐴, 𝐵⟩ ↔ ⟨(2nd ‘⟨𝐶, 𝐷⟩), 𝑟⟩Cgr⟨𝐴, 𝐵⟩))
5451, 53anbi12d 618 . . . . . . . . . . 11 (𝑞 = ⟨𝐶, 𝐷⟩ → (((2nd𝑞) Btwn ⟨(1st𝑞), 𝑟⟩ ∧ ⟨(2nd𝑞), 𝑟⟩Cgr⟨𝐴, 𝐵⟩) ↔ ((2nd ‘⟨𝐶, 𝐷⟩) Btwn ⟨(1st ‘⟨𝐶, 𝐷⟩), 𝑟⟩ ∧ ⟨(2nd ‘⟨𝐶, 𝐷⟩), 𝑟⟩Cgr⟨𝐴, 𝐵⟩)))
5554riotabidv 6833 . . . . . . . . . 10 (𝑞 = ⟨𝐶, 𝐷⟩ → (𝑟 ∈ (𝔼‘𝑛)((2nd𝑞) Btwn ⟨(1st𝑞), 𝑟⟩ ∧ ⟨(2nd𝑞), 𝑟⟩Cgr⟨𝐴, 𝐵⟩)) = (𝑟 ∈ (𝔼‘𝑛)((2nd ‘⟨𝐶, 𝐷⟩) Btwn ⟨(1st ‘⟨𝐶, 𝐷⟩), 𝑟⟩ ∧ ⟨(2nd ‘⟨𝐶, 𝐷⟩), 𝑟⟩Cgr⟨𝐴, 𝐵⟩)))
5655eqeq2d 2816 . . . . . . . . 9 (𝑞 = ⟨𝐶, 𝐷⟩ → (𝑥 = (𝑟 ∈ (𝔼‘𝑛)((2nd𝑞) Btwn ⟨(1st𝑞), 𝑟⟩ ∧ ⟨(2nd𝑞), 𝑟⟩Cgr⟨𝐴, 𝐵⟩)) ↔ 𝑥 = (𝑟 ∈ (𝔼‘𝑛)((2nd ‘⟨𝐶, 𝐷⟩) Btwn ⟨(1st ‘⟨𝐶, 𝐷⟩), 𝑟⟩ ∧ ⟨(2nd ‘⟨𝐶, 𝐷⟩), 𝑟⟩Cgr⟨𝐴, 𝐵⟩))))
5749, 56anbi12d 618 . . . . . . . 8 (𝑞 = ⟨𝐶, 𝐷⟩ → (((⟨𝐴, 𝐵⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ 𝑞 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ (1st𝑞) ≠ (2nd𝑞)) ∧ 𝑥 = (𝑟 ∈ (𝔼‘𝑛)((2nd𝑞) Btwn ⟨(1st𝑞), 𝑟⟩ ∧ ⟨(2nd𝑞), 𝑟⟩Cgr⟨𝐴, 𝐵⟩))) ↔ ((⟨𝐴, 𝐵⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ ⟨𝐶, 𝐷⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ (1st ‘⟨𝐶, 𝐷⟩) ≠ (2nd ‘⟨𝐶, 𝐷⟩)) ∧ 𝑥 = (𝑟 ∈ (𝔼‘𝑛)((2nd ‘⟨𝐶, 𝐷⟩) Btwn ⟨(1st ‘⟨𝐶, 𝐷⟩), 𝑟⟩ ∧ ⟨(2nd ‘⟨𝐶, 𝐷⟩), 𝑟⟩Cgr⟨𝐴, 𝐵⟩)))))
5857rexbidv 3240 . . . . . . 7 (𝑞 = ⟨𝐶, 𝐷⟩ → (∃𝑛 ∈ ℕ ((⟨𝐴, 𝐵⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ 𝑞 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ (1st𝑞) ≠ (2nd𝑞)) ∧ 𝑥 = (𝑟 ∈ (𝔼‘𝑛)((2nd𝑞) Btwn ⟨(1st𝑞), 𝑟⟩ ∧ ⟨(2nd𝑞), 𝑟⟩Cgr⟨𝐴, 𝐵⟩))) ↔ ∃𝑛 ∈ ℕ ((⟨𝐴, 𝐵⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ ⟨𝐶, 𝐷⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ (1st ‘⟨𝐶, 𝐷⟩) ≠ (2nd ‘⟨𝐶, 𝐷⟩)) ∧ 𝑥 = (𝑟 ∈ (𝔼‘𝑛)((2nd ‘⟨𝐶, 𝐷⟩) Btwn ⟨(1st ‘⟨𝐶, 𝐷⟩), 𝑟⟩ ∧ ⟨(2nd ‘⟨𝐶, 𝐷⟩), 𝑟⟩Cgr⟨𝐴, 𝐵⟩)))))
59 eqeq1 2810 . . . . . . . . 9 (𝑥 = (𝑟 ∈ (𝔼‘𝑁)(𝐷 Btwn ⟨𝐶, 𝑟⟩ ∧ ⟨𝐷, 𝑟⟩Cgr⟨𝐴, 𝐵⟩)) → (𝑥 = (𝑟 ∈ (𝔼‘𝑛)((2nd ‘⟨𝐶, 𝐷⟩) Btwn ⟨(1st ‘⟨𝐶, 𝐷⟩), 𝑟⟩ ∧ ⟨(2nd ‘⟨𝐶, 𝐷⟩), 𝑟⟩Cgr⟨𝐴, 𝐵⟩)) ↔ (𝑟 ∈ (𝔼‘𝑁)(𝐷 Btwn ⟨𝐶, 𝑟⟩ ∧ ⟨𝐷, 𝑟⟩Cgr⟨𝐴, 𝐵⟩)) = (𝑟 ∈ (𝔼‘𝑛)((2nd ‘⟨𝐶, 𝐷⟩) Btwn ⟨(1st ‘⟨𝐶, 𝐷⟩), 𝑟⟩ ∧ ⟨(2nd ‘⟨𝐶, 𝐷⟩), 𝑟⟩Cgr⟨𝐴, 𝐵⟩))))
6059anbi2d 616 . . . . . . . 8 (𝑥 = (𝑟 ∈ (𝔼‘𝑁)(𝐷 Btwn ⟨𝐶, 𝑟⟩ ∧ ⟨𝐷, 𝑟⟩Cgr⟨𝐴, 𝐵⟩)) → (((⟨𝐴, 𝐵⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ ⟨𝐶, 𝐷⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ (1st ‘⟨𝐶, 𝐷⟩) ≠ (2nd ‘⟨𝐶, 𝐷⟩)) ∧ 𝑥 = (𝑟 ∈ (𝔼‘𝑛)((2nd ‘⟨𝐶, 𝐷⟩) Btwn ⟨(1st ‘⟨𝐶, 𝐷⟩), 𝑟⟩ ∧ ⟨(2nd ‘⟨𝐶, 𝐷⟩), 𝑟⟩Cgr⟨𝐴, 𝐵⟩))) ↔ ((⟨𝐴, 𝐵⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ ⟨𝐶, 𝐷⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ (1st ‘⟨𝐶, 𝐷⟩) ≠ (2nd ‘⟨𝐶, 𝐷⟩)) ∧ (𝑟 ∈ (𝔼‘𝑁)(𝐷 Btwn ⟨𝐶, 𝑟⟩ ∧ ⟨𝐷, 𝑟⟩Cgr⟨𝐴, 𝐵⟩)) = (𝑟 ∈ (𝔼‘𝑛)((2nd ‘⟨𝐶, 𝐷⟩) Btwn ⟨(1st ‘⟨𝐶, 𝐷⟩), 𝑟⟩ ∧ ⟨(2nd ‘⟨𝐶, 𝐷⟩), 𝑟⟩Cgr⟨𝐴, 𝐵⟩)))))
6160rexbidv 3240 . . . . . . 7 (𝑥 = (𝑟 ∈ (𝔼‘𝑁)(𝐷 Btwn ⟨𝐶, 𝑟⟩ ∧ ⟨𝐷, 𝑟⟩Cgr⟨𝐴, 𝐵⟩)) → (∃𝑛 ∈ ℕ ((⟨𝐴, 𝐵⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ ⟨𝐶, 𝐷⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ (1st ‘⟨𝐶, 𝐷⟩) ≠ (2nd ‘⟨𝐶, 𝐷⟩)) ∧ 𝑥 = (𝑟 ∈ (𝔼‘𝑛)((2nd ‘⟨𝐶, 𝐷⟩) Btwn ⟨(1st ‘⟨𝐶, 𝐷⟩), 𝑟⟩ ∧ ⟨(2nd ‘⟨𝐶, 𝐷⟩), 𝑟⟩Cgr⟨𝐴, 𝐵⟩))) ↔ ∃𝑛 ∈ ℕ ((⟨𝐴, 𝐵⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ ⟨𝐶, 𝐷⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ (1st ‘⟨𝐶, 𝐷⟩) ≠ (2nd ‘⟨𝐶, 𝐷⟩)) ∧ (𝑟 ∈ (𝔼‘𝑁)(𝐷 Btwn ⟨𝐶, 𝑟⟩ ∧ ⟨𝐷, 𝑟⟩Cgr⟨𝐴, 𝐵⟩)) = (𝑟 ∈ (𝔼‘𝑛)((2nd ‘⟨𝐶, 𝐷⟩) Btwn ⟨(1st ‘⟨𝐶, 𝐷⟩), 𝑟⟩ ∧ ⟨(2nd ‘⟨𝐶, 𝐷⟩), 𝑟⟩Cgr⟨𝐴, 𝐵⟩)))))
6244, 58, 61eloprabg 6974 . . . . . 6 ((⟨𝐴, 𝐵⟩ ∈ V ∧ ⟨𝐶, 𝐷⟩ ∈ V ∧ (𝑟 ∈ (𝔼‘𝑁)(𝐷 Btwn ⟨𝐶, 𝑟⟩ ∧ ⟨𝐷, 𝑟⟩Cgr⟨𝐴, 𝐵⟩)) ∈ V) → (⟨⟨⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩⟩, (𝑟 ∈ (𝔼‘𝑁)(𝐷 Btwn ⟨𝐶, 𝑟⟩ ∧ ⟨𝐷, 𝑟⟩Cgr⟨𝐴, 𝐵⟩))⟩ ∈ {⟨⟨𝑝, 𝑞⟩, 𝑥⟩ ∣ ∃𝑛 ∈ ℕ ((𝑝 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ 𝑞 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ (1st𝑞) ≠ (2nd𝑞)) ∧ 𝑥 = (𝑟 ∈ (𝔼‘𝑛)((2nd𝑞) Btwn ⟨(1st𝑞), 𝑟⟩ ∧ ⟨(2nd𝑞), 𝑟⟩Cgr𝑝)))} ↔ ∃𝑛 ∈ ℕ ((⟨𝐴, 𝐵⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ ⟨𝐶, 𝐷⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ (1st ‘⟨𝐶, 𝐷⟩) ≠ (2nd ‘⟨𝐶, 𝐷⟩)) ∧ (𝑟 ∈ (𝔼‘𝑁)(𝐷 Btwn ⟨𝐶, 𝑟⟩ ∧ ⟨𝐷, 𝑟⟩Cgr⟨𝐴, 𝐵⟩)) = (𝑟 ∈ (𝔼‘𝑛)((2nd ‘⟨𝐶, 𝐷⟩) Btwn ⟨(1st ‘⟨𝐶, 𝐷⟩), 𝑟⟩ ∧ ⟨(2nd ‘⟨𝐶, 𝐷⟩), 𝑟⟩Cgr⟨𝐴, 𝐵⟩)))))
6334, 35, 36, 62mp3an 1578 . . . . 5 (⟨⟨⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩⟩, (𝑟 ∈ (𝔼‘𝑁)(𝐷 Btwn ⟨𝐶, 𝑟⟩ ∧ ⟨𝐷, 𝑟⟩Cgr⟨𝐴, 𝐵⟩))⟩ ∈ {⟨⟨𝑝, 𝑞⟩, 𝑥⟩ ∣ ∃𝑛 ∈ ℕ ((𝑝 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ 𝑞 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ (1st𝑞) ≠ (2nd𝑞)) ∧ 𝑥 = (𝑟 ∈ (𝔼‘𝑛)((2nd𝑞) Btwn ⟨(1st𝑞), 𝑟⟩ ∧ ⟨(2nd𝑞), 𝑟⟩Cgr𝑝)))} ↔ ∃𝑛 ∈ ℕ ((⟨𝐴, 𝐵⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ ⟨𝐶, 𝐷⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ (1st ‘⟨𝐶, 𝐷⟩) ≠ (2nd ‘⟨𝐶, 𝐷⟩)) ∧ (𝑟 ∈ (𝔼‘𝑁)(𝐷 Btwn ⟨𝐶, 𝑟⟩ ∧ ⟨𝐷, 𝑟⟩Cgr⟨𝐴, 𝐵⟩)) = (𝑟 ∈ (𝔼‘𝑛)((2nd ‘⟨𝐶, 𝐷⟩) Btwn ⟨(1st ‘⟨𝐶, 𝐷⟩), 𝑟⟩ ∧ ⟨(2nd ‘⟨𝐶, 𝐷⟩), 𝑟⟩Cgr⟨𝐴, 𝐵⟩))))
6431, 33, 633bitri 288 . . . 4 (⟨⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩⟩TransportTo(𝑟 ∈ (𝔼‘𝑁)(𝐷 Btwn ⟨𝐶, 𝑟⟩ ∧ ⟨𝐷, 𝑟⟩Cgr⟨𝐴, 𝐵⟩)) ↔ ∃𝑛 ∈ ℕ ((⟨𝐴, 𝐵⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ ⟨𝐶, 𝐷⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ (1st ‘⟨𝐶, 𝐷⟩) ≠ (2nd ‘⟨𝐶, 𝐷⟩)) ∧ (𝑟 ∈ (𝔼‘𝑁)(𝐷 Btwn ⟨𝐶, 𝑟⟩ ∧ ⟨𝐷, 𝑟⟩Cgr⟨𝐴, 𝐵⟩)) = (𝑟 ∈ (𝔼‘𝑛)((2nd ‘⟨𝐶, 𝐷⟩) Btwn ⟨(1st ‘⟨𝐶, 𝐷⟩), 𝑟⟩ ∧ ⟨(2nd ‘⟨𝐶, 𝐷⟩), 𝑟⟩Cgr⟨𝐴, 𝐵⟩))))
65 funtransport 32454 . . . . 5 Fun TransportTo
66 funbrfv 6450 . . . . 5 (Fun TransportTo → (⟨⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩⟩TransportTo(𝑟 ∈ (𝔼‘𝑁)(𝐷 Btwn ⟨𝐶, 𝑟⟩ ∧ ⟨𝐷, 𝑟⟩Cgr⟨𝐴, 𝐵⟩)) → (TransportTo‘⟨⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩⟩) = (𝑟 ∈ (𝔼‘𝑁)(𝐷 Btwn ⟨𝐶, 𝑟⟩ ∧ ⟨𝐷, 𝑟⟩Cgr⟨𝐴, 𝐵⟩))))
6765, 66ax-mp 5 . . . 4 (⟨⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩⟩TransportTo(𝑟 ∈ (𝔼‘𝑁)(𝐷 Btwn ⟨𝐶, 𝑟⟩ ∧ ⟨𝐷, 𝑟⟩Cgr⟨𝐴, 𝐵⟩)) → (TransportTo‘⟨⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩⟩) = (𝑟 ∈ (𝔼‘𝑁)(𝐷 Btwn ⟨𝐶, 𝑟⟩ ∧ ⟨𝐷, 𝑟⟩Cgr⟨𝐴, 𝐵⟩)))
6864, 67sylbir 226 . . 3 (∃𝑛 ∈ ℕ ((⟨𝐴, 𝐵⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ ⟨𝐶, 𝐷⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ (1st ‘⟨𝐶, 𝐷⟩) ≠ (2nd ‘⟨𝐶, 𝐷⟩)) ∧ (𝑟 ∈ (𝔼‘𝑁)(𝐷 Btwn ⟨𝐶, 𝑟⟩ ∧ ⟨𝐷, 𝑟⟩Cgr⟨𝐴, 𝐵⟩)) = (𝑟 ∈ (𝔼‘𝑛)((2nd ‘⟨𝐶, 𝐷⟩) Btwn ⟨(1st ‘⟨𝐶, 𝐷⟩), 𝑟⟩ ∧ ⟨(2nd ‘⟨𝐶, 𝐷⟩), 𝑟⟩Cgr⟨𝐴, 𝐵⟩))) → (TransportTo‘⟨⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩⟩) = (𝑟 ∈ (𝔼‘𝑁)(𝐷 Btwn ⟨𝐶, 𝑟⟩ ∧ ⟨𝐷, 𝑟⟩Cgr⟨𝐴, 𝐵⟩)))
6930, 68syl 17 . 2 ((𝑁 ∈ ℕ ∧ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) ∧ 𝐶𝐷)) → (TransportTo‘⟨⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩⟩) = (𝑟 ∈ (𝔼‘𝑁)(𝐷 Btwn ⟨𝐶, 𝑟⟩ ∧ ⟨𝐷, 𝑟⟩Cgr⟨𝐴, 𝐵⟩)))
701, 69syl5eq 2852 1 ((𝑁 ∈ ℕ ∧ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) ∧ 𝐶𝐷)) → (⟨𝐴, 𝐵⟩TransportTo⟨𝐶, 𝐷⟩) = (𝑟 ∈ (𝔼‘𝑁)(𝐷 Btwn ⟨𝐶, 𝑟⟩ ∧ ⟨𝐷, 𝑟⟩Cgr⟨𝐴, 𝐵⟩)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 197  wa 384  w3a 1100   = wceq 1637  wcel 2156  wne 2978  wrex 3097  Vcvv 3391  cop 4376   class class class wbr 4844   × cxp 5309  Fun wfun 6091  cfv 6097  crio 6830  (class class class)co 6870  {coprab 6871  1st c1st 7392  2nd c2nd 7393  cn 11301  𝔼cee 25978   Btwn cbtwn 25979  Cgrccgr 25980  TransportToctransport 32452
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1877  ax-4 1894  ax-5 2001  ax-6 2068  ax-7 2104  ax-8 2158  ax-9 2165  ax-10 2185  ax-11 2201  ax-12 2214  ax-13 2420  ax-ext 2784  ax-sep 4975  ax-nul 4983  ax-pow 5035  ax-pr 5096  ax-un 7175  ax-cnex 10273  ax-resscn 10274  ax-1cn 10275  ax-icn 10276  ax-addcl 10277  ax-addrcl 10278  ax-mulcl 10279  ax-mulrcl 10280  ax-mulcom 10281  ax-addass 10282  ax-mulass 10283  ax-distr 10284  ax-i2m1 10285  ax-1ne0 10286  ax-1rid 10287  ax-rnegex 10288  ax-rrecex 10289  ax-cnre 10290  ax-pre-lttri 10291  ax-pre-lttrn 10292  ax-pre-ltadd 10293  ax-pre-mulgt0 10294
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 866  df-3or 1101  df-3an 1102  df-tru 1641  df-ex 1860  df-nf 1864  df-sb 2061  df-eu 2634  df-mo 2635  df-clab 2793  df-cleq 2799  df-clel 2802  df-nfc 2937  df-ne 2979  df-nel 3082  df-ral 3101  df-rex 3102  df-reu 3103  df-rab 3105  df-v 3393  df-sbc 3634  df-csb 3729  df-dif 3772  df-un 3774  df-in 3776  df-ss 3783  df-pss 3785  df-nul 4117  df-if 4280  df-pw 4353  df-sn 4371  df-pr 4373  df-tp 4375  df-op 4377  df-uni 4631  df-iun 4714  df-br 4845  df-opab 4907  df-mpt 4924  df-tr 4947  df-id 5219  df-eprel 5224  df-po 5232  df-so 5233  df-fr 5270  df-we 5272  df-xp 5317  df-rel 5318  df-cnv 5319  df-co 5320  df-dm 5321  df-rn 5322  df-res 5323  df-ima 5324  df-pred 5893  df-ord 5939  df-on 5940  df-lim 5941  df-suc 5942  df-iota 6060  df-fun 6099  df-fn 6100  df-f 6101  df-f1 6102  df-fo 6103  df-f1o 6104  df-fv 6105  df-riota 6831  df-ov 6873  df-oprab 6874  df-mpt2 6875  df-om 7292  df-1st 7394  df-2nd 7395  df-wrecs 7638  df-recs 7700  df-rdg 7738  df-er 7975  df-map 8090  df-en 8189  df-dom 8190  df-sdom 8191  df-pnf 10357  df-mnf 10358  df-xr 10359  df-ltxr 10360  df-le 10361  df-sub 10549  df-neg 10550  df-nn 11302  df-z 11640  df-uz 11901  df-fz 12546  df-ee 25981  df-transport 32453
This theorem is referenced by:  transportcl  32456  transportprops  32457
  Copyright terms: Public domain W3C validator