Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  funtransport Structured version   Visualization version   GIF version

Theorem funtransport 36026
Description: The TransportTo relationship is a function. (Contributed by Scott Fenton, 18-Oct-2013.) (Revised by Mario Carneiro, 19-Apr-2014.)
Assertion
Ref Expression
funtransport Fun TransportTo

Proof of Theorem funtransport
Dummy variables 𝑚 𝑛 𝑝 𝑞 𝑟 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 reeanv 3210 . . . . . 6 (∃𝑛 ∈ ℕ ∃𝑚 ∈ ℕ (((𝑝 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ 𝑞 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ (1st𝑞) ≠ (2nd𝑞)) ∧ 𝑥 = (𝑟 ∈ (𝔼‘𝑛)((2nd𝑞) Btwn ⟨(1st𝑞), 𝑟⟩ ∧ ⟨(2nd𝑞), 𝑟⟩Cgr𝑝))) ∧ ((𝑝 ∈ ((𝔼‘𝑚) × (𝔼‘𝑚)) ∧ 𝑞 ∈ ((𝔼‘𝑚) × (𝔼‘𝑚)) ∧ (1st𝑞) ≠ (2nd𝑞)) ∧ 𝑦 = (𝑟 ∈ (𝔼‘𝑚)((2nd𝑞) Btwn ⟨(1st𝑞), 𝑟⟩ ∧ ⟨(2nd𝑞), 𝑟⟩Cgr𝑝)))) ↔ (∃𝑛 ∈ ℕ ((𝑝 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ 𝑞 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ (1st𝑞) ≠ (2nd𝑞)) ∧ 𝑥 = (𝑟 ∈ (𝔼‘𝑛)((2nd𝑞) Btwn ⟨(1st𝑞), 𝑟⟩ ∧ ⟨(2nd𝑞), 𝑟⟩Cgr𝑝))) ∧ ∃𝑚 ∈ ℕ ((𝑝 ∈ ((𝔼‘𝑚) × (𝔼‘𝑚)) ∧ 𝑞 ∈ ((𝔼‘𝑚) × (𝔼‘𝑚)) ∧ (1st𝑞) ≠ (2nd𝑞)) ∧ 𝑦 = (𝑟 ∈ (𝔼‘𝑚)((2nd𝑞) Btwn ⟨(1st𝑞), 𝑟⟩ ∧ ⟨(2nd𝑞), 𝑟⟩Cgr𝑝)))))
2 simp1 1136 . . . . . . . . . . 11 ((𝑝 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ 𝑞 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ (1st𝑞) ≠ (2nd𝑞)) → 𝑝 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)))
3 simp1 1136 . . . . . . . . . . 11 ((𝑝 ∈ ((𝔼‘𝑚) × (𝔼‘𝑚)) ∧ 𝑞 ∈ ((𝔼‘𝑚) × (𝔼‘𝑚)) ∧ (1st𝑞) ≠ (2nd𝑞)) → 𝑝 ∈ ((𝔼‘𝑚) × (𝔼‘𝑚)))
42, 3anim12i 613 . . . . . . . . . 10 (((𝑝 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ 𝑞 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ (1st𝑞) ≠ (2nd𝑞)) ∧ (𝑝 ∈ ((𝔼‘𝑚) × (𝔼‘𝑚)) ∧ 𝑞 ∈ ((𝔼‘𝑚) × (𝔼‘𝑚)) ∧ (1st𝑞) ≠ (2nd𝑞))) → (𝑝 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ 𝑝 ∈ ((𝔼‘𝑚) × (𝔼‘𝑚))))
54anim1i 615 . . . . . . . . 9 ((((𝑝 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ 𝑞 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ (1st𝑞) ≠ (2nd𝑞)) ∧ (𝑝 ∈ ((𝔼‘𝑚) × (𝔼‘𝑚)) ∧ 𝑞 ∈ ((𝔼‘𝑚) × (𝔼‘𝑚)) ∧ (1st𝑞) ≠ (2nd𝑞))) ∧ (𝑥 = (𝑟 ∈ (𝔼‘𝑛)((2nd𝑞) Btwn ⟨(1st𝑞), 𝑟⟩ ∧ ⟨(2nd𝑞), 𝑟⟩Cgr𝑝)) ∧ 𝑦 = (𝑟 ∈ (𝔼‘𝑚)((2nd𝑞) Btwn ⟨(1st𝑞), 𝑟⟩ ∧ ⟨(2nd𝑞), 𝑟⟩Cgr𝑝)))) → ((𝑝 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ 𝑝 ∈ ((𝔼‘𝑚) × (𝔼‘𝑚))) ∧ (𝑥 = (𝑟 ∈ (𝔼‘𝑛)((2nd𝑞) Btwn ⟨(1st𝑞), 𝑟⟩ ∧ ⟨(2nd𝑞), 𝑟⟩Cgr𝑝)) ∧ 𝑦 = (𝑟 ∈ (𝔼‘𝑚)((2nd𝑞) Btwn ⟨(1st𝑞), 𝑟⟩ ∧ ⟨(2nd𝑞), 𝑟⟩Cgr𝑝)))))
65an4s 660 . . . . . . . 8 ((((𝑝 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ 𝑞 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ (1st𝑞) ≠ (2nd𝑞)) ∧ 𝑥 = (𝑟 ∈ (𝔼‘𝑛)((2nd𝑞) Btwn ⟨(1st𝑞), 𝑟⟩ ∧ ⟨(2nd𝑞), 𝑟⟩Cgr𝑝))) ∧ ((𝑝 ∈ ((𝔼‘𝑚) × (𝔼‘𝑚)) ∧ 𝑞 ∈ ((𝔼‘𝑚) × (𝔼‘𝑚)) ∧ (1st𝑞) ≠ (2nd𝑞)) ∧ 𝑦 = (𝑟 ∈ (𝔼‘𝑚)((2nd𝑞) Btwn ⟨(1st𝑞), 𝑟⟩ ∧ ⟨(2nd𝑞), 𝑟⟩Cgr𝑝)))) → ((𝑝 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ 𝑝 ∈ ((𝔼‘𝑚) × (𝔼‘𝑚))) ∧ (𝑥 = (𝑟 ∈ (𝔼‘𝑛)((2nd𝑞) Btwn ⟨(1st𝑞), 𝑟⟩ ∧ ⟨(2nd𝑞), 𝑟⟩Cgr𝑝)) ∧ 𝑦 = (𝑟 ∈ (𝔼‘𝑚)((2nd𝑞) Btwn ⟨(1st𝑞), 𝑟⟩ ∧ ⟨(2nd𝑞), 𝑟⟩Cgr𝑝)))))
7 xp1st 8003 . . . . . . . . . 10 (𝑝 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) → (1st𝑝) ∈ (𝔼‘𝑛))
8 xp1st 8003 . . . . . . . . . 10 (𝑝 ∈ ((𝔼‘𝑚) × (𝔼‘𝑚)) → (1st𝑝) ∈ (𝔼‘𝑚))
9 axdimuniq 28847 . . . . . . . . . . . . 13 (((𝑛 ∈ ℕ ∧ (1st𝑝) ∈ (𝔼‘𝑛)) ∧ (𝑚 ∈ ℕ ∧ (1st𝑝) ∈ (𝔼‘𝑚))) → 𝑛 = 𝑚)
10 fveq2 6861 . . . . . . . . . . . . . . . . 17 (𝑛 = 𝑚 → (𝔼‘𝑛) = (𝔼‘𝑚))
1110riotaeqdv 7348 . . . . . . . . . . . . . . . 16 (𝑛 = 𝑚 → (𝑟 ∈ (𝔼‘𝑛)((2nd𝑞) Btwn ⟨(1st𝑞), 𝑟⟩ ∧ ⟨(2nd𝑞), 𝑟⟩Cgr𝑝)) = (𝑟 ∈ (𝔼‘𝑚)((2nd𝑞) Btwn ⟨(1st𝑞), 𝑟⟩ ∧ ⟨(2nd𝑞), 𝑟⟩Cgr𝑝)))
1211eqeq2d 2741 . . . . . . . . . . . . . . 15 (𝑛 = 𝑚 → (𝑦 = (𝑟 ∈ (𝔼‘𝑛)((2nd𝑞) Btwn ⟨(1st𝑞), 𝑟⟩ ∧ ⟨(2nd𝑞), 𝑟⟩Cgr𝑝)) ↔ 𝑦 = (𝑟 ∈ (𝔼‘𝑚)((2nd𝑞) Btwn ⟨(1st𝑞), 𝑟⟩ ∧ ⟨(2nd𝑞), 𝑟⟩Cgr𝑝))))
1312anbi2d 630 . . . . . . . . . . . . . 14 (𝑛 = 𝑚 → ((𝑥 = (𝑟 ∈ (𝔼‘𝑛)((2nd𝑞) Btwn ⟨(1st𝑞), 𝑟⟩ ∧ ⟨(2nd𝑞), 𝑟⟩Cgr𝑝)) ∧ 𝑦 = (𝑟 ∈ (𝔼‘𝑛)((2nd𝑞) Btwn ⟨(1st𝑞), 𝑟⟩ ∧ ⟨(2nd𝑞), 𝑟⟩Cgr𝑝))) ↔ (𝑥 = (𝑟 ∈ (𝔼‘𝑛)((2nd𝑞) Btwn ⟨(1st𝑞), 𝑟⟩ ∧ ⟨(2nd𝑞), 𝑟⟩Cgr𝑝)) ∧ 𝑦 = (𝑟 ∈ (𝔼‘𝑚)((2nd𝑞) Btwn ⟨(1st𝑞), 𝑟⟩ ∧ ⟨(2nd𝑞), 𝑟⟩Cgr𝑝)))))
14 eqtr3 2752 . . . . . . . . . . . . . 14 ((𝑥 = (𝑟 ∈ (𝔼‘𝑛)((2nd𝑞) Btwn ⟨(1st𝑞), 𝑟⟩ ∧ ⟨(2nd𝑞), 𝑟⟩Cgr𝑝)) ∧ 𝑦 = (𝑟 ∈ (𝔼‘𝑛)((2nd𝑞) Btwn ⟨(1st𝑞), 𝑟⟩ ∧ ⟨(2nd𝑞), 𝑟⟩Cgr𝑝))) → 𝑥 = 𝑦)
1513, 14biimtrrdi 254 . . . . . . . . . . . . 13 (𝑛 = 𝑚 → ((𝑥 = (𝑟 ∈ (𝔼‘𝑛)((2nd𝑞) Btwn ⟨(1st𝑞), 𝑟⟩ ∧ ⟨(2nd𝑞), 𝑟⟩Cgr𝑝)) ∧ 𝑦 = (𝑟 ∈ (𝔼‘𝑚)((2nd𝑞) Btwn ⟨(1st𝑞), 𝑟⟩ ∧ ⟨(2nd𝑞), 𝑟⟩Cgr𝑝))) → 𝑥 = 𝑦))
169, 15syl 17 . . . . . . . . . . . 12 (((𝑛 ∈ ℕ ∧ (1st𝑝) ∈ (𝔼‘𝑛)) ∧ (𝑚 ∈ ℕ ∧ (1st𝑝) ∈ (𝔼‘𝑚))) → ((𝑥 = (𝑟 ∈ (𝔼‘𝑛)((2nd𝑞) Btwn ⟨(1st𝑞), 𝑟⟩ ∧ ⟨(2nd𝑞), 𝑟⟩Cgr𝑝)) ∧ 𝑦 = (𝑟 ∈ (𝔼‘𝑚)((2nd𝑞) Btwn ⟨(1st𝑞), 𝑟⟩ ∧ ⟨(2nd𝑞), 𝑟⟩Cgr𝑝))) → 𝑥 = 𝑦))
1716an4s 660 . . . . . . . . . . 11 (((𝑛 ∈ ℕ ∧ 𝑚 ∈ ℕ) ∧ ((1st𝑝) ∈ (𝔼‘𝑛) ∧ (1st𝑝) ∈ (𝔼‘𝑚))) → ((𝑥 = (𝑟 ∈ (𝔼‘𝑛)((2nd𝑞) Btwn ⟨(1st𝑞), 𝑟⟩ ∧ ⟨(2nd𝑞), 𝑟⟩Cgr𝑝)) ∧ 𝑦 = (𝑟 ∈ (𝔼‘𝑚)((2nd𝑞) Btwn ⟨(1st𝑞), 𝑟⟩ ∧ ⟨(2nd𝑞), 𝑟⟩Cgr𝑝))) → 𝑥 = 𝑦))
1817ex 412 . . . . . . . . . 10 ((𝑛 ∈ ℕ ∧ 𝑚 ∈ ℕ) → (((1st𝑝) ∈ (𝔼‘𝑛) ∧ (1st𝑝) ∈ (𝔼‘𝑚)) → ((𝑥 = (𝑟 ∈ (𝔼‘𝑛)((2nd𝑞) Btwn ⟨(1st𝑞), 𝑟⟩ ∧ ⟨(2nd𝑞), 𝑟⟩Cgr𝑝)) ∧ 𝑦 = (𝑟 ∈ (𝔼‘𝑚)((2nd𝑞) Btwn ⟨(1st𝑞), 𝑟⟩ ∧ ⟨(2nd𝑞), 𝑟⟩Cgr𝑝))) → 𝑥 = 𝑦)))
197, 8, 18syl2ani 607 . . . . . . . . 9 ((𝑛 ∈ ℕ ∧ 𝑚 ∈ ℕ) → ((𝑝 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ 𝑝 ∈ ((𝔼‘𝑚) × (𝔼‘𝑚))) → ((𝑥 = (𝑟 ∈ (𝔼‘𝑛)((2nd𝑞) Btwn ⟨(1st𝑞), 𝑟⟩ ∧ ⟨(2nd𝑞), 𝑟⟩Cgr𝑝)) ∧ 𝑦 = (𝑟 ∈ (𝔼‘𝑚)((2nd𝑞) Btwn ⟨(1st𝑞), 𝑟⟩ ∧ ⟨(2nd𝑞), 𝑟⟩Cgr𝑝))) → 𝑥 = 𝑦)))
2019impd 410 . . . . . . . 8 ((𝑛 ∈ ℕ ∧ 𝑚 ∈ ℕ) → (((𝑝 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ 𝑝 ∈ ((𝔼‘𝑚) × (𝔼‘𝑚))) ∧ (𝑥 = (𝑟 ∈ (𝔼‘𝑛)((2nd𝑞) Btwn ⟨(1st𝑞), 𝑟⟩ ∧ ⟨(2nd𝑞), 𝑟⟩Cgr𝑝)) ∧ 𝑦 = (𝑟 ∈ (𝔼‘𝑚)((2nd𝑞) Btwn ⟨(1st𝑞), 𝑟⟩ ∧ ⟨(2nd𝑞), 𝑟⟩Cgr𝑝)))) → 𝑥 = 𝑦))
216, 20syl5 34 . . . . . . 7 ((𝑛 ∈ ℕ ∧ 𝑚 ∈ ℕ) → ((((𝑝 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ 𝑞 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ (1st𝑞) ≠ (2nd𝑞)) ∧ 𝑥 = (𝑟 ∈ (𝔼‘𝑛)((2nd𝑞) Btwn ⟨(1st𝑞), 𝑟⟩ ∧ ⟨(2nd𝑞), 𝑟⟩Cgr𝑝))) ∧ ((𝑝 ∈ ((𝔼‘𝑚) × (𝔼‘𝑚)) ∧ 𝑞 ∈ ((𝔼‘𝑚) × (𝔼‘𝑚)) ∧ (1st𝑞) ≠ (2nd𝑞)) ∧ 𝑦 = (𝑟 ∈ (𝔼‘𝑚)((2nd𝑞) Btwn ⟨(1st𝑞), 𝑟⟩ ∧ ⟨(2nd𝑞), 𝑟⟩Cgr𝑝)))) → 𝑥 = 𝑦))
2221rexlimivv 3180 . . . . . 6 (∃𝑛 ∈ ℕ ∃𝑚 ∈ ℕ (((𝑝 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ 𝑞 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ (1st𝑞) ≠ (2nd𝑞)) ∧ 𝑥 = (𝑟 ∈ (𝔼‘𝑛)((2nd𝑞) Btwn ⟨(1st𝑞), 𝑟⟩ ∧ ⟨(2nd𝑞), 𝑟⟩Cgr𝑝))) ∧ ((𝑝 ∈ ((𝔼‘𝑚) × (𝔼‘𝑚)) ∧ 𝑞 ∈ ((𝔼‘𝑚) × (𝔼‘𝑚)) ∧ (1st𝑞) ≠ (2nd𝑞)) ∧ 𝑦 = (𝑟 ∈ (𝔼‘𝑚)((2nd𝑞) Btwn ⟨(1st𝑞), 𝑟⟩ ∧ ⟨(2nd𝑞), 𝑟⟩Cgr𝑝)))) → 𝑥 = 𝑦)
231, 22sylbir 235 . . . . 5 ((∃𝑛 ∈ ℕ ((𝑝 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ 𝑞 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ (1st𝑞) ≠ (2nd𝑞)) ∧ 𝑥 = (𝑟 ∈ (𝔼‘𝑛)((2nd𝑞) Btwn ⟨(1st𝑞), 𝑟⟩ ∧ ⟨(2nd𝑞), 𝑟⟩Cgr𝑝))) ∧ ∃𝑚 ∈ ℕ ((𝑝 ∈ ((𝔼‘𝑚) × (𝔼‘𝑚)) ∧ 𝑞 ∈ ((𝔼‘𝑚) × (𝔼‘𝑚)) ∧ (1st𝑞) ≠ (2nd𝑞)) ∧ 𝑦 = (𝑟 ∈ (𝔼‘𝑚)((2nd𝑞) Btwn ⟨(1st𝑞), 𝑟⟩ ∧ ⟨(2nd𝑞), 𝑟⟩Cgr𝑝)))) → 𝑥 = 𝑦)
2423gen2 1796 . . . 4 𝑥𝑦((∃𝑛 ∈ ℕ ((𝑝 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ 𝑞 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ (1st𝑞) ≠ (2nd𝑞)) ∧ 𝑥 = (𝑟 ∈ (𝔼‘𝑛)((2nd𝑞) Btwn ⟨(1st𝑞), 𝑟⟩ ∧ ⟨(2nd𝑞), 𝑟⟩Cgr𝑝))) ∧ ∃𝑚 ∈ ℕ ((𝑝 ∈ ((𝔼‘𝑚) × (𝔼‘𝑚)) ∧ 𝑞 ∈ ((𝔼‘𝑚) × (𝔼‘𝑚)) ∧ (1st𝑞) ≠ (2nd𝑞)) ∧ 𝑦 = (𝑟 ∈ (𝔼‘𝑚)((2nd𝑞) Btwn ⟨(1st𝑞), 𝑟⟩ ∧ ⟨(2nd𝑞), 𝑟⟩Cgr𝑝)))) → 𝑥 = 𝑦)
25 eqeq1 2734 . . . . . . . 8 (𝑥 = 𝑦 → (𝑥 = (𝑟 ∈ (𝔼‘𝑛)((2nd𝑞) Btwn ⟨(1st𝑞), 𝑟⟩ ∧ ⟨(2nd𝑞), 𝑟⟩Cgr𝑝)) ↔ 𝑦 = (𝑟 ∈ (𝔼‘𝑛)((2nd𝑞) Btwn ⟨(1st𝑞), 𝑟⟩ ∧ ⟨(2nd𝑞), 𝑟⟩Cgr𝑝))))
2625anbi2d 630 . . . . . . 7 (𝑥 = 𝑦 → (((𝑝 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ 𝑞 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ (1st𝑞) ≠ (2nd𝑞)) ∧ 𝑥 = (𝑟 ∈ (𝔼‘𝑛)((2nd𝑞) Btwn ⟨(1st𝑞), 𝑟⟩ ∧ ⟨(2nd𝑞), 𝑟⟩Cgr𝑝))) ↔ ((𝑝 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ 𝑞 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ (1st𝑞) ≠ (2nd𝑞)) ∧ 𝑦 = (𝑟 ∈ (𝔼‘𝑛)((2nd𝑞) Btwn ⟨(1st𝑞), 𝑟⟩ ∧ ⟨(2nd𝑞), 𝑟⟩Cgr𝑝)))))
2726rexbidv 3158 . . . . . 6 (𝑥 = 𝑦 → (∃𝑛 ∈ ℕ ((𝑝 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ 𝑞 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ (1st𝑞) ≠ (2nd𝑞)) ∧ 𝑥 = (𝑟 ∈ (𝔼‘𝑛)((2nd𝑞) Btwn ⟨(1st𝑞), 𝑟⟩ ∧ ⟨(2nd𝑞), 𝑟⟩Cgr𝑝))) ↔ ∃𝑛 ∈ ℕ ((𝑝 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ 𝑞 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ (1st𝑞) ≠ (2nd𝑞)) ∧ 𝑦 = (𝑟 ∈ (𝔼‘𝑛)((2nd𝑞) Btwn ⟨(1st𝑞), 𝑟⟩ ∧ ⟨(2nd𝑞), 𝑟⟩Cgr𝑝)))))
2810sqxpeqd 5673 . . . . . . . . . 10 (𝑛 = 𝑚 → ((𝔼‘𝑛) × (𝔼‘𝑛)) = ((𝔼‘𝑚) × (𝔼‘𝑚)))
2928eleq2d 2815 . . . . . . . . 9 (𝑛 = 𝑚 → (𝑝 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ↔ 𝑝 ∈ ((𝔼‘𝑚) × (𝔼‘𝑚))))
3028eleq2d 2815 . . . . . . . . 9 (𝑛 = 𝑚 → (𝑞 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ↔ 𝑞 ∈ ((𝔼‘𝑚) × (𝔼‘𝑚))))
3129, 303anbi12d 1439 . . . . . . . 8 (𝑛 = 𝑚 → ((𝑝 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ 𝑞 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ (1st𝑞) ≠ (2nd𝑞)) ↔ (𝑝 ∈ ((𝔼‘𝑚) × (𝔼‘𝑚)) ∧ 𝑞 ∈ ((𝔼‘𝑚) × (𝔼‘𝑚)) ∧ (1st𝑞) ≠ (2nd𝑞))))
3231, 12anbi12d 632 . . . . . . 7 (𝑛 = 𝑚 → (((𝑝 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ 𝑞 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ (1st𝑞) ≠ (2nd𝑞)) ∧ 𝑦 = (𝑟 ∈ (𝔼‘𝑛)((2nd𝑞) Btwn ⟨(1st𝑞), 𝑟⟩ ∧ ⟨(2nd𝑞), 𝑟⟩Cgr𝑝))) ↔ ((𝑝 ∈ ((𝔼‘𝑚) × (𝔼‘𝑚)) ∧ 𝑞 ∈ ((𝔼‘𝑚) × (𝔼‘𝑚)) ∧ (1st𝑞) ≠ (2nd𝑞)) ∧ 𝑦 = (𝑟 ∈ (𝔼‘𝑚)((2nd𝑞) Btwn ⟨(1st𝑞), 𝑟⟩ ∧ ⟨(2nd𝑞), 𝑟⟩Cgr𝑝)))))
3332cbvrexvw 3217 . . . . . 6 (∃𝑛 ∈ ℕ ((𝑝 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ 𝑞 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ (1st𝑞) ≠ (2nd𝑞)) ∧ 𝑦 = (𝑟 ∈ (𝔼‘𝑛)((2nd𝑞) Btwn ⟨(1st𝑞), 𝑟⟩ ∧ ⟨(2nd𝑞), 𝑟⟩Cgr𝑝))) ↔ ∃𝑚 ∈ ℕ ((𝑝 ∈ ((𝔼‘𝑚) × (𝔼‘𝑚)) ∧ 𝑞 ∈ ((𝔼‘𝑚) × (𝔼‘𝑚)) ∧ (1st𝑞) ≠ (2nd𝑞)) ∧ 𝑦 = (𝑟 ∈ (𝔼‘𝑚)((2nd𝑞) Btwn ⟨(1st𝑞), 𝑟⟩ ∧ ⟨(2nd𝑞), 𝑟⟩Cgr𝑝))))
3427, 33bitrdi 287 . . . . 5 (𝑥 = 𝑦 → (∃𝑛 ∈ ℕ ((𝑝 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ 𝑞 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ (1st𝑞) ≠ (2nd𝑞)) ∧ 𝑥 = (𝑟 ∈ (𝔼‘𝑛)((2nd𝑞) Btwn ⟨(1st𝑞), 𝑟⟩ ∧ ⟨(2nd𝑞), 𝑟⟩Cgr𝑝))) ↔ ∃𝑚 ∈ ℕ ((𝑝 ∈ ((𝔼‘𝑚) × (𝔼‘𝑚)) ∧ 𝑞 ∈ ((𝔼‘𝑚) × (𝔼‘𝑚)) ∧ (1st𝑞) ≠ (2nd𝑞)) ∧ 𝑦 = (𝑟 ∈ (𝔼‘𝑚)((2nd𝑞) Btwn ⟨(1st𝑞), 𝑟⟩ ∧ ⟨(2nd𝑞), 𝑟⟩Cgr𝑝)))))
3534mo4 2560 . . . 4 (∃*𝑥𝑛 ∈ ℕ ((𝑝 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ 𝑞 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ (1st𝑞) ≠ (2nd𝑞)) ∧ 𝑥 = (𝑟 ∈ (𝔼‘𝑛)((2nd𝑞) Btwn ⟨(1st𝑞), 𝑟⟩ ∧ ⟨(2nd𝑞), 𝑟⟩Cgr𝑝))) ↔ ∀𝑥𝑦((∃𝑛 ∈ ℕ ((𝑝 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ 𝑞 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ (1st𝑞) ≠ (2nd𝑞)) ∧ 𝑥 = (𝑟 ∈ (𝔼‘𝑛)((2nd𝑞) Btwn ⟨(1st𝑞), 𝑟⟩ ∧ ⟨(2nd𝑞), 𝑟⟩Cgr𝑝))) ∧ ∃𝑚 ∈ ℕ ((𝑝 ∈ ((𝔼‘𝑚) × (𝔼‘𝑚)) ∧ 𝑞 ∈ ((𝔼‘𝑚) × (𝔼‘𝑚)) ∧ (1st𝑞) ≠ (2nd𝑞)) ∧ 𝑦 = (𝑟 ∈ (𝔼‘𝑚)((2nd𝑞) Btwn ⟨(1st𝑞), 𝑟⟩ ∧ ⟨(2nd𝑞), 𝑟⟩Cgr𝑝)))) → 𝑥 = 𝑦))
3624, 35mpbir 231 . . 3 ∃*𝑥𝑛 ∈ ℕ ((𝑝 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ 𝑞 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ (1st𝑞) ≠ (2nd𝑞)) ∧ 𝑥 = (𝑟 ∈ (𝔼‘𝑛)((2nd𝑞) Btwn ⟨(1st𝑞), 𝑟⟩ ∧ ⟨(2nd𝑞), 𝑟⟩Cgr𝑝)))
3736funoprab 7514 . 2 Fun {⟨⟨𝑝, 𝑞⟩, 𝑥⟩ ∣ ∃𝑛 ∈ ℕ ((𝑝 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ 𝑞 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ (1st𝑞) ≠ (2nd𝑞)) ∧ 𝑥 = (𝑟 ∈ (𝔼‘𝑛)((2nd𝑞) Btwn ⟨(1st𝑞), 𝑟⟩ ∧ ⟨(2nd𝑞), 𝑟⟩Cgr𝑝)))}
38 df-transport 36025 . . 3 TransportTo = {⟨⟨𝑝, 𝑞⟩, 𝑥⟩ ∣ ∃𝑛 ∈ ℕ ((𝑝 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ 𝑞 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ (1st𝑞) ≠ (2nd𝑞)) ∧ 𝑥 = (𝑟 ∈ (𝔼‘𝑛)((2nd𝑞) Btwn ⟨(1st𝑞), 𝑟⟩ ∧ ⟨(2nd𝑞), 𝑟⟩Cgr𝑝)))}
3938funeqi 6540 . 2 (Fun TransportTo ↔ Fun {⟨⟨𝑝, 𝑞⟩, 𝑥⟩ ∣ ∃𝑛 ∈ ℕ ((𝑝 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ 𝑞 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ (1st𝑞) ≠ (2nd𝑞)) ∧ 𝑥 = (𝑟 ∈ (𝔼‘𝑛)((2nd𝑞) Btwn ⟨(1st𝑞), 𝑟⟩ ∧ ⟨(2nd𝑞), 𝑟⟩Cgr𝑝)))})
4037, 39mpbir 231 1 Fun TransportTo
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086  wal 1538   = wceq 1540  wcel 2109  ∃*wmo 2532  wne 2926  wrex 3054  cop 4598   class class class wbr 5110   × cxp 5639  Fun wfun 6508  cfv 6514  crio 7346  {coprab 7391  1st c1st 7969  2nd c2nd 7970  cn 12193  𝔼cee 28822   Btwn cbtwn 28823  Cgrccgr 28824  TransportToctransport 36024
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-er 8674  df-map 8804  df-en 8922  df-dom 8923  df-sdom 8924  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-z 12537  df-uz 12801  df-fz 13476  df-ee 28825  df-transport 36025
This theorem is referenced by:  fvtransport  36027
  Copyright terms: Public domain W3C validator