Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fvtransport Structured version   Visualization version   GIF version

Theorem fvtransport 32472
Description: Calculate the value of the TransportTo function. This function takes four points, 𝐴 through 𝐷, where 𝐶 and 𝐷 are distinct. It then returns the point that extends 𝐶𝐷 by the length of 𝐴𝐵. (Contributed by Scott Fenton, 18-Oct-2013.) (Revised by Mario Carneiro, 19-Apr-2014.)
Assertion
Ref Expression
fvtransport ((𝑁 ∈ ℕ ∧ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) ∧ 𝐶𝐷)) → (⟨𝐴, 𝐵⟩TransportTo⟨𝐶, 𝐷⟩) = (𝑟 ∈ (𝔼‘𝑁)(𝐷 Btwn ⟨𝐶, 𝑟⟩ ∧ ⟨𝐷, 𝑟⟩Cgr⟨𝐴, 𝐵⟩)))
Distinct variable groups:   𝑁,𝑟   𝐴,𝑟   𝐵,𝑟   𝐶,𝑟   𝐷,𝑟

Proof of Theorem fvtransport
Dummy variables 𝑛 𝑝 𝑞 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-ov 6795 . 2 (⟨𝐴, 𝐵⟩TransportTo⟨𝐶, 𝐷⟩) = (TransportTo‘⟨⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩⟩)
2 opelxpi 5286 . . . . . . 7 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) → ⟨𝐴, 𝐵⟩ ∈ ((𝔼‘𝑁) × (𝔼‘𝑁)))
323ad2ant1 1127 . . . . . 6 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) ∧ 𝐶𝐷) → ⟨𝐴, 𝐵⟩ ∈ ((𝔼‘𝑁) × (𝔼‘𝑁)))
4 opelxpi 5286 . . . . . . 7 ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) → ⟨𝐶, 𝐷⟩ ∈ ((𝔼‘𝑁) × (𝔼‘𝑁)))
543ad2ant2 1128 . . . . . 6 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) ∧ 𝐶𝐷) → ⟨𝐶, 𝐷⟩ ∈ ((𝔼‘𝑁) × (𝔼‘𝑁)))
6 simp3 1132 . . . . . . 7 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) ∧ 𝐶𝐷) → 𝐶𝐷)
7 op1stg 7327 . . . . . . . 8 ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) → (1st ‘⟨𝐶, 𝐷⟩) = 𝐶)
873ad2ant2 1128 . . . . . . 7 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) ∧ 𝐶𝐷) → (1st ‘⟨𝐶, 𝐷⟩) = 𝐶)
9 op2ndg 7328 . . . . . . . 8 ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) → (2nd ‘⟨𝐶, 𝐷⟩) = 𝐷)
1093ad2ant2 1128 . . . . . . 7 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) ∧ 𝐶𝐷) → (2nd ‘⟨𝐶, 𝐷⟩) = 𝐷)
116, 8, 103netr4d 3020 . . . . . 6 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) ∧ 𝐶𝐷) → (1st ‘⟨𝐶, 𝐷⟩) ≠ (2nd ‘⟨𝐶, 𝐷⟩))
123, 5, 113jca 1122 . . . . 5 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) ∧ 𝐶𝐷) → (⟨𝐴, 𝐵⟩ ∈ ((𝔼‘𝑁) × (𝔼‘𝑁)) ∧ ⟨𝐶, 𝐷⟩ ∈ ((𝔼‘𝑁) × (𝔼‘𝑁)) ∧ (1st ‘⟨𝐶, 𝐷⟩) ≠ (2nd ‘⟨𝐶, 𝐷⟩)))
138opeq1d 4545 . . . . . . . . 9 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) ∧ 𝐶𝐷) → ⟨(1st ‘⟨𝐶, 𝐷⟩), 𝑟⟩ = ⟨𝐶, 𝑟⟩)
1410, 13breq12d 4799 . . . . . . . 8 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) ∧ 𝐶𝐷) → ((2nd ‘⟨𝐶, 𝐷⟩) Btwn ⟨(1st ‘⟨𝐶, 𝐷⟩), 𝑟⟩ ↔ 𝐷 Btwn ⟨𝐶, 𝑟⟩))
1510opeq1d 4545 . . . . . . . . 9 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) ∧ 𝐶𝐷) → ⟨(2nd ‘⟨𝐶, 𝐷⟩), 𝑟⟩ = ⟨𝐷, 𝑟⟩)
1615breq1d 4796 . . . . . . . 8 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) ∧ 𝐶𝐷) → (⟨(2nd ‘⟨𝐶, 𝐷⟩), 𝑟⟩Cgr⟨𝐴, 𝐵⟩ ↔ ⟨𝐷, 𝑟⟩Cgr⟨𝐴, 𝐵⟩))
1714, 16anbi12d 616 . . . . . . 7 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) ∧ 𝐶𝐷) → (((2nd ‘⟨𝐶, 𝐷⟩) Btwn ⟨(1st ‘⟨𝐶, 𝐷⟩), 𝑟⟩ ∧ ⟨(2nd ‘⟨𝐶, 𝐷⟩), 𝑟⟩Cgr⟨𝐴, 𝐵⟩) ↔ (𝐷 Btwn ⟨𝐶, 𝑟⟩ ∧ ⟨𝐷, 𝑟⟩Cgr⟨𝐴, 𝐵⟩)))
1817riotabidv 6755 . . . . . 6 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) ∧ 𝐶𝐷) → (𝑟 ∈ (𝔼‘𝑁)((2nd ‘⟨𝐶, 𝐷⟩) Btwn ⟨(1st ‘⟨𝐶, 𝐷⟩), 𝑟⟩ ∧ ⟨(2nd ‘⟨𝐶, 𝐷⟩), 𝑟⟩Cgr⟨𝐴, 𝐵⟩)) = (𝑟 ∈ (𝔼‘𝑁)(𝐷 Btwn ⟨𝐶, 𝑟⟩ ∧ ⟨𝐷, 𝑟⟩Cgr⟨𝐴, 𝐵⟩)))
1918eqcomd 2777 . . . . 5 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) ∧ 𝐶𝐷) → (𝑟 ∈ (𝔼‘𝑁)(𝐷 Btwn ⟨𝐶, 𝑟⟩ ∧ ⟨𝐷, 𝑟⟩Cgr⟨𝐴, 𝐵⟩)) = (𝑟 ∈ (𝔼‘𝑁)((2nd ‘⟨𝐶, 𝐷⟩) Btwn ⟨(1st ‘⟨𝐶, 𝐷⟩), 𝑟⟩ ∧ ⟨(2nd ‘⟨𝐶, 𝐷⟩), 𝑟⟩Cgr⟨𝐴, 𝐵⟩)))
2012, 19jca 501 . . . 4 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) ∧ 𝐶𝐷) → ((⟨𝐴, 𝐵⟩ ∈ ((𝔼‘𝑁) × (𝔼‘𝑁)) ∧ ⟨𝐶, 𝐷⟩ ∈ ((𝔼‘𝑁) × (𝔼‘𝑁)) ∧ (1st ‘⟨𝐶, 𝐷⟩) ≠ (2nd ‘⟨𝐶, 𝐷⟩)) ∧ (𝑟 ∈ (𝔼‘𝑁)(𝐷 Btwn ⟨𝐶, 𝑟⟩ ∧ ⟨𝐷, 𝑟⟩Cgr⟨𝐴, 𝐵⟩)) = (𝑟 ∈ (𝔼‘𝑁)((2nd ‘⟨𝐶, 𝐷⟩) Btwn ⟨(1st ‘⟨𝐶, 𝐷⟩), 𝑟⟩ ∧ ⟨(2nd ‘⟨𝐶, 𝐷⟩), 𝑟⟩Cgr⟨𝐴, 𝐵⟩))))
21 fveq2 6330 . . . . . . . . 9 (𝑛 = 𝑁 → (𝔼‘𝑛) = (𝔼‘𝑁))
2221sqxpeqd 5280 . . . . . . . 8 (𝑛 = 𝑁 → ((𝔼‘𝑛) × (𝔼‘𝑛)) = ((𝔼‘𝑁) × (𝔼‘𝑁)))
2322eleq2d 2836 . . . . . . 7 (𝑛 = 𝑁 → (⟨𝐴, 𝐵⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ↔ ⟨𝐴, 𝐵⟩ ∈ ((𝔼‘𝑁) × (𝔼‘𝑁))))
2422eleq2d 2836 . . . . . . 7 (𝑛 = 𝑁 → (⟨𝐶, 𝐷⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ↔ ⟨𝐶, 𝐷⟩ ∈ ((𝔼‘𝑁) × (𝔼‘𝑁))))
2523, 243anbi12d 1548 . . . . . 6 (𝑛 = 𝑁 → ((⟨𝐴, 𝐵⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ ⟨𝐶, 𝐷⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ (1st ‘⟨𝐶, 𝐷⟩) ≠ (2nd ‘⟨𝐶, 𝐷⟩)) ↔ (⟨𝐴, 𝐵⟩ ∈ ((𝔼‘𝑁) × (𝔼‘𝑁)) ∧ ⟨𝐶, 𝐷⟩ ∈ ((𝔼‘𝑁) × (𝔼‘𝑁)) ∧ (1st ‘⟨𝐶, 𝐷⟩) ≠ (2nd ‘⟨𝐶, 𝐷⟩))))
2621riotaeqdv 6754 . . . . . . 7 (𝑛 = 𝑁 → (𝑟 ∈ (𝔼‘𝑛)((2nd ‘⟨𝐶, 𝐷⟩) Btwn ⟨(1st ‘⟨𝐶, 𝐷⟩), 𝑟⟩ ∧ ⟨(2nd ‘⟨𝐶, 𝐷⟩), 𝑟⟩Cgr⟨𝐴, 𝐵⟩)) = (𝑟 ∈ (𝔼‘𝑁)((2nd ‘⟨𝐶, 𝐷⟩) Btwn ⟨(1st ‘⟨𝐶, 𝐷⟩), 𝑟⟩ ∧ ⟨(2nd ‘⟨𝐶, 𝐷⟩), 𝑟⟩Cgr⟨𝐴, 𝐵⟩)))
2726eqeq2d 2781 . . . . . 6 (𝑛 = 𝑁 → ((𝑟 ∈ (𝔼‘𝑁)(𝐷 Btwn ⟨𝐶, 𝑟⟩ ∧ ⟨𝐷, 𝑟⟩Cgr⟨𝐴, 𝐵⟩)) = (𝑟 ∈ (𝔼‘𝑛)((2nd ‘⟨𝐶, 𝐷⟩) Btwn ⟨(1st ‘⟨𝐶, 𝐷⟩), 𝑟⟩ ∧ ⟨(2nd ‘⟨𝐶, 𝐷⟩), 𝑟⟩Cgr⟨𝐴, 𝐵⟩)) ↔ (𝑟 ∈ (𝔼‘𝑁)(𝐷 Btwn ⟨𝐶, 𝑟⟩ ∧ ⟨𝐷, 𝑟⟩Cgr⟨𝐴, 𝐵⟩)) = (𝑟 ∈ (𝔼‘𝑁)((2nd ‘⟨𝐶, 𝐷⟩) Btwn ⟨(1st ‘⟨𝐶, 𝐷⟩), 𝑟⟩ ∧ ⟨(2nd ‘⟨𝐶, 𝐷⟩), 𝑟⟩Cgr⟨𝐴, 𝐵⟩))))
2825, 27anbi12d 616 . . . . 5 (𝑛 = 𝑁 → (((⟨𝐴, 𝐵⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ ⟨𝐶, 𝐷⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ (1st ‘⟨𝐶, 𝐷⟩) ≠ (2nd ‘⟨𝐶, 𝐷⟩)) ∧ (𝑟 ∈ (𝔼‘𝑁)(𝐷 Btwn ⟨𝐶, 𝑟⟩ ∧ ⟨𝐷, 𝑟⟩Cgr⟨𝐴, 𝐵⟩)) = (𝑟 ∈ (𝔼‘𝑛)((2nd ‘⟨𝐶, 𝐷⟩) Btwn ⟨(1st ‘⟨𝐶, 𝐷⟩), 𝑟⟩ ∧ ⟨(2nd ‘⟨𝐶, 𝐷⟩), 𝑟⟩Cgr⟨𝐴, 𝐵⟩))) ↔ ((⟨𝐴, 𝐵⟩ ∈ ((𝔼‘𝑁) × (𝔼‘𝑁)) ∧ ⟨𝐶, 𝐷⟩ ∈ ((𝔼‘𝑁) × (𝔼‘𝑁)) ∧ (1st ‘⟨𝐶, 𝐷⟩) ≠ (2nd ‘⟨𝐶, 𝐷⟩)) ∧ (𝑟 ∈ (𝔼‘𝑁)(𝐷 Btwn ⟨𝐶, 𝑟⟩ ∧ ⟨𝐷, 𝑟⟩Cgr⟨𝐴, 𝐵⟩)) = (𝑟 ∈ (𝔼‘𝑁)((2nd ‘⟨𝐶, 𝐷⟩) Btwn ⟨(1st ‘⟨𝐶, 𝐷⟩), 𝑟⟩ ∧ ⟨(2nd ‘⟨𝐶, 𝐷⟩), 𝑟⟩Cgr⟨𝐴, 𝐵⟩)))))
2928rspcev 3460 . . . 4 ((𝑁 ∈ ℕ ∧ ((⟨𝐴, 𝐵⟩ ∈ ((𝔼‘𝑁) × (𝔼‘𝑁)) ∧ ⟨𝐶, 𝐷⟩ ∈ ((𝔼‘𝑁) × (𝔼‘𝑁)) ∧ (1st ‘⟨𝐶, 𝐷⟩) ≠ (2nd ‘⟨𝐶, 𝐷⟩)) ∧ (𝑟 ∈ (𝔼‘𝑁)(𝐷 Btwn ⟨𝐶, 𝑟⟩ ∧ ⟨𝐷, 𝑟⟩Cgr⟨𝐴, 𝐵⟩)) = (𝑟 ∈ (𝔼‘𝑁)((2nd ‘⟨𝐶, 𝐷⟩) Btwn ⟨(1st ‘⟨𝐶, 𝐷⟩), 𝑟⟩ ∧ ⟨(2nd ‘⟨𝐶, 𝐷⟩), 𝑟⟩Cgr⟨𝐴, 𝐵⟩)))) → ∃𝑛 ∈ ℕ ((⟨𝐴, 𝐵⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ ⟨𝐶, 𝐷⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ (1st ‘⟨𝐶, 𝐷⟩) ≠ (2nd ‘⟨𝐶, 𝐷⟩)) ∧ (𝑟 ∈ (𝔼‘𝑁)(𝐷 Btwn ⟨𝐶, 𝑟⟩ ∧ ⟨𝐷, 𝑟⟩Cgr⟨𝐴, 𝐵⟩)) = (𝑟 ∈ (𝔼‘𝑛)((2nd ‘⟨𝐶, 𝐷⟩) Btwn ⟨(1st ‘⟨𝐶, 𝐷⟩), 𝑟⟩ ∧ ⟨(2nd ‘⟨𝐶, 𝐷⟩), 𝑟⟩Cgr⟨𝐴, 𝐵⟩))))
3020, 29sylan2 580 . . 3 ((𝑁 ∈ ℕ ∧ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) ∧ 𝐶𝐷)) → ∃𝑛 ∈ ℕ ((⟨𝐴, 𝐵⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ ⟨𝐶, 𝐷⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ (1st ‘⟨𝐶, 𝐷⟩) ≠ (2nd ‘⟨𝐶, 𝐷⟩)) ∧ (𝑟 ∈ (𝔼‘𝑁)(𝐷 Btwn ⟨𝐶, 𝑟⟩ ∧ ⟨𝐷, 𝑟⟩Cgr⟨𝐴, 𝐵⟩)) = (𝑟 ∈ (𝔼‘𝑛)((2nd ‘⟨𝐶, 𝐷⟩) Btwn ⟨(1st ‘⟨𝐶, 𝐷⟩), 𝑟⟩ ∧ ⟨(2nd ‘⟨𝐶, 𝐷⟩), 𝑟⟩Cgr⟨𝐴, 𝐵⟩))))
31 df-br 4787 . . . . 5 (⟨⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩⟩TransportTo(𝑟 ∈ (𝔼‘𝑁)(𝐷 Btwn ⟨𝐶, 𝑟⟩ ∧ ⟨𝐷, 𝑟⟩Cgr⟨𝐴, 𝐵⟩)) ↔ ⟨⟨⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩⟩, (𝑟 ∈ (𝔼‘𝑁)(𝐷 Btwn ⟨𝐶, 𝑟⟩ ∧ ⟨𝐷, 𝑟⟩Cgr⟨𝐴, 𝐵⟩))⟩ ∈ TransportTo)
32 df-transport 32470 . . . . . 6 TransportTo = {⟨⟨𝑝, 𝑞⟩, 𝑥⟩ ∣ ∃𝑛 ∈ ℕ ((𝑝 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ 𝑞 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ (1st𝑞) ≠ (2nd𝑞)) ∧ 𝑥 = (𝑟 ∈ (𝔼‘𝑛)((2nd𝑞) Btwn ⟨(1st𝑞), 𝑟⟩ ∧ ⟨(2nd𝑞), 𝑟⟩Cgr𝑝)))}
3332eleq2i 2842 . . . . 5 (⟨⟨⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩⟩, (𝑟 ∈ (𝔼‘𝑁)(𝐷 Btwn ⟨𝐶, 𝑟⟩ ∧ ⟨𝐷, 𝑟⟩Cgr⟨𝐴, 𝐵⟩))⟩ ∈ TransportTo ↔ ⟨⟨⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩⟩, (𝑟 ∈ (𝔼‘𝑁)(𝐷 Btwn ⟨𝐶, 𝑟⟩ ∧ ⟨𝐷, 𝑟⟩Cgr⟨𝐴, 𝐵⟩))⟩ ∈ {⟨⟨𝑝, 𝑞⟩, 𝑥⟩ ∣ ∃𝑛 ∈ ℕ ((𝑝 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ 𝑞 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ (1st𝑞) ≠ (2nd𝑞)) ∧ 𝑥 = (𝑟 ∈ (𝔼‘𝑛)((2nd𝑞) Btwn ⟨(1st𝑞), 𝑟⟩ ∧ ⟨(2nd𝑞), 𝑟⟩Cgr𝑝)))})
34 opex 5060 . . . . . 6 𝐴, 𝐵⟩ ∈ V
35 opex 5060 . . . . . 6 𝐶, 𝐷⟩ ∈ V
36 riotaex 6757 . . . . . 6 (𝑟 ∈ (𝔼‘𝑁)(𝐷 Btwn ⟨𝐶, 𝑟⟩ ∧ ⟨𝐷, 𝑟⟩Cgr⟨𝐴, 𝐵⟩)) ∈ V
37 eleq1 2838 . . . . . . . . . 10 (𝑝 = ⟨𝐴, 𝐵⟩ → (𝑝 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ↔ ⟨𝐴, 𝐵⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛))))
38373anbi1d 1551 . . . . . . . . 9 (𝑝 = ⟨𝐴, 𝐵⟩ → ((𝑝 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ 𝑞 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ (1st𝑞) ≠ (2nd𝑞)) ↔ (⟨𝐴, 𝐵⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ 𝑞 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ (1st𝑞) ≠ (2nd𝑞))))
39 breq2 4790 . . . . . . . . . . . 12 (𝑝 = ⟨𝐴, 𝐵⟩ → (⟨(2nd𝑞), 𝑟⟩Cgr𝑝 ↔ ⟨(2nd𝑞), 𝑟⟩Cgr⟨𝐴, 𝐵⟩))
4039anbi2d 614 . . . . . . . . . . 11 (𝑝 = ⟨𝐴, 𝐵⟩ → (((2nd𝑞) Btwn ⟨(1st𝑞), 𝑟⟩ ∧ ⟨(2nd𝑞), 𝑟⟩Cgr𝑝) ↔ ((2nd𝑞) Btwn ⟨(1st𝑞), 𝑟⟩ ∧ ⟨(2nd𝑞), 𝑟⟩Cgr⟨𝐴, 𝐵⟩)))
4140riotabidv 6755 . . . . . . . . . 10 (𝑝 = ⟨𝐴, 𝐵⟩ → (𝑟 ∈ (𝔼‘𝑛)((2nd𝑞) Btwn ⟨(1st𝑞), 𝑟⟩ ∧ ⟨(2nd𝑞), 𝑟⟩Cgr𝑝)) = (𝑟 ∈ (𝔼‘𝑛)((2nd𝑞) Btwn ⟨(1st𝑞), 𝑟⟩ ∧ ⟨(2nd𝑞), 𝑟⟩Cgr⟨𝐴, 𝐵⟩)))
4241eqeq2d 2781 . . . . . . . . 9 (𝑝 = ⟨𝐴, 𝐵⟩ → (𝑥 = (𝑟 ∈ (𝔼‘𝑛)((2nd𝑞) Btwn ⟨(1st𝑞), 𝑟⟩ ∧ ⟨(2nd𝑞), 𝑟⟩Cgr𝑝)) ↔ 𝑥 = (𝑟 ∈ (𝔼‘𝑛)((2nd𝑞) Btwn ⟨(1st𝑞), 𝑟⟩ ∧ ⟨(2nd𝑞), 𝑟⟩Cgr⟨𝐴, 𝐵⟩))))
4338, 42anbi12d 616 . . . . . . . 8 (𝑝 = ⟨𝐴, 𝐵⟩ → (((𝑝 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ 𝑞 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ (1st𝑞) ≠ (2nd𝑞)) ∧ 𝑥 = (𝑟 ∈ (𝔼‘𝑛)((2nd𝑞) Btwn ⟨(1st𝑞), 𝑟⟩ ∧ ⟨(2nd𝑞), 𝑟⟩Cgr𝑝))) ↔ ((⟨𝐴, 𝐵⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ 𝑞 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ (1st𝑞) ≠ (2nd𝑞)) ∧ 𝑥 = (𝑟 ∈ (𝔼‘𝑛)((2nd𝑞) Btwn ⟨(1st𝑞), 𝑟⟩ ∧ ⟨(2nd𝑞), 𝑟⟩Cgr⟨𝐴, 𝐵⟩)))))
4443rexbidv 3200 . . . . . . 7 (𝑝 = ⟨𝐴, 𝐵⟩ → (∃𝑛 ∈ ℕ ((𝑝 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ 𝑞 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ (1st𝑞) ≠ (2nd𝑞)) ∧ 𝑥 = (𝑟 ∈ (𝔼‘𝑛)((2nd𝑞) Btwn ⟨(1st𝑞), 𝑟⟩ ∧ ⟨(2nd𝑞), 𝑟⟩Cgr𝑝))) ↔ ∃𝑛 ∈ ℕ ((⟨𝐴, 𝐵⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ 𝑞 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ (1st𝑞) ≠ (2nd𝑞)) ∧ 𝑥 = (𝑟 ∈ (𝔼‘𝑛)((2nd𝑞) Btwn ⟨(1st𝑞), 𝑟⟩ ∧ ⟨(2nd𝑞), 𝑟⟩Cgr⟨𝐴, 𝐵⟩)))))
45 eleq1 2838 . . . . . . . . . 10 (𝑞 = ⟨𝐶, 𝐷⟩ → (𝑞 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ↔ ⟨𝐶, 𝐷⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛))))
46 fveq2 6330 . . . . . . . . . . 11 (𝑞 = ⟨𝐶, 𝐷⟩ → (1st𝑞) = (1st ‘⟨𝐶, 𝐷⟩))
47 fveq2 6330 . . . . . . . . . . 11 (𝑞 = ⟨𝐶, 𝐷⟩ → (2nd𝑞) = (2nd ‘⟨𝐶, 𝐷⟩))
4846, 47neeq12d 3004 . . . . . . . . . 10 (𝑞 = ⟨𝐶, 𝐷⟩ → ((1st𝑞) ≠ (2nd𝑞) ↔ (1st ‘⟨𝐶, 𝐷⟩) ≠ (2nd ‘⟨𝐶, 𝐷⟩)))
4945, 483anbi23d 1550 . . . . . . . . 9 (𝑞 = ⟨𝐶, 𝐷⟩ → ((⟨𝐴, 𝐵⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ 𝑞 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ (1st𝑞) ≠ (2nd𝑞)) ↔ (⟨𝐴, 𝐵⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ ⟨𝐶, 𝐷⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ (1st ‘⟨𝐶, 𝐷⟩) ≠ (2nd ‘⟨𝐶, 𝐷⟩))))
5046opeq1d 4545 . . . . . . . . . . . . 13 (𝑞 = ⟨𝐶, 𝐷⟩ → ⟨(1st𝑞), 𝑟⟩ = ⟨(1st ‘⟨𝐶, 𝐷⟩), 𝑟⟩)
5147, 50breq12d 4799 . . . . . . . . . . . 12 (𝑞 = ⟨𝐶, 𝐷⟩ → ((2nd𝑞) Btwn ⟨(1st𝑞), 𝑟⟩ ↔ (2nd ‘⟨𝐶, 𝐷⟩) Btwn ⟨(1st ‘⟨𝐶, 𝐷⟩), 𝑟⟩))
5247opeq1d 4545 . . . . . . . . . . . . 13 (𝑞 = ⟨𝐶, 𝐷⟩ → ⟨(2nd𝑞), 𝑟⟩ = ⟨(2nd ‘⟨𝐶, 𝐷⟩), 𝑟⟩)
5352breq1d 4796 . . . . . . . . . . . 12 (𝑞 = ⟨𝐶, 𝐷⟩ → (⟨(2nd𝑞), 𝑟⟩Cgr⟨𝐴, 𝐵⟩ ↔ ⟨(2nd ‘⟨𝐶, 𝐷⟩), 𝑟⟩Cgr⟨𝐴, 𝐵⟩))
5451, 53anbi12d 616 . . . . . . . . . . 11 (𝑞 = ⟨𝐶, 𝐷⟩ → (((2nd𝑞) Btwn ⟨(1st𝑞), 𝑟⟩ ∧ ⟨(2nd𝑞), 𝑟⟩Cgr⟨𝐴, 𝐵⟩) ↔ ((2nd ‘⟨𝐶, 𝐷⟩) Btwn ⟨(1st ‘⟨𝐶, 𝐷⟩), 𝑟⟩ ∧ ⟨(2nd ‘⟨𝐶, 𝐷⟩), 𝑟⟩Cgr⟨𝐴, 𝐵⟩)))
5554riotabidv 6755 . . . . . . . . . 10 (𝑞 = ⟨𝐶, 𝐷⟩ → (𝑟 ∈ (𝔼‘𝑛)((2nd𝑞) Btwn ⟨(1st𝑞), 𝑟⟩ ∧ ⟨(2nd𝑞), 𝑟⟩Cgr⟨𝐴, 𝐵⟩)) = (𝑟 ∈ (𝔼‘𝑛)((2nd ‘⟨𝐶, 𝐷⟩) Btwn ⟨(1st ‘⟨𝐶, 𝐷⟩), 𝑟⟩ ∧ ⟨(2nd ‘⟨𝐶, 𝐷⟩), 𝑟⟩Cgr⟨𝐴, 𝐵⟩)))
5655eqeq2d 2781 . . . . . . . . 9 (𝑞 = ⟨𝐶, 𝐷⟩ → (𝑥 = (𝑟 ∈ (𝔼‘𝑛)((2nd𝑞) Btwn ⟨(1st𝑞), 𝑟⟩ ∧ ⟨(2nd𝑞), 𝑟⟩Cgr⟨𝐴, 𝐵⟩)) ↔ 𝑥 = (𝑟 ∈ (𝔼‘𝑛)((2nd ‘⟨𝐶, 𝐷⟩) Btwn ⟨(1st ‘⟨𝐶, 𝐷⟩), 𝑟⟩ ∧ ⟨(2nd ‘⟨𝐶, 𝐷⟩), 𝑟⟩Cgr⟨𝐴, 𝐵⟩))))
5749, 56anbi12d 616 . . . . . . . 8 (𝑞 = ⟨𝐶, 𝐷⟩ → (((⟨𝐴, 𝐵⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ 𝑞 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ (1st𝑞) ≠ (2nd𝑞)) ∧ 𝑥 = (𝑟 ∈ (𝔼‘𝑛)((2nd𝑞) Btwn ⟨(1st𝑞), 𝑟⟩ ∧ ⟨(2nd𝑞), 𝑟⟩Cgr⟨𝐴, 𝐵⟩))) ↔ ((⟨𝐴, 𝐵⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ ⟨𝐶, 𝐷⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ (1st ‘⟨𝐶, 𝐷⟩) ≠ (2nd ‘⟨𝐶, 𝐷⟩)) ∧ 𝑥 = (𝑟 ∈ (𝔼‘𝑛)((2nd ‘⟨𝐶, 𝐷⟩) Btwn ⟨(1st ‘⟨𝐶, 𝐷⟩), 𝑟⟩ ∧ ⟨(2nd ‘⟨𝐶, 𝐷⟩), 𝑟⟩Cgr⟨𝐴, 𝐵⟩)))))
5857rexbidv 3200 . . . . . . 7 (𝑞 = ⟨𝐶, 𝐷⟩ → (∃𝑛 ∈ ℕ ((⟨𝐴, 𝐵⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ 𝑞 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ (1st𝑞) ≠ (2nd𝑞)) ∧ 𝑥 = (𝑟 ∈ (𝔼‘𝑛)((2nd𝑞) Btwn ⟨(1st𝑞), 𝑟⟩ ∧ ⟨(2nd𝑞), 𝑟⟩Cgr⟨𝐴, 𝐵⟩))) ↔ ∃𝑛 ∈ ℕ ((⟨𝐴, 𝐵⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ ⟨𝐶, 𝐷⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ (1st ‘⟨𝐶, 𝐷⟩) ≠ (2nd ‘⟨𝐶, 𝐷⟩)) ∧ 𝑥 = (𝑟 ∈ (𝔼‘𝑛)((2nd ‘⟨𝐶, 𝐷⟩) Btwn ⟨(1st ‘⟨𝐶, 𝐷⟩), 𝑟⟩ ∧ ⟨(2nd ‘⟨𝐶, 𝐷⟩), 𝑟⟩Cgr⟨𝐴, 𝐵⟩)))))
59 eqeq1 2775 . . . . . . . . 9 (𝑥 = (𝑟 ∈ (𝔼‘𝑁)(𝐷 Btwn ⟨𝐶, 𝑟⟩ ∧ ⟨𝐷, 𝑟⟩Cgr⟨𝐴, 𝐵⟩)) → (𝑥 = (𝑟 ∈ (𝔼‘𝑛)((2nd ‘⟨𝐶, 𝐷⟩) Btwn ⟨(1st ‘⟨𝐶, 𝐷⟩), 𝑟⟩ ∧ ⟨(2nd ‘⟨𝐶, 𝐷⟩), 𝑟⟩Cgr⟨𝐴, 𝐵⟩)) ↔ (𝑟 ∈ (𝔼‘𝑁)(𝐷 Btwn ⟨𝐶, 𝑟⟩ ∧ ⟨𝐷, 𝑟⟩Cgr⟨𝐴, 𝐵⟩)) = (𝑟 ∈ (𝔼‘𝑛)((2nd ‘⟨𝐶, 𝐷⟩) Btwn ⟨(1st ‘⟨𝐶, 𝐷⟩), 𝑟⟩ ∧ ⟨(2nd ‘⟨𝐶, 𝐷⟩), 𝑟⟩Cgr⟨𝐴, 𝐵⟩))))
6059anbi2d 614 . . . . . . . 8 (𝑥 = (𝑟 ∈ (𝔼‘𝑁)(𝐷 Btwn ⟨𝐶, 𝑟⟩ ∧ ⟨𝐷, 𝑟⟩Cgr⟨𝐴, 𝐵⟩)) → (((⟨𝐴, 𝐵⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ ⟨𝐶, 𝐷⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ (1st ‘⟨𝐶, 𝐷⟩) ≠ (2nd ‘⟨𝐶, 𝐷⟩)) ∧ 𝑥 = (𝑟 ∈ (𝔼‘𝑛)((2nd ‘⟨𝐶, 𝐷⟩) Btwn ⟨(1st ‘⟨𝐶, 𝐷⟩), 𝑟⟩ ∧ ⟨(2nd ‘⟨𝐶, 𝐷⟩), 𝑟⟩Cgr⟨𝐴, 𝐵⟩))) ↔ ((⟨𝐴, 𝐵⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ ⟨𝐶, 𝐷⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ (1st ‘⟨𝐶, 𝐷⟩) ≠ (2nd ‘⟨𝐶, 𝐷⟩)) ∧ (𝑟 ∈ (𝔼‘𝑁)(𝐷 Btwn ⟨𝐶, 𝑟⟩ ∧ ⟨𝐷, 𝑟⟩Cgr⟨𝐴, 𝐵⟩)) = (𝑟 ∈ (𝔼‘𝑛)((2nd ‘⟨𝐶, 𝐷⟩) Btwn ⟨(1st ‘⟨𝐶, 𝐷⟩), 𝑟⟩ ∧ ⟨(2nd ‘⟨𝐶, 𝐷⟩), 𝑟⟩Cgr⟨𝐴, 𝐵⟩)))))
6160rexbidv 3200 . . . . . . 7 (𝑥 = (𝑟 ∈ (𝔼‘𝑁)(𝐷 Btwn ⟨𝐶, 𝑟⟩ ∧ ⟨𝐷, 𝑟⟩Cgr⟨𝐴, 𝐵⟩)) → (∃𝑛 ∈ ℕ ((⟨𝐴, 𝐵⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ ⟨𝐶, 𝐷⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ (1st ‘⟨𝐶, 𝐷⟩) ≠ (2nd ‘⟨𝐶, 𝐷⟩)) ∧ 𝑥 = (𝑟 ∈ (𝔼‘𝑛)((2nd ‘⟨𝐶, 𝐷⟩) Btwn ⟨(1st ‘⟨𝐶, 𝐷⟩), 𝑟⟩ ∧ ⟨(2nd ‘⟨𝐶, 𝐷⟩), 𝑟⟩Cgr⟨𝐴, 𝐵⟩))) ↔ ∃𝑛 ∈ ℕ ((⟨𝐴, 𝐵⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ ⟨𝐶, 𝐷⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ (1st ‘⟨𝐶, 𝐷⟩) ≠ (2nd ‘⟨𝐶, 𝐷⟩)) ∧ (𝑟 ∈ (𝔼‘𝑁)(𝐷 Btwn ⟨𝐶, 𝑟⟩ ∧ ⟨𝐷, 𝑟⟩Cgr⟨𝐴, 𝐵⟩)) = (𝑟 ∈ (𝔼‘𝑛)((2nd ‘⟨𝐶, 𝐷⟩) Btwn ⟨(1st ‘⟨𝐶, 𝐷⟩), 𝑟⟩ ∧ ⟨(2nd ‘⟨𝐶, 𝐷⟩), 𝑟⟩Cgr⟨𝐴, 𝐵⟩)))))
6244, 58, 61eloprabg 6895 . . . . . 6 ((⟨𝐴, 𝐵⟩ ∈ V ∧ ⟨𝐶, 𝐷⟩ ∈ V ∧ (𝑟 ∈ (𝔼‘𝑁)(𝐷 Btwn ⟨𝐶, 𝑟⟩ ∧ ⟨𝐷, 𝑟⟩Cgr⟨𝐴, 𝐵⟩)) ∈ V) → (⟨⟨⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩⟩, (𝑟 ∈ (𝔼‘𝑁)(𝐷 Btwn ⟨𝐶, 𝑟⟩ ∧ ⟨𝐷, 𝑟⟩Cgr⟨𝐴, 𝐵⟩))⟩ ∈ {⟨⟨𝑝, 𝑞⟩, 𝑥⟩ ∣ ∃𝑛 ∈ ℕ ((𝑝 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ 𝑞 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ (1st𝑞) ≠ (2nd𝑞)) ∧ 𝑥 = (𝑟 ∈ (𝔼‘𝑛)((2nd𝑞) Btwn ⟨(1st𝑞), 𝑟⟩ ∧ ⟨(2nd𝑞), 𝑟⟩Cgr𝑝)))} ↔ ∃𝑛 ∈ ℕ ((⟨𝐴, 𝐵⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ ⟨𝐶, 𝐷⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ (1st ‘⟨𝐶, 𝐷⟩) ≠ (2nd ‘⟨𝐶, 𝐷⟩)) ∧ (𝑟 ∈ (𝔼‘𝑁)(𝐷 Btwn ⟨𝐶, 𝑟⟩ ∧ ⟨𝐷, 𝑟⟩Cgr⟨𝐴, 𝐵⟩)) = (𝑟 ∈ (𝔼‘𝑛)((2nd ‘⟨𝐶, 𝐷⟩) Btwn ⟨(1st ‘⟨𝐶, 𝐷⟩), 𝑟⟩ ∧ ⟨(2nd ‘⟨𝐶, 𝐷⟩), 𝑟⟩Cgr⟨𝐴, 𝐵⟩)))))
6334, 35, 36, 62mp3an 1572 . . . . 5 (⟨⟨⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩⟩, (𝑟 ∈ (𝔼‘𝑁)(𝐷 Btwn ⟨𝐶, 𝑟⟩ ∧ ⟨𝐷, 𝑟⟩Cgr⟨𝐴, 𝐵⟩))⟩ ∈ {⟨⟨𝑝, 𝑞⟩, 𝑥⟩ ∣ ∃𝑛 ∈ ℕ ((𝑝 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ 𝑞 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ (1st𝑞) ≠ (2nd𝑞)) ∧ 𝑥 = (𝑟 ∈ (𝔼‘𝑛)((2nd𝑞) Btwn ⟨(1st𝑞), 𝑟⟩ ∧ ⟨(2nd𝑞), 𝑟⟩Cgr𝑝)))} ↔ ∃𝑛 ∈ ℕ ((⟨𝐴, 𝐵⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ ⟨𝐶, 𝐷⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ (1st ‘⟨𝐶, 𝐷⟩) ≠ (2nd ‘⟨𝐶, 𝐷⟩)) ∧ (𝑟 ∈ (𝔼‘𝑁)(𝐷 Btwn ⟨𝐶, 𝑟⟩ ∧ ⟨𝐷, 𝑟⟩Cgr⟨𝐴, 𝐵⟩)) = (𝑟 ∈ (𝔼‘𝑛)((2nd ‘⟨𝐶, 𝐷⟩) Btwn ⟨(1st ‘⟨𝐶, 𝐷⟩), 𝑟⟩ ∧ ⟨(2nd ‘⟨𝐶, 𝐷⟩), 𝑟⟩Cgr⟨𝐴, 𝐵⟩))))
6431, 33, 633bitri 286 . . . 4 (⟨⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩⟩TransportTo(𝑟 ∈ (𝔼‘𝑁)(𝐷 Btwn ⟨𝐶, 𝑟⟩ ∧ ⟨𝐷, 𝑟⟩Cgr⟨𝐴, 𝐵⟩)) ↔ ∃𝑛 ∈ ℕ ((⟨𝐴, 𝐵⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ ⟨𝐶, 𝐷⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ (1st ‘⟨𝐶, 𝐷⟩) ≠ (2nd ‘⟨𝐶, 𝐷⟩)) ∧ (𝑟 ∈ (𝔼‘𝑁)(𝐷 Btwn ⟨𝐶, 𝑟⟩ ∧ ⟨𝐷, 𝑟⟩Cgr⟨𝐴, 𝐵⟩)) = (𝑟 ∈ (𝔼‘𝑛)((2nd ‘⟨𝐶, 𝐷⟩) Btwn ⟨(1st ‘⟨𝐶, 𝐷⟩), 𝑟⟩ ∧ ⟨(2nd ‘⟨𝐶, 𝐷⟩), 𝑟⟩Cgr⟨𝐴, 𝐵⟩))))
65 funtransport 32471 . . . . 5 Fun TransportTo
66 funbrfv 6374 . . . . 5 (Fun TransportTo → (⟨⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩⟩TransportTo(𝑟 ∈ (𝔼‘𝑁)(𝐷 Btwn ⟨𝐶, 𝑟⟩ ∧ ⟨𝐷, 𝑟⟩Cgr⟨𝐴, 𝐵⟩)) → (TransportTo‘⟨⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩⟩) = (𝑟 ∈ (𝔼‘𝑁)(𝐷 Btwn ⟨𝐶, 𝑟⟩ ∧ ⟨𝐷, 𝑟⟩Cgr⟨𝐴, 𝐵⟩))))
6765, 66ax-mp 5 . . . 4 (⟨⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩⟩TransportTo(𝑟 ∈ (𝔼‘𝑁)(𝐷 Btwn ⟨𝐶, 𝑟⟩ ∧ ⟨𝐷, 𝑟⟩Cgr⟨𝐴, 𝐵⟩)) → (TransportTo‘⟨⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩⟩) = (𝑟 ∈ (𝔼‘𝑁)(𝐷 Btwn ⟨𝐶, 𝑟⟩ ∧ ⟨𝐷, 𝑟⟩Cgr⟨𝐴, 𝐵⟩)))
6864, 67sylbir 225 . . 3 (∃𝑛 ∈ ℕ ((⟨𝐴, 𝐵⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ ⟨𝐶, 𝐷⟩ ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ (1st ‘⟨𝐶, 𝐷⟩) ≠ (2nd ‘⟨𝐶, 𝐷⟩)) ∧ (𝑟 ∈ (𝔼‘𝑁)(𝐷 Btwn ⟨𝐶, 𝑟⟩ ∧ ⟨𝐷, 𝑟⟩Cgr⟨𝐴, 𝐵⟩)) = (𝑟 ∈ (𝔼‘𝑛)((2nd ‘⟨𝐶, 𝐷⟩) Btwn ⟨(1st ‘⟨𝐶, 𝐷⟩), 𝑟⟩ ∧ ⟨(2nd ‘⟨𝐶, 𝐷⟩), 𝑟⟩Cgr⟨𝐴, 𝐵⟩))) → (TransportTo‘⟨⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩⟩) = (𝑟 ∈ (𝔼‘𝑁)(𝐷 Btwn ⟨𝐶, 𝑟⟩ ∧ ⟨𝐷, 𝑟⟩Cgr⟨𝐴, 𝐵⟩)))
6930, 68syl 17 . 2 ((𝑁 ∈ ℕ ∧ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) ∧ 𝐶𝐷)) → (TransportTo‘⟨⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩⟩) = (𝑟 ∈ (𝔼‘𝑁)(𝐷 Btwn ⟨𝐶, 𝑟⟩ ∧ ⟨𝐷, 𝑟⟩Cgr⟨𝐴, 𝐵⟩)))
701, 69syl5eq 2817 1 ((𝑁 ∈ ℕ ∧ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) ∧ 𝐶𝐷)) → (⟨𝐴, 𝐵⟩TransportTo⟨𝐶, 𝐷⟩) = (𝑟 ∈ (𝔼‘𝑁)(𝐷 Btwn ⟨𝐶, 𝑟⟩ ∧ ⟨𝐷, 𝑟⟩Cgr⟨𝐴, 𝐵⟩)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 382  w3a 1071   = wceq 1631  wcel 2145  wne 2943  wrex 3062  Vcvv 3351  cop 4322   class class class wbr 4786   × cxp 5247  Fun wfun 6023  cfv 6029  crio 6752  (class class class)co 6792  {coprab 6793  1st c1st 7313  2nd c2nd 7314  cn 11222  𝔼cee 25985   Btwn cbtwn 25986  Cgrccgr 25987  TransportToctransport 32469
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7096  ax-cnex 10194  ax-resscn 10195  ax-1cn 10196  ax-icn 10197  ax-addcl 10198  ax-addrcl 10199  ax-mulcl 10200  ax-mulrcl 10201  ax-mulcom 10202  ax-addass 10203  ax-mulass 10204  ax-distr 10205  ax-i2m1 10206  ax-1ne0 10207  ax-1rid 10208  ax-rnegex 10209  ax-rrecex 10210  ax-cnre 10211  ax-pre-lttri 10212  ax-pre-lttrn 10213  ax-pre-ltadd 10214  ax-pre-mulgt0 10215
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-tp 4321  df-op 4323  df-uni 4575  df-iun 4656  df-br 4787  df-opab 4847  df-mpt 4864  df-tr 4887  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5821  df-ord 5867  df-on 5868  df-lim 5869  df-suc 5870  df-iota 5992  df-fun 6031  df-fn 6032  df-f 6033  df-f1 6034  df-fo 6035  df-f1o 6036  df-fv 6037  df-riota 6753  df-ov 6795  df-oprab 6796  df-mpt2 6797  df-om 7213  df-1st 7315  df-2nd 7316  df-wrecs 7559  df-recs 7621  df-rdg 7659  df-er 7896  df-map 8011  df-en 8110  df-dom 8111  df-sdom 8112  df-pnf 10278  df-mnf 10279  df-xr 10280  df-ltxr 10281  df-le 10282  df-sub 10470  df-neg 10471  df-nn 11223  df-z 11581  df-uz 11890  df-fz 12530  df-ee 25988  df-transport 32470
This theorem is referenced by:  transportcl  32473  transportprops  32474
  Copyright terms: Public domain W3C validator