Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  funtransport Structured version   Visualization version   GIF version

Theorem funtransport 35550
Description: The TransportTo relationship is a function. (Contributed by Scott Fenton, 18-Oct-2013.) (Revised by Mario Carneiro, 19-Apr-2014.)
Assertion
Ref Expression
funtransport Fun TransportTo

Proof of Theorem funtransport
Dummy variables 𝑚 𝑛 𝑝 𝑞 𝑟 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 reeanv 3221 . . . . . 6 (∃𝑛 ∈ ℕ ∃𝑚 ∈ ℕ (((𝑝 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ 𝑞 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ (1st𝑞) ≠ (2nd𝑞)) ∧ 𝑥 = (𝑟 ∈ (𝔼‘𝑛)((2nd𝑞) Btwn ⟨(1st𝑞), 𝑟⟩ ∧ ⟨(2nd𝑞), 𝑟⟩Cgr𝑝))) ∧ ((𝑝 ∈ ((𝔼‘𝑚) × (𝔼‘𝑚)) ∧ 𝑞 ∈ ((𝔼‘𝑚) × (𝔼‘𝑚)) ∧ (1st𝑞) ≠ (2nd𝑞)) ∧ 𝑦 = (𝑟 ∈ (𝔼‘𝑚)((2nd𝑞) Btwn ⟨(1st𝑞), 𝑟⟩ ∧ ⟨(2nd𝑞), 𝑟⟩Cgr𝑝)))) ↔ (∃𝑛 ∈ ℕ ((𝑝 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ 𝑞 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ (1st𝑞) ≠ (2nd𝑞)) ∧ 𝑥 = (𝑟 ∈ (𝔼‘𝑛)((2nd𝑞) Btwn ⟨(1st𝑞), 𝑟⟩ ∧ ⟨(2nd𝑞), 𝑟⟩Cgr𝑝))) ∧ ∃𝑚 ∈ ℕ ((𝑝 ∈ ((𝔼‘𝑚) × (𝔼‘𝑚)) ∧ 𝑞 ∈ ((𝔼‘𝑚) × (𝔼‘𝑚)) ∧ (1st𝑞) ≠ (2nd𝑞)) ∧ 𝑦 = (𝑟 ∈ (𝔼‘𝑚)((2nd𝑞) Btwn ⟨(1st𝑞), 𝑟⟩ ∧ ⟨(2nd𝑞), 𝑟⟩Cgr𝑝)))))
2 simp1 1134 . . . . . . . . . . 11 ((𝑝 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ 𝑞 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ (1st𝑞) ≠ (2nd𝑞)) → 𝑝 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)))
3 simp1 1134 . . . . . . . . . . 11 ((𝑝 ∈ ((𝔼‘𝑚) × (𝔼‘𝑚)) ∧ 𝑞 ∈ ((𝔼‘𝑚) × (𝔼‘𝑚)) ∧ (1st𝑞) ≠ (2nd𝑞)) → 𝑝 ∈ ((𝔼‘𝑚) × (𝔼‘𝑚)))
42, 3anim12i 612 . . . . . . . . . 10 (((𝑝 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ 𝑞 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ (1st𝑞) ≠ (2nd𝑞)) ∧ (𝑝 ∈ ((𝔼‘𝑚) × (𝔼‘𝑚)) ∧ 𝑞 ∈ ((𝔼‘𝑚) × (𝔼‘𝑚)) ∧ (1st𝑞) ≠ (2nd𝑞))) → (𝑝 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ 𝑝 ∈ ((𝔼‘𝑚) × (𝔼‘𝑚))))
54anim1i 614 . . . . . . . . 9 ((((𝑝 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ 𝑞 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ (1st𝑞) ≠ (2nd𝑞)) ∧ (𝑝 ∈ ((𝔼‘𝑚) × (𝔼‘𝑚)) ∧ 𝑞 ∈ ((𝔼‘𝑚) × (𝔼‘𝑚)) ∧ (1st𝑞) ≠ (2nd𝑞))) ∧ (𝑥 = (𝑟 ∈ (𝔼‘𝑛)((2nd𝑞) Btwn ⟨(1st𝑞), 𝑟⟩ ∧ ⟨(2nd𝑞), 𝑟⟩Cgr𝑝)) ∧ 𝑦 = (𝑟 ∈ (𝔼‘𝑚)((2nd𝑞) Btwn ⟨(1st𝑞), 𝑟⟩ ∧ ⟨(2nd𝑞), 𝑟⟩Cgr𝑝)))) → ((𝑝 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ 𝑝 ∈ ((𝔼‘𝑚) × (𝔼‘𝑚))) ∧ (𝑥 = (𝑟 ∈ (𝔼‘𝑛)((2nd𝑞) Btwn ⟨(1st𝑞), 𝑟⟩ ∧ ⟨(2nd𝑞), 𝑟⟩Cgr𝑝)) ∧ 𝑦 = (𝑟 ∈ (𝔼‘𝑚)((2nd𝑞) Btwn ⟨(1st𝑞), 𝑟⟩ ∧ ⟨(2nd𝑞), 𝑟⟩Cgr𝑝)))))
65an4s 659 . . . . . . . 8 ((((𝑝 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ 𝑞 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ (1st𝑞) ≠ (2nd𝑞)) ∧ 𝑥 = (𝑟 ∈ (𝔼‘𝑛)((2nd𝑞) Btwn ⟨(1st𝑞), 𝑟⟩ ∧ ⟨(2nd𝑞), 𝑟⟩Cgr𝑝))) ∧ ((𝑝 ∈ ((𝔼‘𝑚) × (𝔼‘𝑚)) ∧ 𝑞 ∈ ((𝔼‘𝑚) × (𝔼‘𝑚)) ∧ (1st𝑞) ≠ (2nd𝑞)) ∧ 𝑦 = (𝑟 ∈ (𝔼‘𝑚)((2nd𝑞) Btwn ⟨(1st𝑞), 𝑟⟩ ∧ ⟨(2nd𝑞), 𝑟⟩Cgr𝑝)))) → ((𝑝 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ 𝑝 ∈ ((𝔼‘𝑚) × (𝔼‘𝑚))) ∧ (𝑥 = (𝑟 ∈ (𝔼‘𝑛)((2nd𝑞) Btwn ⟨(1st𝑞), 𝑟⟩ ∧ ⟨(2nd𝑞), 𝑟⟩Cgr𝑝)) ∧ 𝑦 = (𝑟 ∈ (𝔼‘𝑚)((2nd𝑞) Btwn ⟨(1st𝑞), 𝑟⟩ ∧ ⟨(2nd𝑞), 𝑟⟩Cgr𝑝)))))
7 xp1st 8017 . . . . . . . . . 10 (𝑝 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) → (1st𝑝) ∈ (𝔼‘𝑛))
8 xp1st 8017 . . . . . . . . . 10 (𝑝 ∈ ((𝔼‘𝑚) × (𝔼‘𝑚)) → (1st𝑝) ∈ (𝔼‘𝑚))
9 axdimuniq 28698 . . . . . . . . . . . . 13 (((𝑛 ∈ ℕ ∧ (1st𝑝) ∈ (𝔼‘𝑛)) ∧ (𝑚 ∈ ℕ ∧ (1st𝑝) ∈ (𝔼‘𝑚))) → 𝑛 = 𝑚)
10 fveq2 6891 . . . . . . . . . . . . . . . . 17 (𝑛 = 𝑚 → (𝔼‘𝑛) = (𝔼‘𝑚))
1110riotaeqdv 7371 . . . . . . . . . . . . . . . 16 (𝑛 = 𝑚 → (𝑟 ∈ (𝔼‘𝑛)((2nd𝑞) Btwn ⟨(1st𝑞), 𝑟⟩ ∧ ⟨(2nd𝑞), 𝑟⟩Cgr𝑝)) = (𝑟 ∈ (𝔼‘𝑚)((2nd𝑞) Btwn ⟨(1st𝑞), 𝑟⟩ ∧ ⟨(2nd𝑞), 𝑟⟩Cgr𝑝)))
1211eqeq2d 2738 . . . . . . . . . . . . . . 15 (𝑛 = 𝑚 → (𝑦 = (𝑟 ∈ (𝔼‘𝑛)((2nd𝑞) Btwn ⟨(1st𝑞), 𝑟⟩ ∧ ⟨(2nd𝑞), 𝑟⟩Cgr𝑝)) ↔ 𝑦 = (𝑟 ∈ (𝔼‘𝑚)((2nd𝑞) Btwn ⟨(1st𝑞), 𝑟⟩ ∧ ⟨(2nd𝑞), 𝑟⟩Cgr𝑝))))
1312anbi2d 628 . . . . . . . . . . . . . 14 (𝑛 = 𝑚 → ((𝑥 = (𝑟 ∈ (𝔼‘𝑛)((2nd𝑞) Btwn ⟨(1st𝑞), 𝑟⟩ ∧ ⟨(2nd𝑞), 𝑟⟩Cgr𝑝)) ∧ 𝑦 = (𝑟 ∈ (𝔼‘𝑛)((2nd𝑞) Btwn ⟨(1st𝑞), 𝑟⟩ ∧ ⟨(2nd𝑞), 𝑟⟩Cgr𝑝))) ↔ (𝑥 = (𝑟 ∈ (𝔼‘𝑛)((2nd𝑞) Btwn ⟨(1st𝑞), 𝑟⟩ ∧ ⟨(2nd𝑞), 𝑟⟩Cgr𝑝)) ∧ 𝑦 = (𝑟 ∈ (𝔼‘𝑚)((2nd𝑞) Btwn ⟨(1st𝑞), 𝑟⟩ ∧ ⟨(2nd𝑞), 𝑟⟩Cgr𝑝)))))
14 eqtr3 2753 . . . . . . . . . . . . . 14 ((𝑥 = (𝑟 ∈ (𝔼‘𝑛)((2nd𝑞) Btwn ⟨(1st𝑞), 𝑟⟩ ∧ ⟨(2nd𝑞), 𝑟⟩Cgr𝑝)) ∧ 𝑦 = (𝑟 ∈ (𝔼‘𝑛)((2nd𝑞) Btwn ⟨(1st𝑞), 𝑟⟩ ∧ ⟨(2nd𝑞), 𝑟⟩Cgr𝑝))) → 𝑥 = 𝑦)
1513, 14syl6bir 254 . . . . . . . . . . . . 13 (𝑛 = 𝑚 → ((𝑥 = (𝑟 ∈ (𝔼‘𝑛)((2nd𝑞) Btwn ⟨(1st𝑞), 𝑟⟩ ∧ ⟨(2nd𝑞), 𝑟⟩Cgr𝑝)) ∧ 𝑦 = (𝑟 ∈ (𝔼‘𝑚)((2nd𝑞) Btwn ⟨(1st𝑞), 𝑟⟩ ∧ ⟨(2nd𝑞), 𝑟⟩Cgr𝑝))) → 𝑥 = 𝑦))
169, 15syl 17 . . . . . . . . . . . 12 (((𝑛 ∈ ℕ ∧ (1st𝑝) ∈ (𝔼‘𝑛)) ∧ (𝑚 ∈ ℕ ∧ (1st𝑝) ∈ (𝔼‘𝑚))) → ((𝑥 = (𝑟 ∈ (𝔼‘𝑛)((2nd𝑞) Btwn ⟨(1st𝑞), 𝑟⟩ ∧ ⟨(2nd𝑞), 𝑟⟩Cgr𝑝)) ∧ 𝑦 = (𝑟 ∈ (𝔼‘𝑚)((2nd𝑞) Btwn ⟨(1st𝑞), 𝑟⟩ ∧ ⟨(2nd𝑞), 𝑟⟩Cgr𝑝))) → 𝑥 = 𝑦))
1716an4s 659 . . . . . . . . . . 11 (((𝑛 ∈ ℕ ∧ 𝑚 ∈ ℕ) ∧ ((1st𝑝) ∈ (𝔼‘𝑛) ∧ (1st𝑝) ∈ (𝔼‘𝑚))) → ((𝑥 = (𝑟 ∈ (𝔼‘𝑛)((2nd𝑞) Btwn ⟨(1st𝑞), 𝑟⟩ ∧ ⟨(2nd𝑞), 𝑟⟩Cgr𝑝)) ∧ 𝑦 = (𝑟 ∈ (𝔼‘𝑚)((2nd𝑞) Btwn ⟨(1st𝑞), 𝑟⟩ ∧ ⟨(2nd𝑞), 𝑟⟩Cgr𝑝))) → 𝑥 = 𝑦))
1817ex 412 . . . . . . . . . 10 ((𝑛 ∈ ℕ ∧ 𝑚 ∈ ℕ) → (((1st𝑝) ∈ (𝔼‘𝑛) ∧ (1st𝑝) ∈ (𝔼‘𝑚)) → ((𝑥 = (𝑟 ∈ (𝔼‘𝑛)((2nd𝑞) Btwn ⟨(1st𝑞), 𝑟⟩ ∧ ⟨(2nd𝑞), 𝑟⟩Cgr𝑝)) ∧ 𝑦 = (𝑟 ∈ (𝔼‘𝑚)((2nd𝑞) Btwn ⟨(1st𝑞), 𝑟⟩ ∧ ⟨(2nd𝑞), 𝑟⟩Cgr𝑝))) → 𝑥 = 𝑦)))
197, 8, 18syl2ani 606 . . . . . . . . 9 ((𝑛 ∈ ℕ ∧ 𝑚 ∈ ℕ) → ((𝑝 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ 𝑝 ∈ ((𝔼‘𝑚) × (𝔼‘𝑚))) → ((𝑥 = (𝑟 ∈ (𝔼‘𝑛)((2nd𝑞) Btwn ⟨(1st𝑞), 𝑟⟩ ∧ ⟨(2nd𝑞), 𝑟⟩Cgr𝑝)) ∧ 𝑦 = (𝑟 ∈ (𝔼‘𝑚)((2nd𝑞) Btwn ⟨(1st𝑞), 𝑟⟩ ∧ ⟨(2nd𝑞), 𝑟⟩Cgr𝑝))) → 𝑥 = 𝑦)))
2019impd 410 . . . . . . . 8 ((𝑛 ∈ ℕ ∧ 𝑚 ∈ ℕ) → (((𝑝 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ 𝑝 ∈ ((𝔼‘𝑚) × (𝔼‘𝑚))) ∧ (𝑥 = (𝑟 ∈ (𝔼‘𝑛)((2nd𝑞) Btwn ⟨(1st𝑞), 𝑟⟩ ∧ ⟨(2nd𝑞), 𝑟⟩Cgr𝑝)) ∧ 𝑦 = (𝑟 ∈ (𝔼‘𝑚)((2nd𝑞) Btwn ⟨(1st𝑞), 𝑟⟩ ∧ ⟨(2nd𝑞), 𝑟⟩Cgr𝑝)))) → 𝑥 = 𝑦))
216, 20syl5 34 . . . . . . 7 ((𝑛 ∈ ℕ ∧ 𝑚 ∈ ℕ) → ((((𝑝 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ 𝑞 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ (1st𝑞) ≠ (2nd𝑞)) ∧ 𝑥 = (𝑟 ∈ (𝔼‘𝑛)((2nd𝑞) Btwn ⟨(1st𝑞), 𝑟⟩ ∧ ⟨(2nd𝑞), 𝑟⟩Cgr𝑝))) ∧ ((𝑝 ∈ ((𝔼‘𝑚) × (𝔼‘𝑚)) ∧ 𝑞 ∈ ((𝔼‘𝑚) × (𝔼‘𝑚)) ∧ (1st𝑞) ≠ (2nd𝑞)) ∧ 𝑦 = (𝑟 ∈ (𝔼‘𝑚)((2nd𝑞) Btwn ⟨(1st𝑞), 𝑟⟩ ∧ ⟨(2nd𝑞), 𝑟⟩Cgr𝑝)))) → 𝑥 = 𝑦))
2221rexlimivv 3194 . . . . . 6 (∃𝑛 ∈ ℕ ∃𝑚 ∈ ℕ (((𝑝 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ 𝑞 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ (1st𝑞) ≠ (2nd𝑞)) ∧ 𝑥 = (𝑟 ∈ (𝔼‘𝑛)((2nd𝑞) Btwn ⟨(1st𝑞), 𝑟⟩ ∧ ⟨(2nd𝑞), 𝑟⟩Cgr𝑝))) ∧ ((𝑝 ∈ ((𝔼‘𝑚) × (𝔼‘𝑚)) ∧ 𝑞 ∈ ((𝔼‘𝑚) × (𝔼‘𝑚)) ∧ (1st𝑞) ≠ (2nd𝑞)) ∧ 𝑦 = (𝑟 ∈ (𝔼‘𝑚)((2nd𝑞) Btwn ⟨(1st𝑞), 𝑟⟩ ∧ ⟨(2nd𝑞), 𝑟⟩Cgr𝑝)))) → 𝑥 = 𝑦)
231, 22sylbir 234 . . . . 5 ((∃𝑛 ∈ ℕ ((𝑝 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ 𝑞 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ (1st𝑞) ≠ (2nd𝑞)) ∧ 𝑥 = (𝑟 ∈ (𝔼‘𝑛)((2nd𝑞) Btwn ⟨(1st𝑞), 𝑟⟩ ∧ ⟨(2nd𝑞), 𝑟⟩Cgr𝑝))) ∧ ∃𝑚 ∈ ℕ ((𝑝 ∈ ((𝔼‘𝑚) × (𝔼‘𝑚)) ∧ 𝑞 ∈ ((𝔼‘𝑚) × (𝔼‘𝑚)) ∧ (1st𝑞) ≠ (2nd𝑞)) ∧ 𝑦 = (𝑟 ∈ (𝔼‘𝑚)((2nd𝑞) Btwn ⟨(1st𝑞), 𝑟⟩ ∧ ⟨(2nd𝑞), 𝑟⟩Cgr𝑝)))) → 𝑥 = 𝑦)
2423gen2 1791 . . . 4 𝑥𝑦((∃𝑛 ∈ ℕ ((𝑝 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ 𝑞 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ (1st𝑞) ≠ (2nd𝑞)) ∧ 𝑥 = (𝑟 ∈ (𝔼‘𝑛)((2nd𝑞) Btwn ⟨(1st𝑞), 𝑟⟩ ∧ ⟨(2nd𝑞), 𝑟⟩Cgr𝑝))) ∧ ∃𝑚 ∈ ℕ ((𝑝 ∈ ((𝔼‘𝑚) × (𝔼‘𝑚)) ∧ 𝑞 ∈ ((𝔼‘𝑚) × (𝔼‘𝑚)) ∧ (1st𝑞) ≠ (2nd𝑞)) ∧ 𝑦 = (𝑟 ∈ (𝔼‘𝑚)((2nd𝑞) Btwn ⟨(1st𝑞), 𝑟⟩ ∧ ⟨(2nd𝑞), 𝑟⟩Cgr𝑝)))) → 𝑥 = 𝑦)
25 eqeq1 2731 . . . . . . . 8 (𝑥 = 𝑦 → (𝑥 = (𝑟 ∈ (𝔼‘𝑛)((2nd𝑞) Btwn ⟨(1st𝑞), 𝑟⟩ ∧ ⟨(2nd𝑞), 𝑟⟩Cgr𝑝)) ↔ 𝑦 = (𝑟 ∈ (𝔼‘𝑛)((2nd𝑞) Btwn ⟨(1st𝑞), 𝑟⟩ ∧ ⟨(2nd𝑞), 𝑟⟩Cgr𝑝))))
2625anbi2d 628 . . . . . . 7 (𝑥 = 𝑦 → (((𝑝 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ 𝑞 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ (1st𝑞) ≠ (2nd𝑞)) ∧ 𝑥 = (𝑟 ∈ (𝔼‘𝑛)((2nd𝑞) Btwn ⟨(1st𝑞), 𝑟⟩ ∧ ⟨(2nd𝑞), 𝑟⟩Cgr𝑝))) ↔ ((𝑝 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ 𝑞 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ (1st𝑞) ≠ (2nd𝑞)) ∧ 𝑦 = (𝑟 ∈ (𝔼‘𝑛)((2nd𝑞) Btwn ⟨(1st𝑞), 𝑟⟩ ∧ ⟨(2nd𝑞), 𝑟⟩Cgr𝑝)))))
2726rexbidv 3173 . . . . . 6 (𝑥 = 𝑦 → (∃𝑛 ∈ ℕ ((𝑝 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ 𝑞 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ (1st𝑞) ≠ (2nd𝑞)) ∧ 𝑥 = (𝑟 ∈ (𝔼‘𝑛)((2nd𝑞) Btwn ⟨(1st𝑞), 𝑟⟩ ∧ ⟨(2nd𝑞), 𝑟⟩Cgr𝑝))) ↔ ∃𝑛 ∈ ℕ ((𝑝 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ 𝑞 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ (1st𝑞) ≠ (2nd𝑞)) ∧ 𝑦 = (𝑟 ∈ (𝔼‘𝑛)((2nd𝑞) Btwn ⟨(1st𝑞), 𝑟⟩ ∧ ⟨(2nd𝑞), 𝑟⟩Cgr𝑝)))))
2810sqxpeqd 5704 . . . . . . . . . 10 (𝑛 = 𝑚 → ((𝔼‘𝑛) × (𝔼‘𝑛)) = ((𝔼‘𝑚) × (𝔼‘𝑚)))
2928eleq2d 2814 . . . . . . . . 9 (𝑛 = 𝑚 → (𝑝 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ↔ 𝑝 ∈ ((𝔼‘𝑚) × (𝔼‘𝑚))))
3028eleq2d 2814 . . . . . . . . 9 (𝑛 = 𝑚 → (𝑞 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ↔ 𝑞 ∈ ((𝔼‘𝑚) × (𝔼‘𝑚))))
3129, 303anbi12d 1434 . . . . . . . 8 (𝑛 = 𝑚 → ((𝑝 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ 𝑞 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ (1st𝑞) ≠ (2nd𝑞)) ↔ (𝑝 ∈ ((𝔼‘𝑚) × (𝔼‘𝑚)) ∧ 𝑞 ∈ ((𝔼‘𝑚) × (𝔼‘𝑚)) ∧ (1st𝑞) ≠ (2nd𝑞))))
3231, 12anbi12d 630 . . . . . . 7 (𝑛 = 𝑚 → (((𝑝 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ 𝑞 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ (1st𝑞) ≠ (2nd𝑞)) ∧ 𝑦 = (𝑟 ∈ (𝔼‘𝑛)((2nd𝑞) Btwn ⟨(1st𝑞), 𝑟⟩ ∧ ⟨(2nd𝑞), 𝑟⟩Cgr𝑝))) ↔ ((𝑝 ∈ ((𝔼‘𝑚) × (𝔼‘𝑚)) ∧ 𝑞 ∈ ((𝔼‘𝑚) × (𝔼‘𝑚)) ∧ (1st𝑞) ≠ (2nd𝑞)) ∧ 𝑦 = (𝑟 ∈ (𝔼‘𝑚)((2nd𝑞) Btwn ⟨(1st𝑞), 𝑟⟩ ∧ ⟨(2nd𝑞), 𝑟⟩Cgr𝑝)))))
3332cbvrexvw 3230 . . . . . 6 (∃𝑛 ∈ ℕ ((𝑝 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ 𝑞 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ (1st𝑞) ≠ (2nd𝑞)) ∧ 𝑦 = (𝑟 ∈ (𝔼‘𝑛)((2nd𝑞) Btwn ⟨(1st𝑞), 𝑟⟩ ∧ ⟨(2nd𝑞), 𝑟⟩Cgr𝑝))) ↔ ∃𝑚 ∈ ℕ ((𝑝 ∈ ((𝔼‘𝑚) × (𝔼‘𝑚)) ∧ 𝑞 ∈ ((𝔼‘𝑚) × (𝔼‘𝑚)) ∧ (1st𝑞) ≠ (2nd𝑞)) ∧ 𝑦 = (𝑟 ∈ (𝔼‘𝑚)((2nd𝑞) Btwn ⟨(1st𝑞), 𝑟⟩ ∧ ⟨(2nd𝑞), 𝑟⟩Cgr𝑝))))
3427, 33bitrdi 287 . . . . 5 (𝑥 = 𝑦 → (∃𝑛 ∈ ℕ ((𝑝 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ 𝑞 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ (1st𝑞) ≠ (2nd𝑞)) ∧ 𝑥 = (𝑟 ∈ (𝔼‘𝑛)((2nd𝑞) Btwn ⟨(1st𝑞), 𝑟⟩ ∧ ⟨(2nd𝑞), 𝑟⟩Cgr𝑝))) ↔ ∃𝑚 ∈ ℕ ((𝑝 ∈ ((𝔼‘𝑚) × (𝔼‘𝑚)) ∧ 𝑞 ∈ ((𝔼‘𝑚) × (𝔼‘𝑚)) ∧ (1st𝑞) ≠ (2nd𝑞)) ∧ 𝑦 = (𝑟 ∈ (𝔼‘𝑚)((2nd𝑞) Btwn ⟨(1st𝑞), 𝑟⟩ ∧ ⟨(2nd𝑞), 𝑟⟩Cgr𝑝)))))
3534mo4 2555 . . . 4 (∃*𝑥𝑛 ∈ ℕ ((𝑝 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ 𝑞 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ (1st𝑞) ≠ (2nd𝑞)) ∧ 𝑥 = (𝑟 ∈ (𝔼‘𝑛)((2nd𝑞) Btwn ⟨(1st𝑞), 𝑟⟩ ∧ ⟨(2nd𝑞), 𝑟⟩Cgr𝑝))) ↔ ∀𝑥𝑦((∃𝑛 ∈ ℕ ((𝑝 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ 𝑞 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ (1st𝑞) ≠ (2nd𝑞)) ∧ 𝑥 = (𝑟 ∈ (𝔼‘𝑛)((2nd𝑞) Btwn ⟨(1st𝑞), 𝑟⟩ ∧ ⟨(2nd𝑞), 𝑟⟩Cgr𝑝))) ∧ ∃𝑚 ∈ ℕ ((𝑝 ∈ ((𝔼‘𝑚) × (𝔼‘𝑚)) ∧ 𝑞 ∈ ((𝔼‘𝑚) × (𝔼‘𝑚)) ∧ (1st𝑞) ≠ (2nd𝑞)) ∧ 𝑦 = (𝑟 ∈ (𝔼‘𝑚)((2nd𝑞) Btwn ⟨(1st𝑞), 𝑟⟩ ∧ ⟨(2nd𝑞), 𝑟⟩Cgr𝑝)))) → 𝑥 = 𝑦))
3624, 35mpbir 230 . . 3 ∃*𝑥𝑛 ∈ ℕ ((𝑝 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ 𝑞 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ (1st𝑞) ≠ (2nd𝑞)) ∧ 𝑥 = (𝑟 ∈ (𝔼‘𝑛)((2nd𝑞) Btwn ⟨(1st𝑞), 𝑟⟩ ∧ ⟨(2nd𝑞), 𝑟⟩Cgr𝑝)))
3736funoprab 7535 . 2 Fun {⟨⟨𝑝, 𝑞⟩, 𝑥⟩ ∣ ∃𝑛 ∈ ℕ ((𝑝 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ 𝑞 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ (1st𝑞) ≠ (2nd𝑞)) ∧ 𝑥 = (𝑟 ∈ (𝔼‘𝑛)((2nd𝑞) Btwn ⟨(1st𝑞), 𝑟⟩ ∧ ⟨(2nd𝑞), 𝑟⟩Cgr𝑝)))}
38 df-transport 35549 . . 3 TransportTo = {⟨⟨𝑝, 𝑞⟩, 𝑥⟩ ∣ ∃𝑛 ∈ ℕ ((𝑝 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ 𝑞 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ (1st𝑞) ≠ (2nd𝑞)) ∧ 𝑥 = (𝑟 ∈ (𝔼‘𝑛)((2nd𝑞) Btwn ⟨(1st𝑞), 𝑟⟩ ∧ ⟨(2nd𝑞), 𝑟⟩Cgr𝑝)))}
3938funeqi 6568 . 2 (Fun TransportTo ↔ Fun {⟨⟨𝑝, 𝑞⟩, 𝑥⟩ ∣ ∃𝑛 ∈ ℕ ((𝑝 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ 𝑞 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ (1st𝑞) ≠ (2nd𝑞)) ∧ 𝑥 = (𝑟 ∈ (𝔼‘𝑛)((2nd𝑞) Btwn ⟨(1st𝑞), 𝑟⟩ ∧ ⟨(2nd𝑞), 𝑟⟩Cgr𝑝)))})
4037, 39mpbir 230 1 Fun TransportTo
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1085  wal 1532   = wceq 1534  wcel 2099  ∃*wmo 2527  wne 2935  wrex 3065  cop 4630   class class class wbr 5142   × cxp 5670  Fun wfun 6536  cfv 6542  crio 7369  {coprab 7415  1st c1st 7983  2nd c2nd 7984  cn 12228  𝔼cee 28673   Btwn cbtwn 28674  Cgrccgr 28675  TransportToctransport 35548
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2164  ax-ext 2698  ax-sep 5293  ax-nul 5300  ax-pow 5359  ax-pr 5423  ax-un 7732  ax-cnex 11180  ax-resscn 11181  ax-1cn 11182  ax-icn 11183  ax-addcl 11184  ax-addrcl 11185  ax-mulcl 11186  ax-mulrcl 11187  ax-mulcom 11188  ax-addass 11189  ax-mulass 11190  ax-distr 11191  ax-i2m1 11192  ax-1ne0 11193  ax-1rid 11194  ax-rnegex 11195  ax-rrecex 11196  ax-cnre 11197  ax-pre-lttri 11198  ax-pre-lttrn 11199  ax-pre-ltadd 11200  ax-pre-mulgt0 11201
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2936  df-nel 3042  df-ral 3057  df-rex 3066  df-reu 3372  df-rab 3428  df-v 3471  df-sbc 3775  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3963  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-iun 4993  df-br 5143  df-opab 5205  df-mpt 5226  df-tr 5260  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6299  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7370  df-ov 7417  df-oprab 7418  df-mpo 7419  df-om 7863  df-1st 7985  df-2nd 7986  df-frecs 8278  df-wrecs 8309  df-recs 8383  df-rdg 8422  df-er 8716  df-map 8836  df-en 8954  df-dom 8955  df-sdom 8956  df-pnf 11266  df-mnf 11267  df-xr 11268  df-ltxr 11269  df-le 11270  df-sub 11462  df-neg 11463  df-nn 12229  df-z 12575  df-uz 12839  df-fz 13503  df-ee 28676  df-transport 35549
This theorem is referenced by:  fvtransport  35551
  Copyright terms: Public domain W3C validator