Step | Hyp | Ref
| Expression |
1 | | reeanv 3285 |
. . . . . 6
⊢
(∃𝑛 ∈
ℕ ∃𝑚 ∈
ℕ (((𝑝 ∈
((𝔼‘𝑛) ×
(𝔼‘𝑛)) ∧
𝑞 ∈
((𝔼‘𝑛) ×
(𝔼‘𝑛)) ∧
(1st ‘𝑞)
≠ (2nd ‘𝑞)) ∧ 𝑥 = (℩𝑟 ∈ (𝔼‘𝑛)((2nd ‘𝑞) Btwn 〈(1st ‘𝑞), 𝑟〉 ∧ 〈(2nd
‘𝑞), 𝑟〉Cgr𝑝))) ∧ ((𝑝 ∈ ((𝔼‘𝑚) × (𝔼‘𝑚)) ∧ 𝑞 ∈ ((𝔼‘𝑚) × (𝔼‘𝑚)) ∧ (1st ‘𝑞) ≠ (2nd
‘𝑞)) ∧ 𝑦 = (℩𝑟 ∈ (𝔼‘𝑚)((2nd ‘𝑞) Btwn 〈(1st
‘𝑞), 𝑟〉 ∧
〈(2nd ‘𝑞), 𝑟〉Cgr𝑝)))) ↔ (∃𝑛 ∈ ℕ ((𝑝 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ 𝑞 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ (1st ‘𝑞) ≠ (2nd
‘𝑞)) ∧ 𝑥 = (℩𝑟 ∈ (𝔼‘𝑛)((2nd ‘𝑞) Btwn 〈(1st
‘𝑞), 𝑟〉 ∧
〈(2nd ‘𝑞), 𝑟〉Cgr𝑝))) ∧ ∃𝑚 ∈ ℕ ((𝑝 ∈ ((𝔼‘𝑚) × (𝔼‘𝑚)) ∧ 𝑞 ∈ ((𝔼‘𝑚) × (𝔼‘𝑚)) ∧ (1st ‘𝑞) ≠ (2nd
‘𝑞)) ∧ 𝑦 = (℩𝑟 ∈ (𝔼‘𝑚)((2nd ‘𝑞) Btwn 〈(1st
‘𝑞), 𝑟〉 ∧
〈(2nd ‘𝑞), 𝑟〉Cgr𝑝))))) |
2 | | simp1 1133 |
. . . . . . . . . . 11
⊢ ((𝑝 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ 𝑞 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ (1st ‘𝑞) ≠ (2nd
‘𝑞)) → 𝑝 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛))) |
3 | | simp1 1133 |
. . . . . . . . . . 11
⊢ ((𝑝 ∈ ((𝔼‘𝑚) × (𝔼‘𝑚)) ∧ 𝑞 ∈ ((𝔼‘𝑚) × (𝔼‘𝑚)) ∧ (1st ‘𝑞) ≠ (2nd
‘𝑞)) → 𝑝 ∈ ((𝔼‘𝑚) × (𝔼‘𝑚))) |
4 | 2, 3 | anim12i 615 |
. . . . . . . . . 10
⊢ (((𝑝 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ 𝑞 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ (1st ‘𝑞) ≠ (2nd
‘𝑞)) ∧ (𝑝 ∈ ((𝔼‘𝑚) × (𝔼‘𝑚)) ∧ 𝑞 ∈ ((𝔼‘𝑚) × (𝔼‘𝑚)) ∧ (1st ‘𝑞) ≠ (2nd
‘𝑞))) → (𝑝 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ 𝑝 ∈ ((𝔼‘𝑚) × (𝔼‘𝑚)))) |
5 | 4 | anim1i 617 |
. . . . . . . . 9
⊢ ((((𝑝 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ 𝑞 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ (1st ‘𝑞) ≠ (2nd
‘𝑞)) ∧ (𝑝 ∈ ((𝔼‘𝑚) × (𝔼‘𝑚)) ∧ 𝑞 ∈ ((𝔼‘𝑚) × (𝔼‘𝑚)) ∧ (1st ‘𝑞) ≠ (2nd
‘𝑞))) ∧ (𝑥 = (℩𝑟 ∈ (𝔼‘𝑛)((2nd ‘𝑞) Btwn 〈(1st
‘𝑞), 𝑟〉 ∧
〈(2nd ‘𝑞), 𝑟〉Cgr𝑝)) ∧ 𝑦 = (℩𝑟 ∈ (𝔼‘𝑚)((2nd ‘𝑞) Btwn 〈(1st ‘𝑞), 𝑟〉 ∧ 〈(2nd
‘𝑞), 𝑟〉Cgr𝑝)))) → ((𝑝 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ 𝑝 ∈ ((𝔼‘𝑚) × (𝔼‘𝑚))) ∧ (𝑥 = (℩𝑟 ∈ (𝔼‘𝑛)((2nd ‘𝑞) Btwn 〈(1st ‘𝑞), 𝑟〉 ∧ 〈(2nd
‘𝑞), 𝑟〉Cgr𝑝)) ∧ 𝑦 = (℩𝑟 ∈ (𝔼‘𝑚)((2nd ‘𝑞) Btwn 〈(1st ‘𝑞), 𝑟〉 ∧ 〈(2nd
‘𝑞), 𝑟〉Cgr𝑝))))) |
6 | 5 | an4s 659 |
. . . . . . . 8
⊢ ((((𝑝 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ 𝑞 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ (1st ‘𝑞) ≠ (2nd
‘𝑞)) ∧ 𝑥 = (℩𝑟 ∈ (𝔼‘𝑛)((2nd ‘𝑞) Btwn 〈(1st
‘𝑞), 𝑟〉 ∧
〈(2nd ‘𝑞), 𝑟〉Cgr𝑝))) ∧ ((𝑝 ∈ ((𝔼‘𝑚) × (𝔼‘𝑚)) ∧ 𝑞 ∈ ((𝔼‘𝑚) × (𝔼‘𝑚)) ∧ (1st ‘𝑞) ≠ (2nd
‘𝑞)) ∧ 𝑦 = (℩𝑟 ∈ (𝔼‘𝑚)((2nd ‘𝑞) Btwn 〈(1st
‘𝑞), 𝑟〉 ∧
〈(2nd ‘𝑞), 𝑟〉Cgr𝑝)))) → ((𝑝 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ 𝑝 ∈ ((𝔼‘𝑚) × (𝔼‘𝑚))) ∧ (𝑥 = (℩𝑟 ∈ (𝔼‘𝑛)((2nd ‘𝑞) Btwn 〈(1st ‘𝑞), 𝑟〉 ∧ 〈(2nd
‘𝑞), 𝑟〉Cgr𝑝)) ∧ 𝑦 = (℩𝑟 ∈ (𝔼‘𝑚)((2nd ‘𝑞) Btwn 〈(1st ‘𝑞), 𝑟〉 ∧ 〈(2nd
‘𝑞), 𝑟〉Cgr𝑝))))) |
7 | | xp1st 7730 |
. . . . . . . . . 10
⊢ (𝑝 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) → (1st
‘𝑝) ∈
(𝔼‘𝑛)) |
8 | | xp1st 7730 |
. . . . . . . . . 10
⊢ (𝑝 ∈ ((𝔼‘𝑚) × (𝔼‘𝑚)) → (1st
‘𝑝) ∈
(𝔼‘𝑚)) |
9 | | axdimuniq 26811 |
. . . . . . . . . . . . 13
⊢ (((𝑛 ∈ ℕ ∧
(1st ‘𝑝)
∈ (𝔼‘𝑛))
∧ (𝑚 ∈ ℕ
∧ (1st ‘𝑝) ∈ (𝔼‘𝑚))) → 𝑛 = 𝑚) |
10 | | fveq2 6662 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑛 = 𝑚 → (𝔼‘𝑛) = (𝔼‘𝑚)) |
11 | 10 | riotaeqdv 7114 |
. . . . . . . . . . . . . . . 16
⊢ (𝑛 = 𝑚 → (℩𝑟 ∈ (𝔼‘𝑛)((2nd ‘𝑞) Btwn 〈(1st ‘𝑞), 𝑟〉 ∧ 〈(2nd
‘𝑞), 𝑟〉Cgr𝑝)) = (℩𝑟 ∈ (𝔼‘𝑚)((2nd ‘𝑞) Btwn 〈(1st ‘𝑞), 𝑟〉 ∧ 〈(2nd
‘𝑞), 𝑟〉Cgr𝑝))) |
12 | 11 | eqeq2d 2769 |
. . . . . . . . . . . . . . 15
⊢ (𝑛 = 𝑚 → (𝑦 = (℩𝑟 ∈ (𝔼‘𝑛)((2nd ‘𝑞) Btwn 〈(1st ‘𝑞), 𝑟〉 ∧ 〈(2nd
‘𝑞), 𝑟〉Cgr𝑝)) ↔ 𝑦 = (℩𝑟 ∈ (𝔼‘𝑚)((2nd ‘𝑞) Btwn 〈(1st ‘𝑞), 𝑟〉 ∧ 〈(2nd
‘𝑞), 𝑟〉Cgr𝑝)))) |
13 | 12 | anbi2d 631 |
. . . . . . . . . . . . . 14
⊢ (𝑛 = 𝑚 → ((𝑥 = (℩𝑟 ∈ (𝔼‘𝑛)((2nd ‘𝑞) Btwn 〈(1st ‘𝑞), 𝑟〉 ∧ 〈(2nd
‘𝑞), 𝑟〉Cgr𝑝)) ∧ 𝑦 = (℩𝑟 ∈ (𝔼‘𝑛)((2nd ‘𝑞) Btwn 〈(1st ‘𝑞), 𝑟〉 ∧ 〈(2nd
‘𝑞), 𝑟〉Cgr𝑝))) ↔ (𝑥 = (℩𝑟 ∈ (𝔼‘𝑛)((2nd ‘𝑞) Btwn 〈(1st ‘𝑞), 𝑟〉 ∧ 〈(2nd
‘𝑞), 𝑟〉Cgr𝑝)) ∧ 𝑦 = (℩𝑟 ∈ (𝔼‘𝑚)((2nd ‘𝑞) Btwn 〈(1st ‘𝑞), 𝑟〉 ∧ 〈(2nd
‘𝑞), 𝑟〉Cgr𝑝))))) |
14 | | eqtr3 2780 |
. . . . . . . . . . . . . 14
⊢ ((𝑥 = (℩𝑟 ∈ (𝔼‘𝑛)((2nd ‘𝑞) Btwn 〈(1st
‘𝑞), 𝑟〉 ∧
〈(2nd ‘𝑞), 𝑟〉Cgr𝑝)) ∧ 𝑦 = (℩𝑟 ∈ (𝔼‘𝑛)((2nd ‘𝑞) Btwn 〈(1st ‘𝑞), 𝑟〉 ∧ 〈(2nd
‘𝑞), 𝑟〉Cgr𝑝))) → 𝑥 = 𝑦) |
15 | 13, 14 | syl6bir 257 |
. . . . . . . . . . . . 13
⊢ (𝑛 = 𝑚 → ((𝑥 = (℩𝑟 ∈ (𝔼‘𝑛)((2nd ‘𝑞) Btwn 〈(1st ‘𝑞), 𝑟〉 ∧ 〈(2nd
‘𝑞), 𝑟〉Cgr𝑝)) ∧ 𝑦 = (℩𝑟 ∈ (𝔼‘𝑚)((2nd ‘𝑞) Btwn 〈(1st ‘𝑞), 𝑟〉 ∧ 〈(2nd
‘𝑞), 𝑟〉Cgr𝑝))) → 𝑥 = 𝑦)) |
16 | 9, 15 | syl 17 |
. . . . . . . . . . . 12
⊢ (((𝑛 ∈ ℕ ∧
(1st ‘𝑝)
∈ (𝔼‘𝑛))
∧ (𝑚 ∈ ℕ
∧ (1st ‘𝑝) ∈ (𝔼‘𝑚))) → ((𝑥 = (℩𝑟 ∈ (𝔼‘𝑛)((2nd ‘𝑞) Btwn 〈(1st ‘𝑞), 𝑟〉 ∧ 〈(2nd
‘𝑞), 𝑟〉Cgr𝑝)) ∧ 𝑦 = (℩𝑟 ∈ (𝔼‘𝑚)((2nd ‘𝑞) Btwn 〈(1st ‘𝑞), 𝑟〉 ∧ 〈(2nd
‘𝑞), 𝑟〉Cgr𝑝))) → 𝑥 = 𝑦)) |
17 | 16 | an4s 659 |
. . . . . . . . . . 11
⊢ (((𝑛 ∈ ℕ ∧ 𝑚 ∈ ℕ) ∧
((1st ‘𝑝)
∈ (𝔼‘𝑛)
∧ (1st ‘𝑝) ∈ (𝔼‘𝑚))) → ((𝑥 = (℩𝑟 ∈ (𝔼‘𝑛)((2nd ‘𝑞) Btwn 〈(1st ‘𝑞), 𝑟〉 ∧ 〈(2nd
‘𝑞), 𝑟〉Cgr𝑝)) ∧ 𝑦 = (℩𝑟 ∈ (𝔼‘𝑚)((2nd ‘𝑞) Btwn 〈(1st ‘𝑞), 𝑟〉 ∧ 〈(2nd
‘𝑞), 𝑟〉Cgr𝑝))) → 𝑥 = 𝑦)) |
18 | 17 | ex 416 |
. . . . . . . . . 10
⊢ ((𝑛 ∈ ℕ ∧ 𝑚 ∈ ℕ) →
(((1st ‘𝑝)
∈ (𝔼‘𝑛)
∧ (1st ‘𝑝) ∈ (𝔼‘𝑚)) → ((𝑥 = (℩𝑟 ∈ (𝔼‘𝑛)((2nd ‘𝑞) Btwn 〈(1st ‘𝑞), 𝑟〉 ∧ 〈(2nd
‘𝑞), 𝑟〉Cgr𝑝)) ∧ 𝑦 = (℩𝑟 ∈ (𝔼‘𝑚)((2nd ‘𝑞) Btwn 〈(1st ‘𝑞), 𝑟〉 ∧ 〈(2nd
‘𝑞), 𝑟〉Cgr𝑝))) → 𝑥 = 𝑦))) |
19 | 7, 8, 18 | syl2ani 609 |
. . . . . . . . 9
⊢ ((𝑛 ∈ ℕ ∧ 𝑚 ∈ ℕ) → ((𝑝 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ 𝑝 ∈ ((𝔼‘𝑚) × (𝔼‘𝑚))) → ((𝑥 = (℩𝑟 ∈ (𝔼‘𝑛)((2nd ‘𝑞) Btwn 〈(1st ‘𝑞), 𝑟〉 ∧ 〈(2nd
‘𝑞), 𝑟〉Cgr𝑝)) ∧ 𝑦 = (℩𝑟 ∈ (𝔼‘𝑚)((2nd ‘𝑞) Btwn 〈(1st ‘𝑞), 𝑟〉 ∧ 〈(2nd
‘𝑞), 𝑟〉Cgr𝑝))) → 𝑥 = 𝑦))) |
20 | 19 | impd 414 |
. . . . . . . 8
⊢ ((𝑛 ∈ ℕ ∧ 𝑚 ∈ ℕ) → (((𝑝 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ 𝑝 ∈ ((𝔼‘𝑚) × (𝔼‘𝑚))) ∧ (𝑥 = (℩𝑟 ∈ (𝔼‘𝑛)((2nd ‘𝑞) Btwn 〈(1st ‘𝑞), 𝑟〉 ∧ 〈(2nd
‘𝑞), 𝑟〉Cgr𝑝)) ∧ 𝑦 = (℩𝑟 ∈ (𝔼‘𝑚)((2nd ‘𝑞) Btwn 〈(1st ‘𝑞), 𝑟〉 ∧ 〈(2nd
‘𝑞), 𝑟〉Cgr𝑝)))) → 𝑥 = 𝑦)) |
21 | 6, 20 | syl5 34 |
. . . . . . 7
⊢ ((𝑛 ∈ ℕ ∧ 𝑚 ∈ ℕ) →
((((𝑝 ∈
((𝔼‘𝑛) ×
(𝔼‘𝑛)) ∧
𝑞 ∈
((𝔼‘𝑛) ×
(𝔼‘𝑛)) ∧
(1st ‘𝑞)
≠ (2nd ‘𝑞)) ∧ 𝑥 = (℩𝑟 ∈ (𝔼‘𝑛)((2nd ‘𝑞) Btwn 〈(1st ‘𝑞), 𝑟〉 ∧ 〈(2nd
‘𝑞), 𝑟〉Cgr𝑝))) ∧ ((𝑝 ∈ ((𝔼‘𝑚) × (𝔼‘𝑚)) ∧ 𝑞 ∈ ((𝔼‘𝑚) × (𝔼‘𝑚)) ∧ (1st ‘𝑞) ≠ (2nd
‘𝑞)) ∧ 𝑦 = (℩𝑟 ∈ (𝔼‘𝑚)((2nd ‘𝑞) Btwn 〈(1st
‘𝑞), 𝑟〉 ∧
〈(2nd ‘𝑞), 𝑟〉Cgr𝑝)))) → 𝑥 = 𝑦)) |
22 | 21 | rexlimivv 3216 |
. . . . . 6
⊢
(∃𝑛 ∈
ℕ ∃𝑚 ∈
ℕ (((𝑝 ∈
((𝔼‘𝑛) ×
(𝔼‘𝑛)) ∧
𝑞 ∈
((𝔼‘𝑛) ×
(𝔼‘𝑛)) ∧
(1st ‘𝑞)
≠ (2nd ‘𝑞)) ∧ 𝑥 = (℩𝑟 ∈ (𝔼‘𝑛)((2nd ‘𝑞) Btwn 〈(1st ‘𝑞), 𝑟〉 ∧ 〈(2nd
‘𝑞), 𝑟〉Cgr𝑝))) ∧ ((𝑝 ∈ ((𝔼‘𝑚) × (𝔼‘𝑚)) ∧ 𝑞 ∈ ((𝔼‘𝑚) × (𝔼‘𝑚)) ∧ (1st ‘𝑞) ≠ (2nd
‘𝑞)) ∧ 𝑦 = (℩𝑟 ∈ (𝔼‘𝑚)((2nd ‘𝑞) Btwn 〈(1st
‘𝑞), 𝑟〉 ∧
〈(2nd ‘𝑞), 𝑟〉Cgr𝑝)))) → 𝑥 = 𝑦) |
23 | 1, 22 | sylbir 238 |
. . . . 5
⊢
((∃𝑛 ∈
ℕ ((𝑝 ∈
((𝔼‘𝑛) ×
(𝔼‘𝑛)) ∧
𝑞 ∈
((𝔼‘𝑛) ×
(𝔼‘𝑛)) ∧
(1st ‘𝑞)
≠ (2nd ‘𝑞)) ∧ 𝑥 = (℩𝑟 ∈ (𝔼‘𝑛)((2nd ‘𝑞) Btwn 〈(1st ‘𝑞), 𝑟〉 ∧ 〈(2nd
‘𝑞), 𝑟〉Cgr𝑝))) ∧ ∃𝑚 ∈ ℕ ((𝑝 ∈ ((𝔼‘𝑚) × (𝔼‘𝑚)) ∧ 𝑞 ∈ ((𝔼‘𝑚) × (𝔼‘𝑚)) ∧ (1st ‘𝑞) ≠ (2nd
‘𝑞)) ∧ 𝑦 = (℩𝑟 ∈ (𝔼‘𝑚)((2nd ‘𝑞) Btwn 〈(1st
‘𝑞), 𝑟〉 ∧
〈(2nd ‘𝑞), 𝑟〉Cgr𝑝)))) → 𝑥 = 𝑦) |
24 | 23 | gen2 1798 |
. . . 4
⊢
∀𝑥∀𝑦((∃𝑛 ∈ ℕ ((𝑝 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ 𝑞 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ (1st ‘𝑞) ≠ (2nd
‘𝑞)) ∧ 𝑥 = (℩𝑟 ∈ (𝔼‘𝑛)((2nd ‘𝑞) Btwn 〈(1st
‘𝑞), 𝑟〉 ∧
〈(2nd ‘𝑞), 𝑟〉Cgr𝑝))) ∧ ∃𝑚 ∈ ℕ ((𝑝 ∈ ((𝔼‘𝑚) × (𝔼‘𝑚)) ∧ 𝑞 ∈ ((𝔼‘𝑚) × (𝔼‘𝑚)) ∧ (1st ‘𝑞) ≠ (2nd
‘𝑞)) ∧ 𝑦 = (℩𝑟 ∈ (𝔼‘𝑚)((2nd ‘𝑞) Btwn 〈(1st
‘𝑞), 𝑟〉 ∧
〈(2nd ‘𝑞), 𝑟〉Cgr𝑝)))) → 𝑥 = 𝑦) |
25 | | eqeq1 2762 |
. . . . . . . 8
⊢ (𝑥 = 𝑦 → (𝑥 = (℩𝑟 ∈ (𝔼‘𝑛)((2nd ‘𝑞) Btwn 〈(1st ‘𝑞), 𝑟〉 ∧ 〈(2nd
‘𝑞), 𝑟〉Cgr𝑝)) ↔ 𝑦 = (℩𝑟 ∈ (𝔼‘𝑛)((2nd ‘𝑞) Btwn 〈(1st ‘𝑞), 𝑟〉 ∧ 〈(2nd
‘𝑞), 𝑟〉Cgr𝑝)))) |
26 | 25 | anbi2d 631 |
. . . . . . 7
⊢ (𝑥 = 𝑦 → (((𝑝 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ 𝑞 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ (1st ‘𝑞) ≠ (2nd
‘𝑞)) ∧ 𝑥 = (℩𝑟 ∈ (𝔼‘𝑛)((2nd ‘𝑞) Btwn 〈(1st
‘𝑞), 𝑟〉 ∧
〈(2nd ‘𝑞), 𝑟〉Cgr𝑝))) ↔ ((𝑝 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ 𝑞 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ (1st ‘𝑞) ≠ (2nd
‘𝑞)) ∧ 𝑦 = (℩𝑟 ∈ (𝔼‘𝑛)((2nd ‘𝑞) Btwn 〈(1st
‘𝑞), 𝑟〉 ∧
〈(2nd ‘𝑞), 𝑟〉Cgr𝑝))))) |
27 | 26 | rexbidv 3221 |
. . . . . 6
⊢ (𝑥 = 𝑦 → (∃𝑛 ∈ ℕ ((𝑝 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ 𝑞 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ (1st ‘𝑞) ≠ (2nd
‘𝑞)) ∧ 𝑥 = (℩𝑟 ∈ (𝔼‘𝑛)((2nd ‘𝑞) Btwn 〈(1st
‘𝑞), 𝑟〉 ∧
〈(2nd ‘𝑞), 𝑟〉Cgr𝑝))) ↔ ∃𝑛 ∈ ℕ ((𝑝 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ 𝑞 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ (1st ‘𝑞) ≠ (2nd
‘𝑞)) ∧ 𝑦 = (℩𝑟 ∈ (𝔼‘𝑛)((2nd ‘𝑞) Btwn 〈(1st
‘𝑞), 𝑟〉 ∧
〈(2nd ‘𝑞), 𝑟〉Cgr𝑝))))) |
28 | 10 | sqxpeqd 5559 |
. . . . . . . . . 10
⊢ (𝑛 = 𝑚 → ((𝔼‘𝑛) × (𝔼‘𝑛)) = ((𝔼‘𝑚) × (𝔼‘𝑚))) |
29 | 28 | eleq2d 2837 |
. . . . . . . . 9
⊢ (𝑛 = 𝑚 → (𝑝 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ↔ 𝑝 ∈ ((𝔼‘𝑚) × (𝔼‘𝑚)))) |
30 | 28 | eleq2d 2837 |
. . . . . . . . 9
⊢ (𝑛 = 𝑚 → (𝑞 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ↔ 𝑞 ∈ ((𝔼‘𝑚) × (𝔼‘𝑚)))) |
31 | 29, 30 | 3anbi12d 1434 |
. . . . . . . 8
⊢ (𝑛 = 𝑚 → ((𝑝 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ 𝑞 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ (1st ‘𝑞) ≠ (2nd
‘𝑞)) ↔ (𝑝 ∈ ((𝔼‘𝑚) × (𝔼‘𝑚)) ∧ 𝑞 ∈ ((𝔼‘𝑚) × (𝔼‘𝑚)) ∧ (1st ‘𝑞) ≠ (2nd
‘𝑞)))) |
32 | 31, 12 | anbi12d 633 |
. . . . . . 7
⊢ (𝑛 = 𝑚 → (((𝑝 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ 𝑞 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ (1st ‘𝑞) ≠ (2nd
‘𝑞)) ∧ 𝑦 = (℩𝑟 ∈ (𝔼‘𝑛)((2nd ‘𝑞) Btwn 〈(1st
‘𝑞), 𝑟〉 ∧
〈(2nd ‘𝑞), 𝑟〉Cgr𝑝))) ↔ ((𝑝 ∈ ((𝔼‘𝑚) × (𝔼‘𝑚)) ∧ 𝑞 ∈ ((𝔼‘𝑚) × (𝔼‘𝑚)) ∧ (1st ‘𝑞) ≠ (2nd
‘𝑞)) ∧ 𝑦 = (℩𝑟 ∈ (𝔼‘𝑚)((2nd ‘𝑞) Btwn 〈(1st
‘𝑞), 𝑟〉 ∧
〈(2nd ‘𝑞), 𝑟〉Cgr𝑝))))) |
33 | 32 | cbvrexvw 3362 |
. . . . . 6
⊢
(∃𝑛 ∈
ℕ ((𝑝 ∈
((𝔼‘𝑛) ×
(𝔼‘𝑛)) ∧
𝑞 ∈
((𝔼‘𝑛) ×
(𝔼‘𝑛)) ∧
(1st ‘𝑞)
≠ (2nd ‘𝑞)) ∧ 𝑦 = (℩𝑟 ∈ (𝔼‘𝑛)((2nd ‘𝑞) Btwn 〈(1st ‘𝑞), 𝑟〉 ∧ 〈(2nd
‘𝑞), 𝑟〉Cgr𝑝))) ↔ ∃𝑚 ∈ ℕ ((𝑝 ∈ ((𝔼‘𝑚) × (𝔼‘𝑚)) ∧ 𝑞 ∈ ((𝔼‘𝑚) × (𝔼‘𝑚)) ∧ (1st ‘𝑞) ≠ (2nd
‘𝑞)) ∧ 𝑦 = (℩𝑟 ∈ (𝔼‘𝑚)((2nd ‘𝑞) Btwn 〈(1st
‘𝑞), 𝑟〉 ∧
〈(2nd ‘𝑞), 𝑟〉Cgr𝑝)))) |
34 | 27, 33 | bitrdi 290 |
. . . . 5
⊢ (𝑥 = 𝑦 → (∃𝑛 ∈ ℕ ((𝑝 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ 𝑞 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ (1st ‘𝑞) ≠ (2nd
‘𝑞)) ∧ 𝑥 = (℩𝑟 ∈ (𝔼‘𝑛)((2nd ‘𝑞) Btwn 〈(1st
‘𝑞), 𝑟〉 ∧
〈(2nd ‘𝑞), 𝑟〉Cgr𝑝))) ↔ ∃𝑚 ∈ ℕ ((𝑝 ∈ ((𝔼‘𝑚) × (𝔼‘𝑚)) ∧ 𝑞 ∈ ((𝔼‘𝑚) × (𝔼‘𝑚)) ∧ (1st ‘𝑞) ≠ (2nd
‘𝑞)) ∧ 𝑦 = (℩𝑟 ∈ (𝔼‘𝑚)((2nd ‘𝑞) Btwn 〈(1st
‘𝑞), 𝑟〉 ∧
〈(2nd ‘𝑞), 𝑟〉Cgr𝑝))))) |
35 | 34 | mo4 2584 |
. . . 4
⊢
(∃*𝑥∃𝑛 ∈ ℕ ((𝑝 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ 𝑞 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ (1st ‘𝑞) ≠ (2nd
‘𝑞)) ∧ 𝑥 = (℩𝑟 ∈ (𝔼‘𝑛)((2nd ‘𝑞) Btwn 〈(1st
‘𝑞), 𝑟〉 ∧
〈(2nd ‘𝑞), 𝑟〉Cgr𝑝))) ↔ ∀𝑥∀𝑦((∃𝑛 ∈ ℕ ((𝑝 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ 𝑞 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ (1st ‘𝑞) ≠ (2nd
‘𝑞)) ∧ 𝑥 = (℩𝑟 ∈ (𝔼‘𝑛)((2nd ‘𝑞) Btwn 〈(1st
‘𝑞), 𝑟〉 ∧
〈(2nd ‘𝑞), 𝑟〉Cgr𝑝))) ∧ ∃𝑚 ∈ ℕ ((𝑝 ∈ ((𝔼‘𝑚) × (𝔼‘𝑚)) ∧ 𝑞 ∈ ((𝔼‘𝑚) × (𝔼‘𝑚)) ∧ (1st ‘𝑞) ≠ (2nd
‘𝑞)) ∧ 𝑦 = (℩𝑟 ∈ (𝔼‘𝑚)((2nd ‘𝑞) Btwn 〈(1st
‘𝑞), 𝑟〉 ∧
〈(2nd ‘𝑞), 𝑟〉Cgr𝑝)))) → 𝑥 = 𝑦)) |
36 | 24, 35 | mpbir 234 |
. . 3
⊢
∃*𝑥∃𝑛 ∈ ℕ ((𝑝 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ 𝑞 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ (1st ‘𝑞) ≠ (2nd
‘𝑞)) ∧ 𝑥 = (℩𝑟 ∈ (𝔼‘𝑛)((2nd ‘𝑞) Btwn 〈(1st
‘𝑞), 𝑟〉 ∧
〈(2nd ‘𝑞), 𝑟〉Cgr𝑝))) |
37 | 36 | funoprab 7273 |
. 2
⊢ Fun
{〈〈𝑝, 𝑞〉, 𝑥〉 ∣ ∃𝑛 ∈ ℕ ((𝑝 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ 𝑞 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ (1st ‘𝑞) ≠ (2nd
‘𝑞)) ∧ 𝑥 = (℩𝑟 ∈ (𝔼‘𝑛)((2nd ‘𝑞) Btwn 〈(1st
‘𝑞), 𝑟〉 ∧
〈(2nd ‘𝑞), 𝑟〉Cgr𝑝)))} |
38 | | df-transport 33907 |
. . 3
⊢
TransportTo = {〈〈𝑝, 𝑞〉, 𝑥〉 ∣ ∃𝑛 ∈ ℕ ((𝑝 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ 𝑞 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ (1st ‘𝑞) ≠ (2nd
‘𝑞)) ∧ 𝑥 = (℩𝑟 ∈ (𝔼‘𝑛)((2nd ‘𝑞) Btwn 〈(1st
‘𝑞), 𝑟〉 ∧
〈(2nd ‘𝑞), 𝑟〉Cgr𝑝)))} |
39 | 38 | funeqi 6360 |
. 2
⊢ (Fun
TransportTo ↔ Fun {〈〈𝑝, 𝑞〉, 𝑥〉 ∣ ∃𝑛 ∈ ℕ ((𝑝 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ 𝑞 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ (1st ‘𝑞) ≠ (2nd
‘𝑞)) ∧ 𝑥 = (℩𝑟 ∈ (𝔼‘𝑛)((2nd ‘𝑞) Btwn 〈(1st
‘𝑞), 𝑟〉 ∧
〈(2nd ‘𝑞), 𝑟〉Cgr𝑝)))}) |
40 | 37, 39 | mpbir 234 |
1
⊢ Fun
TransportTo |