Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fvtransport Structured version   Visualization version   GIF version

Theorem fvtransport 33020
Description: Calculate the value of the TransportTo function. This function takes four points, 𝐴 through 𝐷, where 𝐶 and 𝐷 are distinct. It then returns the point that extends 𝐶𝐷 by the length of 𝐴𝐵. (Contributed by Scott Fenton, 18-Oct-2013.) (Revised by Mario Carneiro, 19-Apr-2014.)
Assertion
Ref Expression
fvtransport ((𝑁 ∈ ℕ ∧ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) ∧ 𝐶𝐷)) → (⟨𝐴, 𝐵⟩TransportTo⟨𝐶, 𝐷⟩) = (𝑟 ∈ (𝔼‘𝑁)(𝐷 Btwn ⟨𝐶, 𝑟⟩ ∧ ⟨𝐷, 𝑟⟩Cgr⟨𝐴, 𝐵⟩)))
Distinct variable groups:   𝑁,𝑟   𝐴,𝑟   𝐵,𝑟   𝐶,𝑟   𝐷,𝑟

Proof of Theorem fvtransport
Dummy variables 𝑛 𝑝 𝑞 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-ov 6979 . 2 (⟨𝐴, 𝐵⟩TransportTo⟨𝐶, 𝐷⟩) = (TransportTo‘⟨⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩⟩)
2 opelxpi 5444 . . . . . . 7 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) → ⟨𝐴, 𝐵⟩ ∈ ((𝔼‘𝑁) × (𝔼‘𝑁)))
323ad2ant1 1113 . . . . . 6 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) ∧ 𝐶𝐷) → ⟨𝐴, 𝐵⟩ ∈ ((𝔼‘𝑁) × (𝔼‘𝑁)))
4 opelxpi 5444 . . . . . . 7 ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) → ⟨𝐶, 𝐷⟩ ∈ ((𝔼‘𝑁) × (𝔼‘𝑁)))
543ad2ant2 1114 . . . . . 6 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) ∧ 𝐶𝐷) → ⟨𝐶, 𝐷⟩ ∈ ((𝔼‘𝑁) × (𝔼‘𝑁)))
6 simp3 1118 . . . . . . 7 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) ∧ 𝐶𝐷) → 𝐶𝐷)
7 op1stg 7513 . . . . . . . 8 ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) → (1st ‘⟨𝐶, 𝐷⟩) = 𝐶)
873ad2ant2 1114 . . . . . . 7 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) ∧ 𝐶𝐷) → (1st ‘⟨𝐶, 𝐷⟩) = 𝐶)
9 op2ndg 7514 . . . . . . . 8 ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) → (2nd ‘⟨𝐶, 𝐷⟩) = 𝐷)
1093ad2ant2 1114 . . . . . . 7 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) ∧ 𝐶𝐷) → (2nd ‘⟨𝐶, 𝐷⟩) = 𝐷)
116, 8, 103netr4d 3044 . . . . . 6 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) ∧ 𝐶𝐷) → (1st ‘⟨𝐶, 𝐷⟩) ≠ (2nd ‘⟨𝐶, 𝐷⟩))
123, 5, 113jca 1108 . . . . 5 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) ∧ 𝐶𝐷) → (⟨𝐴, 𝐵⟩ ∈ ((𝔼‘𝑁) × (𝔼‘𝑁)) ∧ ⟨𝐶, 𝐷⟩ ∈ ((𝔼‘𝑁) × (𝔼‘𝑁)) ∧ (1st ‘⟨𝐶, 𝐷⟩) ≠ (2nd ‘⟨𝐶, 𝐷⟩)))
138opeq1d 4683 . . . . . . . . 9 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) ∧ 𝐶𝐷) → ⟨(1st ‘⟨𝐶, 𝐷⟩), 𝑟⟩ = ⟨𝐶, 𝑟⟩)
1410, 13breq12d 4942 . . . . . . . 8 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) ∧ 𝐶𝐷) → ((2nd ‘⟨𝐶, 𝐷⟩) Btwn ⟨(1st ‘⟨𝐶, 𝐷⟩), 𝑟⟩ ↔ 𝐷 Btwn ⟨𝐶, 𝑟⟩))
1510opeq1d 4683 . . . . . . . . 9 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) ∧ 𝐶𝐷) → ⟨(2nd ‘⟨𝐶, 𝐷⟩), 𝑟⟩ = ⟨𝐷, 𝑟⟩)
1615breq1d 4939 . . . . . . . 8 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) ∧ 𝐶𝐷) → (⟨(2nd ‘⟨𝐶, 𝐷⟩), 𝑟⟩Cgr⟨𝐴, 𝐵⟩ ↔ ⟨𝐷, 𝑟⟩Cgr⟨𝐴, 𝐵⟩))
1714, 16anbi12d 621 . . . . . . 7 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) ∧ 𝐶𝐷) → (((2nd ‘⟨𝐶, 𝐷⟩) Btwn ⟨(1st ‘⟨𝐶, 𝐷⟩), 𝑟⟩ ∧ ⟨(2nd ‘⟨𝐶, 𝐷⟩), 𝑟⟩Cgr⟨𝐴, 𝐵⟩) ↔ (𝐷 Btwn ⟨𝐶, 𝑟⟩ ∧ ⟨𝐷, 𝑟⟩Cgr⟨𝐴, 𝐵⟩)))
1817riotabidv 6939 . . . . . 6 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) ∧ 𝐶𝐷) → (𝑟 ∈ (𝔼‘𝑁)((2nd ‘⟨𝐶, 𝐷⟩) Btwn ⟨(1st ‘⟨𝐶, 𝐷⟩), 𝑟⟩ ∧ ⟨(2nd ‘⟨𝐶, 𝐷⟩), 𝑟⟩Cgr⟨𝐴, 𝐵⟩)) = (𝑟 ∈ (𝔼‘𝑁)(𝐷 Btwn ⟨𝐶, 𝑟⟩ ∧ ⟨𝐷, 𝑟⟩Cgr⟨𝐴, 𝐵⟩)))
1918eqcomd 2784 . . . . 5 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) ∧ 𝐶𝐷) → (𝑟 ∈ (𝔼‘𝑁)(𝐷 Btwn ⟨𝐶, 𝑟⟩ ∧ ⟨𝐷, 𝑟⟩Cgr⟨𝐴, 𝐵⟩)) = (𝑟 ∈ (𝔼‘𝑁)((2nd ‘⟨𝐶, 𝐷⟩) Btwn ⟨(1st ‘⟨𝐶, 𝐷⟩), 𝑟⟩ ∧ ⟨(2nd ‘⟨𝐶, 𝐷⟩), 𝑟⟩Cgr⟨𝐴, 𝐵⟩)))
2012, 19jca 504 . . . 4 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) ∧ 𝐶𝐷) → ((⟨𝐴, 𝐵⟩ ∈ ((𝔼‘𝑁) × (𝔼‘𝑁)) ∧ ⟨𝐶, 𝐷⟩ ∈ ((𝔼‘𝑁) × (𝔼‘𝑁)) ∧ (1st ‘⟨𝐶, 𝐷⟩) ≠ (2nd ‘⟨𝐶, 𝐷⟩)) ∧ (𝑟 ∈ (𝔼‘𝑁)(𝐷 Btwn ⟨𝐶, 𝑟⟩ ∧ ⟨𝐷, 𝑟⟩Cgr⟨𝐴, 𝐵⟩)) = (𝑟 ∈ (𝔼‘𝑁)((2nd ‘⟨𝐶, 𝐷⟩) Btwn ⟨(1st ‘⟨𝐶, 𝐷⟩), 𝑟⟩ ∧ ⟨(2nd ‘⟨𝐶, 𝐷⟩), 𝑟⟩Cgr⟨𝐴, 𝐵⟩))))
21 fveq2 6499 . . . . . . . . 9 (𝑛 = 𝑁 → (𝔼‘𝑛) = (𝔼‘𝑁))
2221sqxpeqd 5439 . . . . . . . 8 (𝑛 = 𝑁 → ((𝔼‘𝑛) × (𝔼‘𝑛)) = ((𝔼‘𝑁) × (𝔼‘𝑁)))
2322eleq2d 2851 . . . . . . 7 (𝑛 = 𝑁 → (⟨𝐴, 𝐵⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ↔ ⟨𝐴, 𝐵⟩ ∈ ((𝔼‘𝑁) × (𝔼‘𝑁))))
2422eleq2d 2851 . . . . . . 7 (𝑛 = 𝑁 → (⟨𝐶, 𝐷⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ↔ ⟨𝐶, 𝐷⟩ ∈ ((𝔼‘𝑁) × (𝔼‘𝑁))))
2523, 243anbi12d 1416 . . . . . 6 (𝑛 = 𝑁 → ((⟨𝐴, 𝐵⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ ⟨𝐶, 𝐷⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ (1st ‘⟨𝐶, 𝐷⟩) ≠ (2nd ‘⟨𝐶, 𝐷⟩)) ↔ (⟨𝐴, 𝐵⟩ ∈ ((𝔼‘𝑁) × (𝔼‘𝑁)) ∧ ⟨𝐶, 𝐷⟩ ∈ ((𝔼‘𝑁) × (𝔼‘𝑁)) ∧ (1st ‘⟨𝐶, 𝐷⟩) ≠ (2nd ‘⟨𝐶, 𝐷⟩))))
2621riotaeqdv 6938 . . . . . . 7 (𝑛 = 𝑁 → (𝑟 ∈ (𝔼‘𝑛)((2nd ‘⟨𝐶, 𝐷⟩) Btwn ⟨(1st ‘⟨𝐶, 𝐷⟩), 𝑟⟩ ∧ ⟨(2nd ‘⟨𝐶, 𝐷⟩), 𝑟⟩Cgr⟨𝐴, 𝐵⟩)) = (𝑟 ∈ (𝔼‘𝑁)((2nd ‘⟨𝐶, 𝐷⟩) Btwn ⟨(1st ‘⟨𝐶, 𝐷⟩), 𝑟⟩ ∧ ⟨(2nd ‘⟨𝐶, 𝐷⟩), 𝑟⟩Cgr⟨𝐴, 𝐵⟩)))
2726eqeq2d 2788 . . . . . 6 (𝑛 = 𝑁 → ((𝑟 ∈ (𝔼‘𝑁)(𝐷 Btwn ⟨𝐶, 𝑟⟩ ∧ ⟨𝐷, 𝑟⟩Cgr⟨𝐴, 𝐵⟩)) = (𝑟 ∈ (𝔼‘𝑛)((2nd ‘⟨𝐶, 𝐷⟩) Btwn ⟨(1st ‘⟨𝐶, 𝐷⟩), 𝑟⟩ ∧ ⟨(2nd ‘⟨𝐶, 𝐷⟩), 𝑟⟩Cgr⟨𝐴, 𝐵⟩)) ↔ (𝑟 ∈ (𝔼‘𝑁)(𝐷 Btwn ⟨𝐶, 𝑟⟩ ∧ ⟨𝐷, 𝑟⟩Cgr⟨𝐴, 𝐵⟩)) = (𝑟 ∈ (𝔼‘𝑁)((2nd ‘⟨𝐶, 𝐷⟩) Btwn ⟨(1st ‘⟨𝐶, 𝐷⟩), 𝑟⟩ ∧ ⟨(2nd ‘⟨𝐶, 𝐷⟩), 𝑟⟩Cgr⟨𝐴, 𝐵⟩))))
2825, 27anbi12d 621 . . . . 5 (𝑛 = 𝑁 → (((⟨𝐴, 𝐵⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ ⟨𝐶, 𝐷⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ (1st ‘⟨𝐶, 𝐷⟩) ≠ (2nd ‘⟨𝐶, 𝐷⟩)) ∧ (𝑟 ∈ (𝔼‘𝑁)(𝐷 Btwn ⟨𝐶, 𝑟⟩ ∧ ⟨𝐷, 𝑟⟩Cgr⟨𝐴, 𝐵⟩)) = (𝑟 ∈ (𝔼‘𝑛)((2nd ‘⟨𝐶, 𝐷⟩) Btwn ⟨(1st ‘⟨𝐶, 𝐷⟩), 𝑟⟩ ∧ ⟨(2nd ‘⟨𝐶, 𝐷⟩), 𝑟⟩Cgr⟨𝐴, 𝐵⟩))) ↔ ((⟨𝐴, 𝐵⟩ ∈ ((𝔼‘𝑁) × (𝔼‘𝑁)) ∧ ⟨𝐶, 𝐷⟩ ∈ ((𝔼‘𝑁) × (𝔼‘𝑁)) ∧ (1st ‘⟨𝐶, 𝐷⟩) ≠ (2nd ‘⟨𝐶, 𝐷⟩)) ∧ (𝑟 ∈ (𝔼‘𝑁)(𝐷 Btwn ⟨𝐶, 𝑟⟩ ∧ ⟨𝐷, 𝑟⟩Cgr⟨𝐴, 𝐵⟩)) = (𝑟 ∈ (𝔼‘𝑁)((2nd ‘⟨𝐶, 𝐷⟩) Btwn ⟨(1st ‘⟨𝐶, 𝐷⟩), 𝑟⟩ ∧ ⟨(2nd ‘⟨𝐶, 𝐷⟩), 𝑟⟩Cgr⟨𝐴, 𝐵⟩)))))
2928rspcev 3535 . . . 4 ((𝑁 ∈ ℕ ∧ ((⟨𝐴, 𝐵⟩ ∈ ((𝔼‘𝑁) × (𝔼‘𝑁)) ∧ ⟨𝐶, 𝐷⟩ ∈ ((𝔼‘𝑁) × (𝔼‘𝑁)) ∧ (1st ‘⟨𝐶, 𝐷⟩) ≠ (2nd ‘⟨𝐶, 𝐷⟩)) ∧ (𝑟 ∈ (𝔼‘𝑁)(𝐷 Btwn ⟨𝐶, 𝑟⟩ ∧ ⟨𝐷, 𝑟⟩Cgr⟨𝐴, 𝐵⟩)) = (𝑟 ∈ (𝔼‘𝑁)((2nd ‘⟨𝐶, 𝐷⟩) Btwn ⟨(1st ‘⟨𝐶, 𝐷⟩), 𝑟⟩ ∧ ⟨(2nd ‘⟨𝐶, 𝐷⟩), 𝑟⟩Cgr⟨𝐴, 𝐵⟩)))) → ∃𝑛 ∈ ℕ ((⟨𝐴, 𝐵⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ ⟨𝐶, 𝐷⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ (1st ‘⟨𝐶, 𝐷⟩) ≠ (2nd ‘⟨𝐶, 𝐷⟩)) ∧ (𝑟 ∈ (𝔼‘𝑁)(𝐷 Btwn ⟨𝐶, 𝑟⟩ ∧ ⟨𝐷, 𝑟⟩Cgr⟨𝐴, 𝐵⟩)) = (𝑟 ∈ (𝔼‘𝑛)((2nd ‘⟨𝐶, 𝐷⟩) Btwn ⟨(1st ‘⟨𝐶, 𝐷⟩), 𝑟⟩ ∧ ⟨(2nd ‘⟨𝐶, 𝐷⟩), 𝑟⟩Cgr⟨𝐴, 𝐵⟩))))
3020, 29sylan2 583 . . 3 ((𝑁 ∈ ℕ ∧ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) ∧ 𝐶𝐷)) → ∃𝑛 ∈ ℕ ((⟨𝐴, 𝐵⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ ⟨𝐶, 𝐷⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ (1st ‘⟨𝐶, 𝐷⟩) ≠ (2nd ‘⟨𝐶, 𝐷⟩)) ∧ (𝑟 ∈ (𝔼‘𝑁)(𝐷 Btwn ⟨𝐶, 𝑟⟩ ∧ ⟨𝐷, 𝑟⟩Cgr⟨𝐴, 𝐵⟩)) = (𝑟 ∈ (𝔼‘𝑛)((2nd ‘⟨𝐶, 𝐷⟩) Btwn ⟨(1st ‘⟨𝐶, 𝐷⟩), 𝑟⟩ ∧ ⟨(2nd ‘⟨𝐶, 𝐷⟩), 𝑟⟩Cgr⟨𝐴, 𝐵⟩))))
31 df-br 4930 . . . . 5 (⟨⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩⟩TransportTo(𝑟 ∈ (𝔼‘𝑁)(𝐷 Btwn ⟨𝐶, 𝑟⟩ ∧ ⟨𝐷, 𝑟⟩Cgr⟨𝐴, 𝐵⟩)) ↔ ⟨⟨⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩⟩, (𝑟 ∈ (𝔼‘𝑁)(𝐷 Btwn ⟨𝐶, 𝑟⟩ ∧ ⟨𝐷, 𝑟⟩Cgr⟨𝐴, 𝐵⟩))⟩ ∈ TransportTo)
32 df-transport 33018 . . . . . 6 TransportTo = {⟨⟨𝑝, 𝑞⟩, 𝑥⟩ ∣ ∃𝑛 ∈ ℕ ((𝑝 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ 𝑞 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ (1st𝑞) ≠ (2nd𝑞)) ∧ 𝑥 = (𝑟 ∈ (𝔼‘𝑛)((2nd𝑞) Btwn ⟨(1st𝑞), 𝑟⟩ ∧ ⟨(2nd𝑞), 𝑟⟩Cgr𝑝)))}
3332eleq2i 2857 . . . . 5 (⟨⟨⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩⟩, (𝑟 ∈ (𝔼‘𝑁)(𝐷 Btwn ⟨𝐶, 𝑟⟩ ∧ ⟨𝐷, 𝑟⟩Cgr⟨𝐴, 𝐵⟩))⟩ ∈ TransportTo ↔ ⟨⟨⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩⟩, (𝑟 ∈ (𝔼‘𝑁)(𝐷 Btwn ⟨𝐶, 𝑟⟩ ∧ ⟨𝐷, 𝑟⟩Cgr⟨𝐴, 𝐵⟩))⟩ ∈ {⟨⟨𝑝, 𝑞⟩, 𝑥⟩ ∣ ∃𝑛 ∈ ℕ ((𝑝 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ 𝑞 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ (1st𝑞) ≠ (2nd𝑞)) ∧ 𝑥 = (𝑟 ∈ (𝔼‘𝑛)((2nd𝑞) Btwn ⟨(1st𝑞), 𝑟⟩ ∧ ⟨(2nd𝑞), 𝑟⟩Cgr𝑝)))})
34 opex 5213 . . . . . 6 𝐴, 𝐵⟩ ∈ V
35 opex 5213 . . . . . 6 𝐶, 𝐷⟩ ∈ V
36 riotaex 6941 . . . . . 6 (𝑟 ∈ (𝔼‘𝑁)(𝐷 Btwn ⟨𝐶, 𝑟⟩ ∧ ⟨𝐷, 𝑟⟩Cgr⟨𝐴, 𝐵⟩)) ∈ V
37 eleq1 2853 . . . . . . . . . 10 (𝑝 = ⟨𝐴, 𝐵⟩ → (𝑝 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ↔ ⟨𝐴, 𝐵⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛))))
38373anbi1d 1419 . . . . . . . . 9 (𝑝 = ⟨𝐴, 𝐵⟩ → ((𝑝 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ 𝑞 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ (1st𝑞) ≠ (2nd𝑞)) ↔ (⟨𝐴, 𝐵⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ 𝑞 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ (1st𝑞) ≠ (2nd𝑞))))
39 breq2 4933 . . . . . . . . . . . 12 (𝑝 = ⟨𝐴, 𝐵⟩ → (⟨(2nd𝑞), 𝑟⟩Cgr𝑝 ↔ ⟨(2nd𝑞), 𝑟⟩Cgr⟨𝐴, 𝐵⟩))
4039anbi2d 619 . . . . . . . . . . 11 (𝑝 = ⟨𝐴, 𝐵⟩ → (((2nd𝑞) Btwn ⟨(1st𝑞), 𝑟⟩ ∧ ⟨(2nd𝑞), 𝑟⟩Cgr𝑝) ↔ ((2nd𝑞) Btwn ⟨(1st𝑞), 𝑟⟩ ∧ ⟨(2nd𝑞), 𝑟⟩Cgr⟨𝐴, 𝐵⟩)))
4140riotabidv 6939 . . . . . . . . . 10 (𝑝 = ⟨𝐴, 𝐵⟩ → (𝑟 ∈ (𝔼‘𝑛)((2nd𝑞) Btwn ⟨(1st𝑞), 𝑟⟩ ∧ ⟨(2nd𝑞), 𝑟⟩Cgr𝑝)) = (𝑟 ∈ (𝔼‘𝑛)((2nd𝑞) Btwn ⟨(1st𝑞), 𝑟⟩ ∧ ⟨(2nd𝑞), 𝑟⟩Cgr⟨𝐴, 𝐵⟩)))
4241eqeq2d 2788 . . . . . . . . 9 (𝑝 = ⟨𝐴, 𝐵⟩ → (𝑥 = (𝑟 ∈ (𝔼‘𝑛)((2nd𝑞) Btwn ⟨(1st𝑞), 𝑟⟩ ∧ ⟨(2nd𝑞), 𝑟⟩Cgr𝑝)) ↔ 𝑥 = (𝑟 ∈ (𝔼‘𝑛)((2nd𝑞) Btwn ⟨(1st𝑞), 𝑟⟩ ∧ ⟨(2nd𝑞), 𝑟⟩Cgr⟨𝐴, 𝐵⟩))))
4338, 42anbi12d 621 . . . . . . . 8 (𝑝 = ⟨𝐴, 𝐵⟩ → (((𝑝 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ 𝑞 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ (1st𝑞) ≠ (2nd𝑞)) ∧ 𝑥 = (𝑟 ∈ (𝔼‘𝑛)((2nd𝑞) Btwn ⟨(1st𝑞), 𝑟⟩ ∧ ⟨(2nd𝑞), 𝑟⟩Cgr𝑝))) ↔ ((⟨𝐴, 𝐵⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ 𝑞 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ (1st𝑞) ≠ (2nd𝑞)) ∧ 𝑥 = (𝑟 ∈ (𝔼‘𝑛)((2nd𝑞) Btwn ⟨(1st𝑞), 𝑟⟩ ∧ ⟨(2nd𝑞), 𝑟⟩Cgr⟨𝐴, 𝐵⟩)))))
4443rexbidv 3242 . . . . . . 7 (𝑝 = ⟨𝐴, 𝐵⟩ → (∃𝑛 ∈ ℕ ((𝑝 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ 𝑞 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ (1st𝑞) ≠ (2nd𝑞)) ∧ 𝑥 = (𝑟 ∈ (𝔼‘𝑛)((2nd𝑞) Btwn ⟨(1st𝑞), 𝑟⟩ ∧ ⟨(2nd𝑞), 𝑟⟩Cgr𝑝))) ↔ ∃𝑛 ∈ ℕ ((⟨𝐴, 𝐵⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ 𝑞 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ (1st𝑞) ≠ (2nd𝑞)) ∧ 𝑥 = (𝑟 ∈ (𝔼‘𝑛)((2nd𝑞) Btwn ⟨(1st𝑞), 𝑟⟩ ∧ ⟨(2nd𝑞), 𝑟⟩Cgr⟨𝐴, 𝐵⟩)))))
45 eleq1 2853 . . . . . . . . . 10 (𝑞 = ⟨𝐶, 𝐷⟩ → (𝑞 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ↔ ⟨𝐶, 𝐷⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛))))
46 fveq2 6499 . . . . . . . . . . 11 (𝑞 = ⟨𝐶, 𝐷⟩ → (1st𝑞) = (1st ‘⟨𝐶, 𝐷⟩))
47 fveq2 6499 . . . . . . . . . . 11 (𝑞 = ⟨𝐶, 𝐷⟩ → (2nd𝑞) = (2nd ‘⟨𝐶, 𝐷⟩))
4846, 47neeq12d 3028 . . . . . . . . . 10 (𝑞 = ⟨𝐶, 𝐷⟩ → ((1st𝑞) ≠ (2nd𝑞) ↔ (1st ‘⟨𝐶, 𝐷⟩) ≠ (2nd ‘⟨𝐶, 𝐷⟩)))
4945, 483anbi23d 1418 . . . . . . . . 9 (𝑞 = ⟨𝐶, 𝐷⟩ → ((⟨𝐴, 𝐵⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ 𝑞 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ (1st𝑞) ≠ (2nd𝑞)) ↔ (⟨𝐴, 𝐵⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ ⟨𝐶, 𝐷⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ (1st ‘⟨𝐶, 𝐷⟩) ≠ (2nd ‘⟨𝐶, 𝐷⟩))))
5046opeq1d 4683 . . . . . . . . . . . . 13 (𝑞 = ⟨𝐶, 𝐷⟩ → ⟨(1st𝑞), 𝑟⟩ = ⟨(1st ‘⟨𝐶, 𝐷⟩), 𝑟⟩)
5147, 50breq12d 4942 . . . . . . . . . . . 12 (𝑞 = ⟨𝐶, 𝐷⟩ → ((2nd𝑞) Btwn ⟨(1st𝑞), 𝑟⟩ ↔ (2nd ‘⟨𝐶, 𝐷⟩) Btwn ⟨(1st ‘⟨𝐶, 𝐷⟩), 𝑟⟩))
5247opeq1d 4683 . . . . . . . . . . . . 13 (𝑞 = ⟨𝐶, 𝐷⟩ → ⟨(2nd𝑞), 𝑟⟩ = ⟨(2nd ‘⟨𝐶, 𝐷⟩), 𝑟⟩)
5352breq1d 4939 . . . . . . . . . . . 12 (𝑞 = ⟨𝐶, 𝐷⟩ → (⟨(2nd𝑞), 𝑟⟩Cgr⟨𝐴, 𝐵⟩ ↔ ⟨(2nd ‘⟨𝐶, 𝐷⟩), 𝑟⟩Cgr⟨𝐴, 𝐵⟩))
5451, 53anbi12d 621 . . . . . . . . . . 11 (𝑞 = ⟨𝐶, 𝐷⟩ → (((2nd𝑞) Btwn ⟨(1st𝑞), 𝑟⟩ ∧ ⟨(2nd𝑞), 𝑟⟩Cgr⟨𝐴, 𝐵⟩) ↔ ((2nd ‘⟨𝐶, 𝐷⟩) Btwn ⟨(1st ‘⟨𝐶, 𝐷⟩), 𝑟⟩ ∧ ⟨(2nd ‘⟨𝐶, 𝐷⟩), 𝑟⟩Cgr⟨𝐴, 𝐵⟩)))
5554riotabidv 6939 . . . . . . . . . 10 (𝑞 = ⟨𝐶, 𝐷⟩ → (𝑟 ∈ (𝔼‘𝑛)((2nd𝑞) Btwn ⟨(1st𝑞), 𝑟⟩ ∧ ⟨(2nd𝑞), 𝑟⟩Cgr⟨𝐴, 𝐵⟩)) = (𝑟 ∈ (𝔼‘𝑛)((2nd ‘⟨𝐶, 𝐷⟩) Btwn ⟨(1st ‘⟨𝐶, 𝐷⟩), 𝑟⟩ ∧ ⟨(2nd ‘⟨𝐶, 𝐷⟩), 𝑟⟩Cgr⟨𝐴, 𝐵⟩)))
5655eqeq2d 2788 . . . . . . . . 9 (𝑞 = ⟨𝐶, 𝐷⟩ → (𝑥 = (𝑟 ∈ (𝔼‘𝑛)((2nd𝑞) Btwn ⟨(1st𝑞), 𝑟⟩ ∧ ⟨(2nd𝑞), 𝑟⟩Cgr⟨𝐴, 𝐵⟩)) ↔ 𝑥 = (𝑟 ∈ (𝔼‘𝑛)((2nd ‘⟨𝐶, 𝐷⟩) Btwn ⟨(1st ‘⟨𝐶, 𝐷⟩), 𝑟⟩ ∧ ⟨(2nd ‘⟨𝐶, 𝐷⟩), 𝑟⟩Cgr⟨𝐴, 𝐵⟩))))
5749, 56anbi12d 621 . . . . . . . 8 (𝑞 = ⟨𝐶, 𝐷⟩ → (((⟨𝐴, 𝐵⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ 𝑞 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ (1st𝑞) ≠ (2nd𝑞)) ∧ 𝑥 = (𝑟 ∈ (𝔼‘𝑛)((2nd𝑞) Btwn ⟨(1st𝑞), 𝑟⟩ ∧ ⟨(2nd𝑞), 𝑟⟩Cgr⟨𝐴, 𝐵⟩))) ↔ ((⟨𝐴, 𝐵⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ ⟨𝐶, 𝐷⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ (1st ‘⟨𝐶, 𝐷⟩) ≠ (2nd ‘⟨𝐶, 𝐷⟩)) ∧ 𝑥 = (𝑟 ∈ (𝔼‘𝑛)((2nd ‘⟨𝐶, 𝐷⟩) Btwn ⟨(1st ‘⟨𝐶, 𝐷⟩), 𝑟⟩ ∧ ⟨(2nd ‘⟨𝐶, 𝐷⟩), 𝑟⟩Cgr⟨𝐴, 𝐵⟩)))))
5857rexbidv 3242 . . . . . . 7 (𝑞 = ⟨𝐶, 𝐷⟩ → (∃𝑛 ∈ ℕ ((⟨𝐴, 𝐵⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ 𝑞 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ (1st𝑞) ≠ (2nd𝑞)) ∧ 𝑥 = (𝑟 ∈ (𝔼‘𝑛)((2nd𝑞) Btwn ⟨(1st𝑞), 𝑟⟩ ∧ ⟨(2nd𝑞), 𝑟⟩Cgr⟨𝐴, 𝐵⟩))) ↔ ∃𝑛 ∈ ℕ ((⟨𝐴, 𝐵⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ ⟨𝐶, 𝐷⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ (1st ‘⟨𝐶, 𝐷⟩) ≠ (2nd ‘⟨𝐶, 𝐷⟩)) ∧ 𝑥 = (𝑟 ∈ (𝔼‘𝑛)((2nd ‘⟨𝐶, 𝐷⟩) Btwn ⟨(1st ‘⟨𝐶, 𝐷⟩), 𝑟⟩ ∧ ⟨(2nd ‘⟨𝐶, 𝐷⟩), 𝑟⟩Cgr⟨𝐴, 𝐵⟩)))))
59 eqeq1 2782 . . . . . . . . 9 (𝑥 = (𝑟 ∈ (𝔼‘𝑁)(𝐷 Btwn ⟨𝐶, 𝑟⟩ ∧ ⟨𝐷, 𝑟⟩Cgr⟨𝐴, 𝐵⟩)) → (𝑥 = (𝑟 ∈ (𝔼‘𝑛)((2nd ‘⟨𝐶, 𝐷⟩) Btwn ⟨(1st ‘⟨𝐶, 𝐷⟩), 𝑟⟩ ∧ ⟨(2nd ‘⟨𝐶, 𝐷⟩), 𝑟⟩Cgr⟨𝐴, 𝐵⟩)) ↔ (𝑟 ∈ (𝔼‘𝑁)(𝐷 Btwn ⟨𝐶, 𝑟⟩ ∧ ⟨𝐷, 𝑟⟩Cgr⟨𝐴, 𝐵⟩)) = (𝑟 ∈ (𝔼‘𝑛)((2nd ‘⟨𝐶, 𝐷⟩) Btwn ⟨(1st ‘⟨𝐶, 𝐷⟩), 𝑟⟩ ∧ ⟨(2nd ‘⟨𝐶, 𝐷⟩), 𝑟⟩Cgr⟨𝐴, 𝐵⟩))))
6059anbi2d 619 . . . . . . . 8 (𝑥 = (𝑟 ∈ (𝔼‘𝑁)(𝐷 Btwn ⟨𝐶, 𝑟⟩ ∧ ⟨𝐷, 𝑟⟩Cgr⟨𝐴, 𝐵⟩)) → (((⟨𝐴, 𝐵⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ ⟨𝐶, 𝐷⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ (1st ‘⟨𝐶, 𝐷⟩) ≠ (2nd ‘⟨𝐶, 𝐷⟩)) ∧ 𝑥 = (𝑟 ∈ (𝔼‘𝑛)((2nd ‘⟨𝐶, 𝐷⟩) Btwn ⟨(1st ‘⟨𝐶, 𝐷⟩), 𝑟⟩ ∧ ⟨(2nd ‘⟨𝐶, 𝐷⟩), 𝑟⟩Cgr⟨𝐴, 𝐵⟩))) ↔ ((⟨𝐴, 𝐵⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ ⟨𝐶, 𝐷⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ (1st ‘⟨𝐶, 𝐷⟩) ≠ (2nd ‘⟨𝐶, 𝐷⟩)) ∧ (𝑟 ∈ (𝔼‘𝑁)(𝐷 Btwn ⟨𝐶, 𝑟⟩ ∧ ⟨𝐷, 𝑟⟩Cgr⟨𝐴, 𝐵⟩)) = (𝑟 ∈ (𝔼‘𝑛)((2nd ‘⟨𝐶, 𝐷⟩) Btwn ⟨(1st ‘⟨𝐶, 𝐷⟩), 𝑟⟩ ∧ ⟨(2nd ‘⟨𝐶, 𝐷⟩), 𝑟⟩Cgr⟨𝐴, 𝐵⟩)))))
6160rexbidv 3242 . . . . . . 7 (𝑥 = (𝑟 ∈ (𝔼‘𝑁)(𝐷 Btwn ⟨𝐶, 𝑟⟩ ∧ ⟨𝐷, 𝑟⟩Cgr⟨𝐴, 𝐵⟩)) → (∃𝑛 ∈ ℕ ((⟨𝐴, 𝐵⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ ⟨𝐶, 𝐷⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ (1st ‘⟨𝐶, 𝐷⟩) ≠ (2nd ‘⟨𝐶, 𝐷⟩)) ∧ 𝑥 = (𝑟 ∈ (𝔼‘𝑛)((2nd ‘⟨𝐶, 𝐷⟩) Btwn ⟨(1st ‘⟨𝐶, 𝐷⟩), 𝑟⟩ ∧ ⟨(2nd ‘⟨𝐶, 𝐷⟩), 𝑟⟩Cgr⟨𝐴, 𝐵⟩))) ↔ ∃𝑛 ∈ ℕ ((⟨𝐴, 𝐵⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ ⟨𝐶, 𝐷⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ (1st ‘⟨𝐶, 𝐷⟩) ≠ (2nd ‘⟨𝐶, 𝐷⟩)) ∧ (𝑟 ∈ (𝔼‘𝑁)(𝐷 Btwn ⟨𝐶, 𝑟⟩ ∧ ⟨𝐷, 𝑟⟩Cgr⟨𝐴, 𝐵⟩)) = (𝑟 ∈ (𝔼‘𝑛)((2nd ‘⟨𝐶, 𝐷⟩) Btwn ⟨(1st ‘⟨𝐶, 𝐷⟩), 𝑟⟩ ∧ ⟨(2nd ‘⟨𝐶, 𝐷⟩), 𝑟⟩Cgr⟨𝐴, 𝐵⟩)))))
6244, 58, 61eloprabg 7078 . . . . . 6 ((⟨𝐴, 𝐵⟩ ∈ V ∧ ⟨𝐶, 𝐷⟩ ∈ V ∧ (𝑟 ∈ (𝔼‘𝑁)(𝐷 Btwn ⟨𝐶, 𝑟⟩ ∧ ⟨𝐷, 𝑟⟩Cgr⟨𝐴, 𝐵⟩)) ∈ V) → (⟨⟨⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩⟩, (𝑟 ∈ (𝔼‘𝑁)(𝐷 Btwn ⟨𝐶, 𝑟⟩ ∧ ⟨𝐷, 𝑟⟩Cgr⟨𝐴, 𝐵⟩))⟩ ∈ {⟨⟨𝑝, 𝑞⟩, 𝑥⟩ ∣ ∃𝑛 ∈ ℕ ((𝑝 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ 𝑞 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ (1st𝑞) ≠ (2nd𝑞)) ∧ 𝑥 = (𝑟 ∈ (𝔼‘𝑛)((2nd𝑞) Btwn ⟨(1st𝑞), 𝑟⟩ ∧ ⟨(2nd𝑞), 𝑟⟩Cgr𝑝)))} ↔ ∃𝑛 ∈ ℕ ((⟨𝐴, 𝐵⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ ⟨𝐶, 𝐷⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ (1st ‘⟨𝐶, 𝐷⟩) ≠ (2nd ‘⟨𝐶, 𝐷⟩)) ∧ (𝑟 ∈ (𝔼‘𝑁)(𝐷 Btwn ⟨𝐶, 𝑟⟩ ∧ ⟨𝐷, 𝑟⟩Cgr⟨𝐴, 𝐵⟩)) = (𝑟 ∈ (𝔼‘𝑛)((2nd ‘⟨𝐶, 𝐷⟩) Btwn ⟨(1st ‘⟨𝐶, 𝐷⟩), 𝑟⟩ ∧ ⟨(2nd ‘⟨𝐶, 𝐷⟩), 𝑟⟩Cgr⟨𝐴, 𝐵⟩)))))
6334, 35, 36, 62mp3an 1440 . . . . 5 (⟨⟨⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩⟩, (𝑟 ∈ (𝔼‘𝑁)(𝐷 Btwn ⟨𝐶, 𝑟⟩ ∧ ⟨𝐷, 𝑟⟩Cgr⟨𝐴, 𝐵⟩))⟩ ∈ {⟨⟨𝑝, 𝑞⟩, 𝑥⟩ ∣ ∃𝑛 ∈ ℕ ((𝑝 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ 𝑞 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ (1st𝑞) ≠ (2nd𝑞)) ∧ 𝑥 = (𝑟 ∈ (𝔼‘𝑛)((2nd𝑞) Btwn ⟨(1st𝑞), 𝑟⟩ ∧ ⟨(2nd𝑞), 𝑟⟩Cgr𝑝)))} ↔ ∃𝑛 ∈ ℕ ((⟨𝐴, 𝐵⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ ⟨𝐶, 𝐷⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ (1st ‘⟨𝐶, 𝐷⟩) ≠ (2nd ‘⟨𝐶, 𝐷⟩)) ∧ (𝑟 ∈ (𝔼‘𝑁)(𝐷 Btwn ⟨𝐶, 𝑟⟩ ∧ ⟨𝐷, 𝑟⟩Cgr⟨𝐴, 𝐵⟩)) = (𝑟 ∈ (𝔼‘𝑛)((2nd ‘⟨𝐶, 𝐷⟩) Btwn ⟨(1st ‘⟨𝐶, 𝐷⟩), 𝑟⟩ ∧ ⟨(2nd ‘⟨𝐶, 𝐷⟩), 𝑟⟩Cgr⟨𝐴, 𝐵⟩))))
6431, 33, 633bitri 289 . . . 4 (⟨⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩⟩TransportTo(𝑟 ∈ (𝔼‘𝑁)(𝐷 Btwn ⟨𝐶, 𝑟⟩ ∧ ⟨𝐷, 𝑟⟩Cgr⟨𝐴, 𝐵⟩)) ↔ ∃𝑛 ∈ ℕ ((⟨𝐴, 𝐵⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ ⟨𝐶, 𝐷⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ (1st ‘⟨𝐶, 𝐷⟩) ≠ (2nd ‘⟨𝐶, 𝐷⟩)) ∧ (𝑟 ∈ (𝔼‘𝑁)(𝐷 Btwn ⟨𝐶, 𝑟⟩ ∧ ⟨𝐷, 𝑟⟩Cgr⟨𝐴, 𝐵⟩)) = (𝑟 ∈ (𝔼‘𝑛)((2nd ‘⟨𝐶, 𝐷⟩) Btwn ⟨(1st ‘⟨𝐶, 𝐷⟩), 𝑟⟩ ∧ ⟨(2nd ‘⟨𝐶, 𝐷⟩), 𝑟⟩Cgr⟨𝐴, 𝐵⟩))))
65 funtransport 33019 . . . . 5 Fun TransportTo
66 funbrfv 6546 . . . . 5 (Fun TransportTo → (⟨⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩⟩TransportTo(𝑟 ∈ (𝔼‘𝑁)(𝐷 Btwn ⟨𝐶, 𝑟⟩ ∧ ⟨𝐷, 𝑟⟩Cgr⟨𝐴, 𝐵⟩)) → (TransportTo‘⟨⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩⟩) = (𝑟 ∈ (𝔼‘𝑁)(𝐷 Btwn ⟨𝐶, 𝑟⟩ ∧ ⟨𝐷, 𝑟⟩Cgr⟨𝐴, 𝐵⟩))))
6765, 66ax-mp 5 . . . 4 (⟨⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩⟩TransportTo(𝑟 ∈ (𝔼‘𝑁)(𝐷 Btwn ⟨𝐶, 𝑟⟩ ∧ ⟨𝐷, 𝑟⟩Cgr⟨𝐴, 𝐵⟩)) → (TransportTo‘⟨⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩⟩) = (𝑟 ∈ (𝔼‘𝑁)(𝐷 Btwn ⟨𝐶, 𝑟⟩ ∧ ⟨𝐷, 𝑟⟩Cgr⟨𝐴, 𝐵⟩)))
6864, 67sylbir 227 . . 3 (∃𝑛 ∈ ℕ ((⟨𝐴, 𝐵⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ ⟨𝐶, 𝐷⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ (1st ‘⟨𝐶, 𝐷⟩) ≠ (2nd ‘⟨𝐶, 𝐷⟩)) ∧ (𝑟 ∈ (𝔼‘𝑁)(𝐷 Btwn ⟨𝐶, 𝑟⟩ ∧ ⟨𝐷, 𝑟⟩Cgr⟨𝐴, 𝐵⟩)) = (𝑟 ∈ (𝔼‘𝑛)((2nd ‘⟨𝐶, 𝐷⟩) Btwn ⟨(1st ‘⟨𝐶, 𝐷⟩), 𝑟⟩ ∧ ⟨(2nd ‘⟨𝐶, 𝐷⟩), 𝑟⟩Cgr⟨𝐴, 𝐵⟩))) → (TransportTo‘⟨⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩⟩) = (𝑟 ∈ (𝔼‘𝑁)(𝐷 Btwn ⟨𝐶, 𝑟⟩ ∧ ⟨𝐷, 𝑟⟩Cgr⟨𝐴, 𝐵⟩)))
6930, 68syl 17 . 2 ((𝑁 ∈ ℕ ∧ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) ∧ 𝐶𝐷)) → (TransportTo‘⟨⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩⟩) = (𝑟 ∈ (𝔼‘𝑁)(𝐷 Btwn ⟨𝐶, 𝑟⟩ ∧ ⟨𝐷, 𝑟⟩Cgr⟨𝐴, 𝐵⟩)))
701, 69syl5eq 2826 1 ((𝑁 ∈ ℕ ∧ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) ∧ 𝐶𝐷)) → (⟨𝐴, 𝐵⟩TransportTo⟨𝐶, 𝐷⟩) = (𝑟 ∈ (𝔼‘𝑁)(𝐷 Btwn ⟨𝐶, 𝑟⟩ ∧ ⟨𝐷, 𝑟⟩Cgr⟨𝐴, 𝐵⟩)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 387  w3a 1068   = wceq 1507  wcel 2050  wne 2967  wrex 3089  Vcvv 3415  cop 4447   class class class wbr 4929   × cxp 5405  Fun wfun 6182  cfv 6188  crio 6936  (class class class)co 6976  {coprab 6977  1st c1st 7499  2nd c2nd 7500  cn 11439  𝔼cee 26377   Btwn cbtwn 26378  Cgrccgr 26379  TransportToctransport 33017
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1965  ax-8 2052  ax-9 2059  ax-10 2079  ax-11 2093  ax-12 2106  ax-13 2301  ax-ext 2750  ax-sep 5060  ax-nul 5067  ax-pow 5119  ax-pr 5186  ax-un 7279  ax-cnex 10391  ax-resscn 10392  ax-1cn 10393  ax-icn 10394  ax-addcl 10395  ax-addrcl 10396  ax-mulcl 10397  ax-mulrcl 10398  ax-mulcom 10399  ax-addass 10400  ax-mulass 10401  ax-distr 10402  ax-i2m1 10403  ax-1ne0 10404  ax-1rid 10405  ax-rnegex 10406  ax-rrecex 10407  ax-cnre 10408  ax-pre-lttri 10409  ax-pre-lttrn 10410  ax-pre-ltadd 10411  ax-pre-mulgt0 10412
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3or 1069  df-3an 1070  df-tru 1510  df-ex 1743  df-nf 1747  df-sb 2016  df-mo 2547  df-eu 2584  df-clab 2759  df-cleq 2771  df-clel 2846  df-nfc 2918  df-ne 2968  df-nel 3074  df-ral 3093  df-rex 3094  df-reu 3095  df-rab 3097  df-v 3417  df-sbc 3682  df-csb 3787  df-dif 3832  df-un 3834  df-in 3836  df-ss 3843  df-pss 3845  df-nul 4179  df-if 4351  df-pw 4424  df-sn 4442  df-pr 4444  df-tp 4446  df-op 4448  df-uni 4713  df-iun 4794  df-br 4930  df-opab 4992  df-mpt 5009  df-tr 5031  df-id 5312  df-eprel 5317  df-po 5326  df-so 5327  df-fr 5366  df-we 5368  df-xp 5413  df-rel 5414  df-cnv 5415  df-co 5416  df-dm 5417  df-rn 5418  df-res 5419  df-ima 5420  df-pred 5986  df-ord 6032  df-on 6033  df-lim 6034  df-suc 6035  df-iota 6152  df-fun 6190  df-fn 6191  df-f 6192  df-f1 6193  df-fo 6194  df-f1o 6195  df-fv 6196  df-riota 6937  df-ov 6979  df-oprab 6980  df-mpo 6981  df-om 7397  df-1st 7501  df-2nd 7502  df-wrecs 7750  df-recs 7812  df-rdg 7850  df-er 8089  df-map 8208  df-en 8307  df-dom 8308  df-sdom 8309  df-pnf 10476  df-mnf 10477  df-xr 10478  df-ltxr 10479  df-le 10480  df-sub 10672  df-neg 10673  df-nn 11440  df-z 11794  df-uz 12059  df-fz 12709  df-ee 26380  df-transport 33018
This theorem is referenced by:  transportcl  33021  transportprops  33022
  Copyright terms: Public domain W3C validator