Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fvtransport Structured version   Visualization version   GIF version

Theorem fvtransport 33607
Description: Calculate the value of the TransportTo function. This function takes four points, 𝐴 through 𝐷, where 𝐶 and 𝐷 are distinct. It then returns the point that extends 𝐶𝐷 by the length of 𝐴𝐵. (Contributed by Scott Fenton, 18-Oct-2013.) (Revised by Mario Carneiro, 19-Apr-2014.)
Assertion
Ref Expression
fvtransport ((𝑁 ∈ ℕ ∧ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) ∧ 𝐶𝐷)) → (⟨𝐴, 𝐵⟩TransportTo⟨𝐶, 𝐷⟩) = (𝑟 ∈ (𝔼‘𝑁)(𝐷 Btwn ⟨𝐶, 𝑟⟩ ∧ ⟨𝐷, 𝑟⟩Cgr⟨𝐴, 𝐵⟩)))
Distinct variable groups:   𝑁,𝑟   𝐴,𝑟   𝐵,𝑟   𝐶,𝑟   𝐷,𝑟

Proof of Theorem fvtransport
Dummy variables 𝑛 𝑝 𝑞 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-ov 7142 . 2 (⟨𝐴, 𝐵⟩TransportTo⟨𝐶, 𝐷⟩) = (TransportTo‘⟨⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩⟩)
2 opelxpi 5560 . . . . . . 7 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) → ⟨𝐴, 𝐵⟩ ∈ ((𝔼‘𝑁) × (𝔼‘𝑁)))
323ad2ant1 1130 . . . . . 6 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) ∧ 𝐶𝐷) → ⟨𝐴, 𝐵⟩ ∈ ((𝔼‘𝑁) × (𝔼‘𝑁)))
4 opelxpi 5560 . . . . . . 7 ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) → ⟨𝐶, 𝐷⟩ ∈ ((𝔼‘𝑁) × (𝔼‘𝑁)))
543ad2ant2 1131 . . . . . 6 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) ∧ 𝐶𝐷) → ⟨𝐶, 𝐷⟩ ∈ ((𝔼‘𝑁) × (𝔼‘𝑁)))
6 simp3 1135 . . . . . . 7 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) ∧ 𝐶𝐷) → 𝐶𝐷)
7 op1stg 7687 . . . . . . . 8 ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) → (1st ‘⟨𝐶, 𝐷⟩) = 𝐶)
873ad2ant2 1131 . . . . . . 7 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) ∧ 𝐶𝐷) → (1st ‘⟨𝐶, 𝐷⟩) = 𝐶)
9 op2ndg 7688 . . . . . . . 8 ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) → (2nd ‘⟨𝐶, 𝐷⟩) = 𝐷)
1093ad2ant2 1131 . . . . . . 7 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) ∧ 𝐶𝐷) → (2nd ‘⟨𝐶, 𝐷⟩) = 𝐷)
116, 8, 103netr4d 3067 . . . . . 6 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) ∧ 𝐶𝐷) → (1st ‘⟨𝐶, 𝐷⟩) ≠ (2nd ‘⟨𝐶, 𝐷⟩))
123, 5, 113jca 1125 . . . . 5 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) ∧ 𝐶𝐷) → (⟨𝐴, 𝐵⟩ ∈ ((𝔼‘𝑁) × (𝔼‘𝑁)) ∧ ⟨𝐶, 𝐷⟩ ∈ ((𝔼‘𝑁) × (𝔼‘𝑁)) ∧ (1st ‘⟨𝐶, 𝐷⟩) ≠ (2nd ‘⟨𝐶, 𝐷⟩)))
138opeq1d 4774 . . . . . . . . 9 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) ∧ 𝐶𝐷) → ⟨(1st ‘⟨𝐶, 𝐷⟩), 𝑟⟩ = ⟨𝐶, 𝑟⟩)
1410, 13breq12d 5046 . . . . . . . 8 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) ∧ 𝐶𝐷) → ((2nd ‘⟨𝐶, 𝐷⟩) Btwn ⟨(1st ‘⟨𝐶, 𝐷⟩), 𝑟⟩ ↔ 𝐷 Btwn ⟨𝐶, 𝑟⟩))
1510opeq1d 4774 . . . . . . . . 9 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) ∧ 𝐶𝐷) → ⟨(2nd ‘⟨𝐶, 𝐷⟩), 𝑟⟩ = ⟨𝐷, 𝑟⟩)
1615breq1d 5043 . . . . . . . 8 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) ∧ 𝐶𝐷) → (⟨(2nd ‘⟨𝐶, 𝐷⟩), 𝑟⟩Cgr⟨𝐴, 𝐵⟩ ↔ ⟨𝐷, 𝑟⟩Cgr⟨𝐴, 𝐵⟩))
1714, 16anbi12d 633 . . . . . . 7 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) ∧ 𝐶𝐷) → (((2nd ‘⟨𝐶, 𝐷⟩) Btwn ⟨(1st ‘⟨𝐶, 𝐷⟩), 𝑟⟩ ∧ ⟨(2nd ‘⟨𝐶, 𝐷⟩), 𝑟⟩Cgr⟨𝐴, 𝐵⟩) ↔ (𝐷 Btwn ⟨𝐶, 𝑟⟩ ∧ ⟨𝐷, 𝑟⟩Cgr⟨𝐴, 𝐵⟩)))
1817riotabidv 7099 . . . . . 6 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) ∧ 𝐶𝐷) → (𝑟 ∈ (𝔼‘𝑁)((2nd ‘⟨𝐶, 𝐷⟩) Btwn ⟨(1st ‘⟨𝐶, 𝐷⟩), 𝑟⟩ ∧ ⟨(2nd ‘⟨𝐶, 𝐷⟩), 𝑟⟩Cgr⟨𝐴, 𝐵⟩)) = (𝑟 ∈ (𝔼‘𝑁)(𝐷 Btwn ⟨𝐶, 𝑟⟩ ∧ ⟨𝐷, 𝑟⟩Cgr⟨𝐴, 𝐵⟩)))
1918eqcomd 2807 . . . . 5 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) ∧ 𝐶𝐷) → (𝑟 ∈ (𝔼‘𝑁)(𝐷 Btwn ⟨𝐶, 𝑟⟩ ∧ ⟨𝐷, 𝑟⟩Cgr⟨𝐴, 𝐵⟩)) = (𝑟 ∈ (𝔼‘𝑁)((2nd ‘⟨𝐶, 𝐷⟩) Btwn ⟨(1st ‘⟨𝐶, 𝐷⟩), 𝑟⟩ ∧ ⟨(2nd ‘⟨𝐶, 𝐷⟩), 𝑟⟩Cgr⟨𝐴, 𝐵⟩)))
2012, 19jca 515 . . . 4 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) ∧ 𝐶𝐷) → ((⟨𝐴, 𝐵⟩ ∈ ((𝔼‘𝑁) × (𝔼‘𝑁)) ∧ ⟨𝐶, 𝐷⟩ ∈ ((𝔼‘𝑁) × (𝔼‘𝑁)) ∧ (1st ‘⟨𝐶, 𝐷⟩) ≠ (2nd ‘⟨𝐶, 𝐷⟩)) ∧ (𝑟 ∈ (𝔼‘𝑁)(𝐷 Btwn ⟨𝐶, 𝑟⟩ ∧ ⟨𝐷, 𝑟⟩Cgr⟨𝐴, 𝐵⟩)) = (𝑟 ∈ (𝔼‘𝑁)((2nd ‘⟨𝐶, 𝐷⟩) Btwn ⟨(1st ‘⟨𝐶, 𝐷⟩), 𝑟⟩ ∧ ⟨(2nd ‘⟨𝐶, 𝐷⟩), 𝑟⟩Cgr⟨𝐴, 𝐵⟩))))
21 fveq2 6649 . . . . . . . . 9 (𝑛 = 𝑁 → (𝔼‘𝑛) = (𝔼‘𝑁))
2221sqxpeqd 5555 . . . . . . . 8 (𝑛 = 𝑁 → ((𝔼‘𝑛) × (𝔼‘𝑛)) = ((𝔼‘𝑁) × (𝔼‘𝑁)))
2322eleq2d 2878 . . . . . . 7 (𝑛 = 𝑁 → (⟨𝐴, 𝐵⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ↔ ⟨𝐴, 𝐵⟩ ∈ ((𝔼‘𝑁) × (𝔼‘𝑁))))
2422eleq2d 2878 . . . . . . 7 (𝑛 = 𝑁 → (⟨𝐶, 𝐷⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ↔ ⟨𝐶, 𝐷⟩ ∈ ((𝔼‘𝑁) × (𝔼‘𝑁))))
2523, 243anbi12d 1434 . . . . . 6 (𝑛 = 𝑁 → ((⟨𝐴, 𝐵⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ ⟨𝐶, 𝐷⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ (1st ‘⟨𝐶, 𝐷⟩) ≠ (2nd ‘⟨𝐶, 𝐷⟩)) ↔ (⟨𝐴, 𝐵⟩ ∈ ((𝔼‘𝑁) × (𝔼‘𝑁)) ∧ ⟨𝐶, 𝐷⟩ ∈ ((𝔼‘𝑁) × (𝔼‘𝑁)) ∧ (1st ‘⟨𝐶, 𝐷⟩) ≠ (2nd ‘⟨𝐶, 𝐷⟩))))
2621riotaeqdv 7098 . . . . . . 7 (𝑛 = 𝑁 → (𝑟 ∈ (𝔼‘𝑛)((2nd ‘⟨𝐶, 𝐷⟩) Btwn ⟨(1st ‘⟨𝐶, 𝐷⟩), 𝑟⟩ ∧ ⟨(2nd ‘⟨𝐶, 𝐷⟩), 𝑟⟩Cgr⟨𝐴, 𝐵⟩)) = (𝑟 ∈ (𝔼‘𝑁)((2nd ‘⟨𝐶, 𝐷⟩) Btwn ⟨(1st ‘⟨𝐶, 𝐷⟩), 𝑟⟩ ∧ ⟨(2nd ‘⟨𝐶, 𝐷⟩), 𝑟⟩Cgr⟨𝐴, 𝐵⟩)))
2726eqeq2d 2812 . . . . . 6 (𝑛 = 𝑁 → ((𝑟 ∈ (𝔼‘𝑁)(𝐷 Btwn ⟨𝐶, 𝑟⟩ ∧ ⟨𝐷, 𝑟⟩Cgr⟨𝐴, 𝐵⟩)) = (𝑟 ∈ (𝔼‘𝑛)((2nd ‘⟨𝐶, 𝐷⟩) Btwn ⟨(1st ‘⟨𝐶, 𝐷⟩), 𝑟⟩ ∧ ⟨(2nd ‘⟨𝐶, 𝐷⟩), 𝑟⟩Cgr⟨𝐴, 𝐵⟩)) ↔ (𝑟 ∈ (𝔼‘𝑁)(𝐷 Btwn ⟨𝐶, 𝑟⟩ ∧ ⟨𝐷, 𝑟⟩Cgr⟨𝐴, 𝐵⟩)) = (𝑟 ∈ (𝔼‘𝑁)((2nd ‘⟨𝐶, 𝐷⟩) Btwn ⟨(1st ‘⟨𝐶, 𝐷⟩), 𝑟⟩ ∧ ⟨(2nd ‘⟨𝐶, 𝐷⟩), 𝑟⟩Cgr⟨𝐴, 𝐵⟩))))
2825, 27anbi12d 633 . . . . 5 (𝑛 = 𝑁 → (((⟨𝐴, 𝐵⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ ⟨𝐶, 𝐷⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ (1st ‘⟨𝐶, 𝐷⟩) ≠ (2nd ‘⟨𝐶, 𝐷⟩)) ∧ (𝑟 ∈ (𝔼‘𝑁)(𝐷 Btwn ⟨𝐶, 𝑟⟩ ∧ ⟨𝐷, 𝑟⟩Cgr⟨𝐴, 𝐵⟩)) = (𝑟 ∈ (𝔼‘𝑛)((2nd ‘⟨𝐶, 𝐷⟩) Btwn ⟨(1st ‘⟨𝐶, 𝐷⟩), 𝑟⟩ ∧ ⟨(2nd ‘⟨𝐶, 𝐷⟩), 𝑟⟩Cgr⟨𝐴, 𝐵⟩))) ↔ ((⟨𝐴, 𝐵⟩ ∈ ((𝔼‘𝑁) × (𝔼‘𝑁)) ∧ ⟨𝐶, 𝐷⟩ ∈ ((𝔼‘𝑁) × (𝔼‘𝑁)) ∧ (1st ‘⟨𝐶, 𝐷⟩) ≠ (2nd ‘⟨𝐶, 𝐷⟩)) ∧ (𝑟 ∈ (𝔼‘𝑁)(𝐷 Btwn ⟨𝐶, 𝑟⟩ ∧ ⟨𝐷, 𝑟⟩Cgr⟨𝐴, 𝐵⟩)) = (𝑟 ∈ (𝔼‘𝑁)((2nd ‘⟨𝐶, 𝐷⟩) Btwn ⟨(1st ‘⟨𝐶, 𝐷⟩), 𝑟⟩ ∧ ⟨(2nd ‘⟨𝐶, 𝐷⟩), 𝑟⟩Cgr⟨𝐴, 𝐵⟩)))))
2928rspcev 3574 . . . 4 ((𝑁 ∈ ℕ ∧ ((⟨𝐴, 𝐵⟩ ∈ ((𝔼‘𝑁) × (𝔼‘𝑁)) ∧ ⟨𝐶, 𝐷⟩ ∈ ((𝔼‘𝑁) × (𝔼‘𝑁)) ∧ (1st ‘⟨𝐶, 𝐷⟩) ≠ (2nd ‘⟨𝐶, 𝐷⟩)) ∧ (𝑟 ∈ (𝔼‘𝑁)(𝐷 Btwn ⟨𝐶, 𝑟⟩ ∧ ⟨𝐷, 𝑟⟩Cgr⟨𝐴, 𝐵⟩)) = (𝑟 ∈ (𝔼‘𝑁)((2nd ‘⟨𝐶, 𝐷⟩) Btwn ⟨(1st ‘⟨𝐶, 𝐷⟩), 𝑟⟩ ∧ ⟨(2nd ‘⟨𝐶, 𝐷⟩), 𝑟⟩Cgr⟨𝐴, 𝐵⟩)))) → ∃𝑛 ∈ ℕ ((⟨𝐴, 𝐵⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ ⟨𝐶, 𝐷⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ (1st ‘⟨𝐶, 𝐷⟩) ≠ (2nd ‘⟨𝐶, 𝐷⟩)) ∧ (𝑟 ∈ (𝔼‘𝑁)(𝐷 Btwn ⟨𝐶, 𝑟⟩ ∧ ⟨𝐷, 𝑟⟩Cgr⟨𝐴, 𝐵⟩)) = (𝑟 ∈ (𝔼‘𝑛)((2nd ‘⟨𝐶, 𝐷⟩) Btwn ⟨(1st ‘⟨𝐶, 𝐷⟩), 𝑟⟩ ∧ ⟨(2nd ‘⟨𝐶, 𝐷⟩), 𝑟⟩Cgr⟨𝐴, 𝐵⟩))))
3020, 29sylan2 595 . . 3 ((𝑁 ∈ ℕ ∧ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) ∧ 𝐶𝐷)) → ∃𝑛 ∈ ℕ ((⟨𝐴, 𝐵⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ ⟨𝐶, 𝐷⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ (1st ‘⟨𝐶, 𝐷⟩) ≠ (2nd ‘⟨𝐶, 𝐷⟩)) ∧ (𝑟 ∈ (𝔼‘𝑁)(𝐷 Btwn ⟨𝐶, 𝑟⟩ ∧ ⟨𝐷, 𝑟⟩Cgr⟨𝐴, 𝐵⟩)) = (𝑟 ∈ (𝔼‘𝑛)((2nd ‘⟨𝐶, 𝐷⟩) Btwn ⟨(1st ‘⟨𝐶, 𝐷⟩), 𝑟⟩ ∧ ⟨(2nd ‘⟨𝐶, 𝐷⟩), 𝑟⟩Cgr⟨𝐴, 𝐵⟩))))
31 df-br 5034 . . . . 5 (⟨⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩⟩TransportTo(𝑟 ∈ (𝔼‘𝑁)(𝐷 Btwn ⟨𝐶, 𝑟⟩ ∧ ⟨𝐷, 𝑟⟩Cgr⟨𝐴, 𝐵⟩)) ↔ ⟨⟨⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩⟩, (𝑟 ∈ (𝔼‘𝑁)(𝐷 Btwn ⟨𝐶, 𝑟⟩ ∧ ⟨𝐷, 𝑟⟩Cgr⟨𝐴, 𝐵⟩))⟩ ∈ TransportTo)
32 df-transport 33605 . . . . . 6 TransportTo = {⟨⟨𝑝, 𝑞⟩, 𝑥⟩ ∣ ∃𝑛 ∈ ℕ ((𝑝 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ 𝑞 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ (1st𝑞) ≠ (2nd𝑞)) ∧ 𝑥 = (𝑟 ∈ (𝔼‘𝑛)((2nd𝑞) Btwn ⟨(1st𝑞), 𝑟⟩ ∧ ⟨(2nd𝑞), 𝑟⟩Cgr𝑝)))}
3332eleq2i 2884 . . . . 5 (⟨⟨⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩⟩, (𝑟 ∈ (𝔼‘𝑁)(𝐷 Btwn ⟨𝐶, 𝑟⟩ ∧ ⟨𝐷, 𝑟⟩Cgr⟨𝐴, 𝐵⟩))⟩ ∈ TransportTo ↔ ⟨⟨⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩⟩, (𝑟 ∈ (𝔼‘𝑁)(𝐷 Btwn ⟨𝐶, 𝑟⟩ ∧ ⟨𝐷, 𝑟⟩Cgr⟨𝐴, 𝐵⟩))⟩ ∈ {⟨⟨𝑝, 𝑞⟩, 𝑥⟩ ∣ ∃𝑛 ∈ ℕ ((𝑝 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ 𝑞 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ (1st𝑞) ≠ (2nd𝑞)) ∧ 𝑥 = (𝑟 ∈ (𝔼‘𝑛)((2nd𝑞) Btwn ⟨(1st𝑞), 𝑟⟩ ∧ ⟨(2nd𝑞), 𝑟⟩Cgr𝑝)))})
34 opex 5324 . . . . . 6 𝐴, 𝐵⟩ ∈ V
35 opex 5324 . . . . . 6 𝐶, 𝐷⟩ ∈ V
36 riotaex 7101 . . . . . 6 (𝑟 ∈ (𝔼‘𝑁)(𝐷 Btwn ⟨𝐶, 𝑟⟩ ∧ ⟨𝐷, 𝑟⟩Cgr⟨𝐴, 𝐵⟩)) ∈ V
37 eleq1 2880 . . . . . . . . . 10 (𝑝 = ⟨𝐴, 𝐵⟩ → (𝑝 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ↔ ⟨𝐴, 𝐵⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛))))
38373anbi1d 1437 . . . . . . . . 9 (𝑝 = ⟨𝐴, 𝐵⟩ → ((𝑝 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ 𝑞 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ (1st𝑞) ≠ (2nd𝑞)) ↔ (⟨𝐴, 𝐵⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ 𝑞 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ (1st𝑞) ≠ (2nd𝑞))))
39 breq2 5037 . . . . . . . . . . . 12 (𝑝 = ⟨𝐴, 𝐵⟩ → (⟨(2nd𝑞), 𝑟⟩Cgr𝑝 ↔ ⟨(2nd𝑞), 𝑟⟩Cgr⟨𝐴, 𝐵⟩))
4039anbi2d 631 . . . . . . . . . . 11 (𝑝 = ⟨𝐴, 𝐵⟩ → (((2nd𝑞) Btwn ⟨(1st𝑞), 𝑟⟩ ∧ ⟨(2nd𝑞), 𝑟⟩Cgr𝑝) ↔ ((2nd𝑞) Btwn ⟨(1st𝑞), 𝑟⟩ ∧ ⟨(2nd𝑞), 𝑟⟩Cgr⟨𝐴, 𝐵⟩)))
4140riotabidv 7099 . . . . . . . . . 10 (𝑝 = ⟨𝐴, 𝐵⟩ → (𝑟 ∈ (𝔼‘𝑛)((2nd𝑞) Btwn ⟨(1st𝑞), 𝑟⟩ ∧ ⟨(2nd𝑞), 𝑟⟩Cgr𝑝)) = (𝑟 ∈ (𝔼‘𝑛)((2nd𝑞) Btwn ⟨(1st𝑞), 𝑟⟩ ∧ ⟨(2nd𝑞), 𝑟⟩Cgr⟨𝐴, 𝐵⟩)))
4241eqeq2d 2812 . . . . . . . . 9 (𝑝 = ⟨𝐴, 𝐵⟩ → (𝑥 = (𝑟 ∈ (𝔼‘𝑛)((2nd𝑞) Btwn ⟨(1st𝑞), 𝑟⟩ ∧ ⟨(2nd𝑞), 𝑟⟩Cgr𝑝)) ↔ 𝑥 = (𝑟 ∈ (𝔼‘𝑛)((2nd𝑞) Btwn ⟨(1st𝑞), 𝑟⟩ ∧ ⟨(2nd𝑞), 𝑟⟩Cgr⟨𝐴, 𝐵⟩))))
4338, 42anbi12d 633 . . . . . . . 8 (𝑝 = ⟨𝐴, 𝐵⟩ → (((𝑝 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ 𝑞 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ (1st𝑞) ≠ (2nd𝑞)) ∧ 𝑥 = (𝑟 ∈ (𝔼‘𝑛)((2nd𝑞) Btwn ⟨(1st𝑞), 𝑟⟩ ∧ ⟨(2nd𝑞), 𝑟⟩Cgr𝑝))) ↔ ((⟨𝐴, 𝐵⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ 𝑞 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ (1st𝑞) ≠ (2nd𝑞)) ∧ 𝑥 = (𝑟 ∈ (𝔼‘𝑛)((2nd𝑞) Btwn ⟨(1st𝑞), 𝑟⟩ ∧ ⟨(2nd𝑞), 𝑟⟩Cgr⟨𝐴, 𝐵⟩)))))
4443rexbidv 3259 . . . . . . 7 (𝑝 = ⟨𝐴, 𝐵⟩ → (∃𝑛 ∈ ℕ ((𝑝 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ 𝑞 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ (1st𝑞) ≠ (2nd𝑞)) ∧ 𝑥 = (𝑟 ∈ (𝔼‘𝑛)((2nd𝑞) Btwn ⟨(1st𝑞), 𝑟⟩ ∧ ⟨(2nd𝑞), 𝑟⟩Cgr𝑝))) ↔ ∃𝑛 ∈ ℕ ((⟨𝐴, 𝐵⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ 𝑞 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ (1st𝑞) ≠ (2nd𝑞)) ∧ 𝑥 = (𝑟 ∈ (𝔼‘𝑛)((2nd𝑞) Btwn ⟨(1st𝑞), 𝑟⟩ ∧ ⟨(2nd𝑞), 𝑟⟩Cgr⟨𝐴, 𝐵⟩)))))
45 eleq1 2880 . . . . . . . . . 10 (𝑞 = ⟨𝐶, 𝐷⟩ → (𝑞 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ↔ ⟨𝐶, 𝐷⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛))))
46 fveq2 6649 . . . . . . . . . . 11 (𝑞 = ⟨𝐶, 𝐷⟩ → (1st𝑞) = (1st ‘⟨𝐶, 𝐷⟩))
47 fveq2 6649 . . . . . . . . . . 11 (𝑞 = ⟨𝐶, 𝐷⟩ → (2nd𝑞) = (2nd ‘⟨𝐶, 𝐷⟩))
4846, 47neeq12d 3051 . . . . . . . . . 10 (𝑞 = ⟨𝐶, 𝐷⟩ → ((1st𝑞) ≠ (2nd𝑞) ↔ (1st ‘⟨𝐶, 𝐷⟩) ≠ (2nd ‘⟨𝐶, 𝐷⟩)))
4945, 483anbi23d 1436 . . . . . . . . 9 (𝑞 = ⟨𝐶, 𝐷⟩ → ((⟨𝐴, 𝐵⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ 𝑞 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ (1st𝑞) ≠ (2nd𝑞)) ↔ (⟨𝐴, 𝐵⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ ⟨𝐶, 𝐷⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ (1st ‘⟨𝐶, 𝐷⟩) ≠ (2nd ‘⟨𝐶, 𝐷⟩))))
5046opeq1d 4774 . . . . . . . . . . . . 13 (𝑞 = ⟨𝐶, 𝐷⟩ → ⟨(1st𝑞), 𝑟⟩ = ⟨(1st ‘⟨𝐶, 𝐷⟩), 𝑟⟩)
5147, 50breq12d 5046 . . . . . . . . . . . 12 (𝑞 = ⟨𝐶, 𝐷⟩ → ((2nd𝑞) Btwn ⟨(1st𝑞), 𝑟⟩ ↔ (2nd ‘⟨𝐶, 𝐷⟩) Btwn ⟨(1st ‘⟨𝐶, 𝐷⟩), 𝑟⟩))
5247opeq1d 4774 . . . . . . . . . . . . 13 (𝑞 = ⟨𝐶, 𝐷⟩ → ⟨(2nd𝑞), 𝑟⟩ = ⟨(2nd ‘⟨𝐶, 𝐷⟩), 𝑟⟩)
5352breq1d 5043 . . . . . . . . . . . 12 (𝑞 = ⟨𝐶, 𝐷⟩ → (⟨(2nd𝑞), 𝑟⟩Cgr⟨𝐴, 𝐵⟩ ↔ ⟨(2nd ‘⟨𝐶, 𝐷⟩), 𝑟⟩Cgr⟨𝐴, 𝐵⟩))
5451, 53anbi12d 633 . . . . . . . . . . 11 (𝑞 = ⟨𝐶, 𝐷⟩ → (((2nd𝑞) Btwn ⟨(1st𝑞), 𝑟⟩ ∧ ⟨(2nd𝑞), 𝑟⟩Cgr⟨𝐴, 𝐵⟩) ↔ ((2nd ‘⟨𝐶, 𝐷⟩) Btwn ⟨(1st ‘⟨𝐶, 𝐷⟩), 𝑟⟩ ∧ ⟨(2nd ‘⟨𝐶, 𝐷⟩), 𝑟⟩Cgr⟨𝐴, 𝐵⟩)))
5554riotabidv 7099 . . . . . . . . . 10 (𝑞 = ⟨𝐶, 𝐷⟩ → (𝑟 ∈ (𝔼‘𝑛)((2nd𝑞) Btwn ⟨(1st𝑞), 𝑟⟩ ∧ ⟨(2nd𝑞), 𝑟⟩Cgr⟨𝐴, 𝐵⟩)) = (𝑟 ∈ (𝔼‘𝑛)((2nd ‘⟨𝐶, 𝐷⟩) Btwn ⟨(1st ‘⟨𝐶, 𝐷⟩), 𝑟⟩ ∧ ⟨(2nd ‘⟨𝐶, 𝐷⟩), 𝑟⟩Cgr⟨𝐴, 𝐵⟩)))
5655eqeq2d 2812 . . . . . . . . 9 (𝑞 = ⟨𝐶, 𝐷⟩ → (𝑥 = (𝑟 ∈ (𝔼‘𝑛)((2nd𝑞) Btwn ⟨(1st𝑞), 𝑟⟩ ∧ ⟨(2nd𝑞), 𝑟⟩Cgr⟨𝐴, 𝐵⟩)) ↔ 𝑥 = (𝑟 ∈ (𝔼‘𝑛)((2nd ‘⟨𝐶, 𝐷⟩) Btwn ⟨(1st ‘⟨𝐶, 𝐷⟩), 𝑟⟩ ∧ ⟨(2nd ‘⟨𝐶, 𝐷⟩), 𝑟⟩Cgr⟨𝐴, 𝐵⟩))))
5749, 56anbi12d 633 . . . . . . . 8 (𝑞 = ⟨𝐶, 𝐷⟩ → (((⟨𝐴, 𝐵⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ 𝑞 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ (1st𝑞) ≠ (2nd𝑞)) ∧ 𝑥 = (𝑟 ∈ (𝔼‘𝑛)((2nd𝑞) Btwn ⟨(1st𝑞), 𝑟⟩ ∧ ⟨(2nd𝑞), 𝑟⟩Cgr⟨𝐴, 𝐵⟩))) ↔ ((⟨𝐴, 𝐵⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ ⟨𝐶, 𝐷⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ (1st ‘⟨𝐶, 𝐷⟩) ≠ (2nd ‘⟨𝐶, 𝐷⟩)) ∧ 𝑥 = (𝑟 ∈ (𝔼‘𝑛)((2nd ‘⟨𝐶, 𝐷⟩) Btwn ⟨(1st ‘⟨𝐶, 𝐷⟩), 𝑟⟩ ∧ ⟨(2nd ‘⟨𝐶, 𝐷⟩), 𝑟⟩Cgr⟨𝐴, 𝐵⟩)))))
5857rexbidv 3259 . . . . . . 7 (𝑞 = ⟨𝐶, 𝐷⟩ → (∃𝑛 ∈ ℕ ((⟨𝐴, 𝐵⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ 𝑞 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ (1st𝑞) ≠ (2nd𝑞)) ∧ 𝑥 = (𝑟 ∈ (𝔼‘𝑛)((2nd𝑞) Btwn ⟨(1st𝑞), 𝑟⟩ ∧ ⟨(2nd𝑞), 𝑟⟩Cgr⟨𝐴, 𝐵⟩))) ↔ ∃𝑛 ∈ ℕ ((⟨𝐴, 𝐵⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ ⟨𝐶, 𝐷⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ (1st ‘⟨𝐶, 𝐷⟩) ≠ (2nd ‘⟨𝐶, 𝐷⟩)) ∧ 𝑥 = (𝑟 ∈ (𝔼‘𝑛)((2nd ‘⟨𝐶, 𝐷⟩) Btwn ⟨(1st ‘⟨𝐶, 𝐷⟩), 𝑟⟩ ∧ ⟨(2nd ‘⟨𝐶, 𝐷⟩), 𝑟⟩Cgr⟨𝐴, 𝐵⟩)))))
59 eqeq1 2805 . . . . . . . . 9 (𝑥 = (𝑟 ∈ (𝔼‘𝑁)(𝐷 Btwn ⟨𝐶, 𝑟⟩ ∧ ⟨𝐷, 𝑟⟩Cgr⟨𝐴, 𝐵⟩)) → (𝑥 = (𝑟 ∈ (𝔼‘𝑛)((2nd ‘⟨𝐶, 𝐷⟩) Btwn ⟨(1st ‘⟨𝐶, 𝐷⟩), 𝑟⟩ ∧ ⟨(2nd ‘⟨𝐶, 𝐷⟩), 𝑟⟩Cgr⟨𝐴, 𝐵⟩)) ↔ (𝑟 ∈ (𝔼‘𝑁)(𝐷 Btwn ⟨𝐶, 𝑟⟩ ∧ ⟨𝐷, 𝑟⟩Cgr⟨𝐴, 𝐵⟩)) = (𝑟 ∈ (𝔼‘𝑛)((2nd ‘⟨𝐶, 𝐷⟩) Btwn ⟨(1st ‘⟨𝐶, 𝐷⟩), 𝑟⟩ ∧ ⟨(2nd ‘⟨𝐶, 𝐷⟩), 𝑟⟩Cgr⟨𝐴, 𝐵⟩))))
6059anbi2d 631 . . . . . . . 8 (𝑥 = (𝑟 ∈ (𝔼‘𝑁)(𝐷 Btwn ⟨𝐶, 𝑟⟩ ∧ ⟨𝐷, 𝑟⟩Cgr⟨𝐴, 𝐵⟩)) → (((⟨𝐴, 𝐵⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ ⟨𝐶, 𝐷⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ (1st ‘⟨𝐶, 𝐷⟩) ≠ (2nd ‘⟨𝐶, 𝐷⟩)) ∧ 𝑥 = (𝑟 ∈ (𝔼‘𝑛)((2nd ‘⟨𝐶, 𝐷⟩) Btwn ⟨(1st ‘⟨𝐶, 𝐷⟩), 𝑟⟩ ∧ ⟨(2nd ‘⟨𝐶, 𝐷⟩), 𝑟⟩Cgr⟨𝐴, 𝐵⟩))) ↔ ((⟨𝐴, 𝐵⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ ⟨𝐶, 𝐷⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ (1st ‘⟨𝐶, 𝐷⟩) ≠ (2nd ‘⟨𝐶, 𝐷⟩)) ∧ (𝑟 ∈ (𝔼‘𝑁)(𝐷 Btwn ⟨𝐶, 𝑟⟩ ∧ ⟨𝐷, 𝑟⟩Cgr⟨𝐴, 𝐵⟩)) = (𝑟 ∈ (𝔼‘𝑛)((2nd ‘⟨𝐶, 𝐷⟩) Btwn ⟨(1st ‘⟨𝐶, 𝐷⟩), 𝑟⟩ ∧ ⟨(2nd ‘⟨𝐶, 𝐷⟩), 𝑟⟩Cgr⟨𝐴, 𝐵⟩)))))
6160rexbidv 3259 . . . . . . 7 (𝑥 = (𝑟 ∈ (𝔼‘𝑁)(𝐷 Btwn ⟨𝐶, 𝑟⟩ ∧ ⟨𝐷, 𝑟⟩Cgr⟨𝐴, 𝐵⟩)) → (∃𝑛 ∈ ℕ ((⟨𝐴, 𝐵⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ ⟨𝐶, 𝐷⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ (1st ‘⟨𝐶, 𝐷⟩) ≠ (2nd ‘⟨𝐶, 𝐷⟩)) ∧ 𝑥 = (𝑟 ∈ (𝔼‘𝑛)((2nd ‘⟨𝐶, 𝐷⟩) Btwn ⟨(1st ‘⟨𝐶, 𝐷⟩), 𝑟⟩ ∧ ⟨(2nd ‘⟨𝐶, 𝐷⟩), 𝑟⟩Cgr⟨𝐴, 𝐵⟩))) ↔ ∃𝑛 ∈ ℕ ((⟨𝐴, 𝐵⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ ⟨𝐶, 𝐷⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ (1st ‘⟨𝐶, 𝐷⟩) ≠ (2nd ‘⟨𝐶, 𝐷⟩)) ∧ (𝑟 ∈ (𝔼‘𝑁)(𝐷 Btwn ⟨𝐶, 𝑟⟩ ∧ ⟨𝐷, 𝑟⟩Cgr⟨𝐴, 𝐵⟩)) = (𝑟 ∈ (𝔼‘𝑛)((2nd ‘⟨𝐶, 𝐷⟩) Btwn ⟨(1st ‘⟨𝐶, 𝐷⟩), 𝑟⟩ ∧ ⟨(2nd ‘⟨𝐶, 𝐷⟩), 𝑟⟩Cgr⟨𝐴, 𝐵⟩)))))
6244, 58, 61eloprabg 7245 . . . . . 6 ((⟨𝐴, 𝐵⟩ ∈ V ∧ ⟨𝐶, 𝐷⟩ ∈ V ∧ (𝑟 ∈ (𝔼‘𝑁)(𝐷 Btwn ⟨𝐶, 𝑟⟩ ∧ ⟨𝐷, 𝑟⟩Cgr⟨𝐴, 𝐵⟩)) ∈ V) → (⟨⟨⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩⟩, (𝑟 ∈ (𝔼‘𝑁)(𝐷 Btwn ⟨𝐶, 𝑟⟩ ∧ ⟨𝐷, 𝑟⟩Cgr⟨𝐴, 𝐵⟩))⟩ ∈ {⟨⟨𝑝, 𝑞⟩, 𝑥⟩ ∣ ∃𝑛 ∈ ℕ ((𝑝 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ 𝑞 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ (1st𝑞) ≠ (2nd𝑞)) ∧ 𝑥 = (𝑟 ∈ (𝔼‘𝑛)((2nd𝑞) Btwn ⟨(1st𝑞), 𝑟⟩ ∧ ⟨(2nd𝑞), 𝑟⟩Cgr𝑝)))} ↔ ∃𝑛 ∈ ℕ ((⟨𝐴, 𝐵⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ ⟨𝐶, 𝐷⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ (1st ‘⟨𝐶, 𝐷⟩) ≠ (2nd ‘⟨𝐶, 𝐷⟩)) ∧ (𝑟 ∈ (𝔼‘𝑁)(𝐷 Btwn ⟨𝐶, 𝑟⟩ ∧ ⟨𝐷, 𝑟⟩Cgr⟨𝐴, 𝐵⟩)) = (𝑟 ∈ (𝔼‘𝑛)((2nd ‘⟨𝐶, 𝐷⟩) Btwn ⟨(1st ‘⟨𝐶, 𝐷⟩), 𝑟⟩ ∧ ⟨(2nd ‘⟨𝐶, 𝐷⟩), 𝑟⟩Cgr⟨𝐴, 𝐵⟩)))))
6334, 35, 36, 62mp3an 1458 . . . . 5 (⟨⟨⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩⟩, (𝑟 ∈ (𝔼‘𝑁)(𝐷 Btwn ⟨𝐶, 𝑟⟩ ∧ ⟨𝐷, 𝑟⟩Cgr⟨𝐴, 𝐵⟩))⟩ ∈ {⟨⟨𝑝, 𝑞⟩, 𝑥⟩ ∣ ∃𝑛 ∈ ℕ ((𝑝 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ 𝑞 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ (1st𝑞) ≠ (2nd𝑞)) ∧ 𝑥 = (𝑟 ∈ (𝔼‘𝑛)((2nd𝑞) Btwn ⟨(1st𝑞), 𝑟⟩ ∧ ⟨(2nd𝑞), 𝑟⟩Cgr𝑝)))} ↔ ∃𝑛 ∈ ℕ ((⟨𝐴, 𝐵⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ ⟨𝐶, 𝐷⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ (1st ‘⟨𝐶, 𝐷⟩) ≠ (2nd ‘⟨𝐶, 𝐷⟩)) ∧ (𝑟 ∈ (𝔼‘𝑁)(𝐷 Btwn ⟨𝐶, 𝑟⟩ ∧ ⟨𝐷, 𝑟⟩Cgr⟨𝐴, 𝐵⟩)) = (𝑟 ∈ (𝔼‘𝑛)((2nd ‘⟨𝐶, 𝐷⟩) Btwn ⟨(1st ‘⟨𝐶, 𝐷⟩), 𝑟⟩ ∧ ⟨(2nd ‘⟨𝐶, 𝐷⟩), 𝑟⟩Cgr⟨𝐴, 𝐵⟩))))
6431, 33, 633bitri 300 . . . 4 (⟨⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩⟩TransportTo(𝑟 ∈ (𝔼‘𝑁)(𝐷 Btwn ⟨𝐶, 𝑟⟩ ∧ ⟨𝐷, 𝑟⟩Cgr⟨𝐴, 𝐵⟩)) ↔ ∃𝑛 ∈ ℕ ((⟨𝐴, 𝐵⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ ⟨𝐶, 𝐷⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ (1st ‘⟨𝐶, 𝐷⟩) ≠ (2nd ‘⟨𝐶, 𝐷⟩)) ∧ (𝑟 ∈ (𝔼‘𝑁)(𝐷 Btwn ⟨𝐶, 𝑟⟩ ∧ ⟨𝐷, 𝑟⟩Cgr⟨𝐴, 𝐵⟩)) = (𝑟 ∈ (𝔼‘𝑛)((2nd ‘⟨𝐶, 𝐷⟩) Btwn ⟨(1st ‘⟨𝐶, 𝐷⟩), 𝑟⟩ ∧ ⟨(2nd ‘⟨𝐶, 𝐷⟩), 𝑟⟩Cgr⟨𝐴, 𝐵⟩))))
65 funtransport 33606 . . . . 5 Fun TransportTo
66 funbrfv 6695 . . . . 5 (Fun TransportTo → (⟨⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩⟩TransportTo(𝑟 ∈ (𝔼‘𝑁)(𝐷 Btwn ⟨𝐶, 𝑟⟩ ∧ ⟨𝐷, 𝑟⟩Cgr⟨𝐴, 𝐵⟩)) → (TransportTo‘⟨⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩⟩) = (𝑟 ∈ (𝔼‘𝑁)(𝐷 Btwn ⟨𝐶, 𝑟⟩ ∧ ⟨𝐷, 𝑟⟩Cgr⟨𝐴, 𝐵⟩))))
6765, 66ax-mp 5 . . . 4 (⟨⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩⟩TransportTo(𝑟 ∈ (𝔼‘𝑁)(𝐷 Btwn ⟨𝐶, 𝑟⟩ ∧ ⟨𝐷, 𝑟⟩Cgr⟨𝐴, 𝐵⟩)) → (TransportTo‘⟨⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩⟩) = (𝑟 ∈ (𝔼‘𝑁)(𝐷 Btwn ⟨𝐶, 𝑟⟩ ∧ ⟨𝐷, 𝑟⟩Cgr⟨𝐴, 𝐵⟩)))
6864, 67sylbir 238 . . 3 (∃𝑛 ∈ ℕ ((⟨𝐴, 𝐵⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ ⟨𝐶, 𝐷⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ (1st ‘⟨𝐶, 𝐷⟩) ≠ (2nd ‘⟨𝐶, 𝐷⟩)) ∧ (𝑟 ∈ (𝔼‘𝑁)(𝐷 Btwn ⟨𝐶, 𝑟⟩ ∧ ⟨𝐷, 𝑟⟩Cgr⟨𝐴, 𝐵⟩)) = (𝑟 ∈ (𝔼‘𝑛)((2nd ‘⟨𝐶, 𝐷⟩) Btwn ⟨(1st ‘⟨𝐶, 𝐷⟩), 𝑟⟩ ∧ ⟨(2nd ‘⟨𝐶, 𝐷⟩), 𝑟⟩Cgr⟨𝐴, 𝐵⟩))) → (TransportTo‘⟨⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩⟩) = (𝑟 ∈ (𝔼‘𝑁)(𝐷 Btwn ⟨𝐶, 𝑟⟩ ∧ ⟨𝐷, 𝑟⟩Cgr⟨𝐴, 𝐵⟩)))
6930, 68syl 17 . 2 ((𝑁 ∈ ℕ ∧ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) ∧ 𝐶𝐷)) → (TransportTo‘⟨⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩⟩) = (𝑟 ∈ (𝔼‘𝑁)(𝐷 Btwn ⟨𝐶, 𝑟⟩ ∧ ⟨𝐷, 𝑟⟩Cgr⟨𝐴, 𝐵⟩)))
701, 69syl5eq 2848 1 ((𝑁 ∈ ℕ ∧ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) ∧ 𝐶𝐷)) → (⟨𝐴, 𝐵⟩TransportTo⟨𝐶, 𝐷⟩) = (𝑟 ∈ (𝔼‘𝑁)(𝐷 Btwn ⟨𝐶, 𝑟⟩ ∧ ⟨𝐷, 𝑟⟩Cgr⟨𝐴, 𝐵⟩)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wcel 2112  wne 2990  wrex 3110  Vcvv 3444  cop 4534   class class class wbr 5033   × cxp 5521  Fun wfun 6322  cfv 6328  crio 7096  (class class class)co 7139  {coprab 7140  1st c1st 7673  2nd c2nd 7674  cn 11629  𝔼cee 26686   Btwn cbtwn 26687  Cgrccgr 26688  TransportToctransport 33604
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298  ax-un 7445  ax-cnex 10586  ax-resscn 10587  ax-1cn 10588  ax-icn 10589  ax-addcl 10590  ax-addrcl 10591  ax-mulcl 10592  ax-mulrcl 10593  ax-mulcom 10594  ax-addass 10595  ax-mulass 10596  ax-distr 10597  ax-i2m1 10598  ax-1ne0 10599  ax-1rid 10600  ax-rnegex 10601  ax-rrecex 10602  ax-cnre 10603  ax-pre-lttri 10604  ax-pre-lttrn 10605  ax-pre-ltadd 10606  ax-pre-mulgt0 10607
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-nel 3095  df-ral 3114  df-rex 3115  df-reu 3116  df-rab 3118  df-v 3446  df-sbc 3724  df-csb 3832  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-pss 3903  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-tp 4533  df-op 4535  df-uni 4804  df-iun 4886  df-br 5034  df-opab 5096  df-mpt 5114  df-tr 5140  df-id 5428  df-eprel 5433  df-po 5442  df-so 5443  df-fr 5482  df-we 5484  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-pred 6120  df-ord 6166  df-on 6167  df-lim 6168  df-suc 6169  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-riota 7097  df-ov 7142  df-oprab 7143  df-mpo 7144  df-om 7565  df-1st 7675  df-2nd 7676  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-er 8276  df-map 8395  df-en 8497  df-dom 8498  df-sdom 8499  df-pnf 10670  df-mnf 10671  df-xr 10672  df-ltxr 10673  df-le 10674  df-sub 10865  df-neg 10866  df-nn 11630  df-z 11974  df-uz 12236  df-fz 12890  df-ee 26689  df-transport 33605
This theorem is referenced by:  transportcl  33608  transportprops  33609
  Copyright terms: Public domain W3C validator