Detailed syntax breakdown of Definition df-trkg2d
| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | cstrkg2d 34680 | . 2
class
TarskiG2D | 
| 2 |  | vz | . . . . . . . . . . . . . 14
setvar 𝑧 | 
| 3 | 2 | cv 1538 | . . . . . . . . . . . . 13
class 𝑧 | 
| 4 |  | vx | . . . . . . . . . . . . . . 15
setvar 𝑥 | 
| 5 | 4 | cv 1538 | . . . . . . . . . . . . . 14
class 𝑥 | 
| 6 |  | vy | . . . . . . . . . . . . . . 15
setvar 𝑦 | 
| 7 | 6 | cv 1538 | . . . . . . . . . . . . . 14
class 𝑦 | 
| 8 |  | vi | . . . . . . . . . . . . . . 15
setvar 𝑖 | 
| 9 | 8 | cv 1538 | . . . . . . . . . . . . . 14
class 𝑖 | 
| 10 | 5, 7, 9 | co 7432 | . . . . . . . . . . . . 13
class (𝑥𝑖𝑦) | 
| 11 | 3, 10 | wcel 2107 | . . . . . . . . . . . 12
wff 𝑧 ∈ (𝑥𝑖𝑦) | 
| 12 | 3, 7, 9 | co 7432 | . . . . . . . . . . . . 13
class (𝑧𝑖𝑦) | 
| 13 | 5, 12 | wcel 2107 | . . . . . . . . . . . 12
wff 𝑥 ∈ (𝑧𝑖𝑦) | 
| 14 | 5, 3, 9 | co 7432 | . . . . . . . . . . . . 13
class (𝑥𝑖𝑧) | 
| 15 | 7, 14 | wcel 2107 | . . . . . . . . . . . 12
wff 𝑦 ∈ (𝑥𝑖𝑧) | 
| 16 | 11, 13, 15 | w3o 1085 | . . . . . . . . . . 11
wff (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧)) | 
| 17 | 16 | wn 3 | . . . . . . . . . 10
wff  ¬
(𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧)) | 
| 18 |  | vp | . . . . . . . . . . 11
setvar 𝑝 | 
| 19 | 18 | cv 1538 | . . . . . . . . . 10
class 𝑝 | 
| 20 | 17, 2, 19 | wrex 3069 | . . . . . . . . 9
wff
∃𝑧 ∈
𝑝 ¬ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧)) | 
| 21 | 20, 6, 19 | wrex 3069 | . . . . . . . 8
wff
∃𝑦 ∈
𝑝 ∃𝑧 ∈ 𝑝 ¬ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧)) | 
| 22 | 21, 4, 19 | wrex 3069 | . . . . . . 7
wff
∃𝑥 ∈
𝑝 ∃𝑦 ∈ 𝑝 ∃𝑧 ∈ 𝑝 ¬ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧)) | 
| 23 |  | vu | . . . . . . . . . . . . . . . . . 18
setvar 𝑢 | 
| 24 | 23 | cv 1538 | . . . . . . . . . . . . . . . . 17
class 𝑢 | 
| 25 |  | vd | . . . . . . . . . . . . . . . . . 18
setvar 𝑑 | 
| 26 | 25 | cv 1538 | . . . . . . . . . . . . . . . . 17
class 𝑑 | 
| 27 | 5, 24, 26 | co 7432 | . . . . . . . . . . . . . . . 16
class (𝑥𝑑𝑢) | 
| 28 |  | vv | . . . . . . . . . . . . . . . . . 18
setvar 𝑣 | 
| 29 | 28 | cv 1538 | . . . . . . . . . . . . . . . . 17
class 𝑣 | 
| 30 | 5, 29, 26 | co 7432 | . . . . . . . . . . . . . . . 16
class (𝑥𝑑𝑣) | 
| 31 | 27, 30 | wceq 1539 | . . . . . . . . . . . . . . 15
wff (𝑥𝑑𝑢) = (𝑥𝑑𝑣) | 
| 32 | 7, 24, 26 | co 7432 | . . . . . . . . . . . . . . . 16
class (𝑦𝑑𝑢) | 
| 33 | 7, 29, 26 | co 7432 | . . . . . . . . . . . . . . . 16
class (𝑦𝑑𝑣) | 
| 34 | 32, 33 | wceq 1539 | . . . . . . . . . . . . . . 15
wff (𝑦𝑑𝑢) = (𝑦𝑑𝑣) | 
| 35 | 3, 24, 26 | co 7432 | . . . . . . . . . . . . . . . 16
class (𝑧𝑑𝑢) | 
| 36 | 3, 29, 26 | co 7432 | . . . . . . . . . . . . . . . 16
class (𝑧𝑑𝑣) | 
| 37 | 35, 36 | wceq 1539 | . . . . . . . . . . . . . . 15
wff (𝑧𝑑𝑢) = (𝑧𝑑𝑣) | 
| 38 | 31, 34, 37 | w3a 1086 | . . . . . . . . . . . . . 14
wff ((𝑥𝑑𝑢) = (𝑥𝑑𝑣) ∧ (𝑦𝑑𝑢) = (𝑦𝑑𝑣) ∧ (𝑧𝑑𝑢) = (𝑧𝑑𝑣)) | 
| 39 | 24, 29 | wne 2939 | . . . . . . . . . . . . . 14
wff 𝑢 ≠ 𝑣 | 
| 40 | 38, 39 | wa 395 | . . . . . . . . . . . . 13
wff (((𝑥𝑑𝑢) = (𝑥𝑑𝑣) ∧ (𝑦𝑑𝑢) = (𝑦𝑑𝑣) ∧ (𝑧𝑑𝑢) = (𝑧𝑑𝑣)) ∧ 𝑢 ≠ 𝑣) | 
| 41 | 40, 16 | wi 4 | . . . . . . . . . . . 12
wff ((((𝑥𝑑𝑢) = (𝑥𝑑𝑣) ∧ (𝑦𝑑𝑢) = (𝑦𝑑𝑣) ∧ (𝑧𝑑𝑢) = (𝑧𝑑𝑣)) ∧ 𝑢 ≠ 𝑣) → (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))) | 
| 42 | 41, 28, 19 | wral 3060 | . . . . . . . . . . 11
wff
∀𝑣 ∈
𝑝 ((((𝑥𝑑𝑢) = (𝑥𝑑𝑣) ∧ (𝑦𝑑𝑢) = (𝑦𝑑𝑣) ∧ (𝑧𝑑𝑢) = (𝑧𝑑𝑣)) ∧ 𝑢 ≠ 𝑣) → (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))) | 
| 43 | 42, 23, 19 | wral 3060 | . . . . . . . . . 10
wff
∀𝑢 ∈
𝑝 ∀𝑣 ∈ 𝑝 ((((𝑥𝑑𝑢) = (𝑥𝑑𝑣) ∧ (𝑦𝑑𝑢) = (𝑦𝑑𝑣) ∧ (𝑧𝑑𝑢) = (𝑧𝑑𝑣)) ∧ 𝑢 ≠ 𝑣) → (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))) | 
| 44 | 43, 2, 19 | wral 3060 | . . . . . . . . 9
wff
∀𝑧 ∈
𝑝 ∀𝑢 ∈ 𝑝 ∀𝑣 ∈ 𝑝 ((((𝑥𝑑𝑢) = (𝑥𝑑𝑣) ∧ (𝑦𝑑𝑢) = (𝑦𝑑𝑣) ∧ (𝑧𝑑𝑢) = (𝑧𝑑𝑣)) ∧ 𝑢 ≠ 𝑣) → (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))) | 
| 45 | 44, 6, 19 | wral 3060 | . . . . . . . 8
wff
∀𝑦 ∈
𝑝 ∀𝑧 ∈ 𝑝 ∀𝑢 ∈ 𝑝 ∀𝑣 ∈ 𝑝 ((((𝑥𝑑𝑢) = (𝑥𝑑𝑣) ∧ (𝑦𝑑𝑢) = (𝑦𝑑𝑣) ∧ (𝑧𝑑𝑢) = (𝑧𝑑𝑣)) ∧ 𝑢 ≠ 𝑣) → (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))) | 
| 46 | 45, 4, 19 | wral 3060 | . . . . . . 7
wff
∀𝑥 ∈
𝑝 ∀𝑦 ∈ 𝑝 ∀𝑧 ∈ 𝑝 ∀𝑢 ∈ 𝑝 ∀𝑣 ∈ 𝑝 ((((𝑥𝑑𝑢) = (𝑥𝑑𝑣) ∧ (𝑦𝑑𝑢) = (𝑦𝑑𝑣) ∧ (𝑧𝑑𝑢) = (𝑧𝑑𝑣)) ∧ 𝑢 ≠ 𝑣) → (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))) | 
| 47 | 22, 46 | wa 395 | . . . . . 6
wff
(∃𝑥 ∈
𝑝 ∃𝑦 ∈ 𝑝 ∃𝑧 ∈ 𝑝 ¬ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧)) ∧ ∀𝑥 ∈ 𝑝 ∀𝑦 ∈ 𝑝 ∀𝑧 ∈ 𝑝 ∀𝑢 ∈ 𝑝 ∀𝑣 ∈ 𝑝 ((((𝑥𝑑𝑢) = (𝑥𝑑𝑣) ∧ (𝑦𝑑𝑢) = (𝑦𝑑𝑣) ∧ (𝑧𝑑𝑢) = (𝑧𝑑𝑣)) ∧ 𝑢 ≠ 𝑣) → (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧)))) | 
| 48 |  | vf | . . . . . . . 8
setvar 𝑓 | 
| 49 | 48 | cv 1538 | . . . . . . 7
class 𝑓 | 
| 50 |  | citv 28442 | . . . . . . 7
class
Itv | 
| 51 | 49, 50 | cfv 6560 | . . . . . 6
class
(Itv‘𝑓) | 
| 52 | 47, 8, 51 | wsbc 3787 | . . . . 5
wff
[(Itv‘𝑓) / 𝑖](∃𝑥 ∈ 𝑝 ∃𝑦 ∈ 𝑝 ∃𝑧 ∈ 𝑝 ¬ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧)) ∧ ∀𝑥 ∈ 𝑝 ∀𝑦 ∈ 𝑝 ∀𝑧 ∈ 𝑝 ∀𝑢 ∈ 𝑝 ∀𝑣 ∈ 𝑝 ((((𝑥𝑑𝑢) = (𝑥𝑑𝑣) ∧ (𝑦𝑑𝑢) = (𝑦𝑑𝑣) ∧ (𝑧𝑑𝑢) = (𝑧𝑑𝑣)) ∧ 𝑢 ≠ 𝑣) → (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧)))) | 
| 53 |  | cds 17307 | . . . . . 6
class
dist | 
| 54 | 49, 53 | cfv 6560 | . . . . 5
class
(dist‘𝑓) | 
| 55 | 52, 25, 54 | wsbc 3787 | . . . 4
wff
[(dist‘𝑓) / 𝑑][(Itv‘𝑓) / 𝑖](∃𝑥 ∈ 𝑝 ∃𝑦 ∈ 𝑝 ∃𝑧 ∈ 𝑝 ¬ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧)) ∧ ∀𝑥 ∈ 𝑝 ∀𝑦 ∈ 𝑝 ∀𝑧 ∈ 𝑝 ∀𝑢 ∈ 𝑝 ∀𝑣 ∈ 𝑝 ((((𝑥𝑑𝑢) = (𝑥𝑑𝑣) ∧ (𝑦𝑑𝑢) = (𝑦𝑑𝑣) ∧ (𝑧𝑑𝑢) = (𝑧𝑑𝑣)) ∧ 𝑢 ≠ 𝑣) → (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧)))) | 
| 56 |  | cbs 17248 | . . . . 5
class
Base | 
| 57 | 49, 56 | cfv 6560 | . . . 4
class
(Base‘𝑓) | 
| 58 | 55, 18, 57 | wsbc 3787 | . . 3
wff
[(Base‘𝑓) / 𝑝][(dist‘𝑓) / 𝑑][(Itv‘𝑓) / 𝑖](∃𝑥 ∈ 𝑝 ∃𝑦 ∈ 𝑝 ∃𝑧 ∈ 𝑝 ¬ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧)) ∧ ∀𝑥 ∈ 𝑝 ∀𝑦 ∈ 𝑝 ∀𝑧 ∈ 𝑝 ∀𝑢 ∈ 𝑝 ∀𝑣 ∈ 𝑝 ((((𝑥𝑑𝑢) = (𝑥𝑑𝑣) ∧ (𝑦𝑑𝑢) = (𝑦𝑑𝑣) ∧ (𝑧𝑑𝑢) = (𝑧𝑑𝑣)) ∧ 𝑢 ≠ 𝑣) → (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧)))) | 
| 59 | 58, 48 | cab 2713 | . 2
class {𝑓 ∣
[(Base‘𝑓) /
𝑝][(dist‘𝑓) / 𝑑][(Itv‘𝑓) / 𝑖](∃𝑥 ∈ 𝑝 ∃𝑦 ∈ 𝑝 ∃𝑧 ∈ 𝑝 ¬ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧)) ∧ ∀𝑥 ∈ 𝑝 ∀𝑦 ∈ 𝑝 ∀𝑧 ∈ 𝑝 ∀𝑢 ∈ 𝑝 ∀𝑣 ∈ 𝑝 ((((𝑥𝑑𝑢) = (𝑥𝑑𝑣) ∧ (𝑦𝑑𝑢) = (𝑦𝑑𝑣) ∧ (𝑧𝑑𝑢) = (𝑧𝑑𝑣)) ∧ 𝑢 ≠ 𝑣) → (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))))} | 
| 60 | 1, 59 | wceq 1539 | 1
wff
TarskiG2D = {𝑓 ∣ [(Base‘𝑓) / 𝑝][(dist‘𝑓) / 𝑑][(Itv‘𝑓) / 𝑖](∃𝑥 ∈ 𝑝 ∃𝑦 ∈ 𝑝 ∃𝑧 ∈ 𝑝 ¬ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧)) ∧ ∀𝑥 ∈ 𝑝 ∀𝑦 ∈ 𝑝 ∀𝑧 ∈ 𝑝 ∀𝑢 ∈ 𝑝 ∀𝑣 ∈ 𝑝 ((((𝑥𝑑𝑢) = (𝑥𝑑𝑣) ∧ (𝑦𝑑𝑢) = (𝑦𝑑𝑣) ∧ (𝑧𝑑𝑢) = (𝑧𝑑𝑣)) ∧ 𝑢 ≠ 𝑣) → (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))))} |