Detailed syntax breakdown of Definition df-trkg2d
Step | Hyp | Ref
| Expression |
1 | | cstrkg2d 32544 |
. 2
class
TarskiG2D |
2 | | vz |
. . . . . . . . . . . . . 14
setvar 𝑧 |
3 | 2 | cv 1538 |
. . . . . . . . . . . . 13
class 𝑧 |
4 | | vx |
. . . . . . . . . . . . . . 15
setvar 𝑥 |
5 | 4 | cv 1538 |
. . . . . . . . . . . . . 14
class 𝑥 |
6 | | vy |
. . . . . . . . . . . . . . 15
setvar 𝑦 |
7 | 6 | cv 1538 |
. . . . . . . . . . . . . 14
class 𝑦 |
8 | | vi |
. . . . . . . . . . . . . . 15
setvar 𝑖 |
9 | 8 | cv 1538 |
. . . . . . . . . . . . . 14
class 𝑖 |
10 | 5, 7, 9 | co 7255 |
. . . . . . . . . . . . 13
class (𝑥𝑖𝑦) |
11 | 3, 10 | wcel 2108 |
. . . . . . . . . . . 12
wff 𝑧 ∈ (𝑥𝑖𝑦) |
12 | 3, 7, 9 | co 7255 |
. . . . . . . . . . . . 13
class (𝑧𝑖𝑦) |
13 | 5, 12 | wcel 2108 |
. . . . . . . . . . . 12
wff 𝑥 ∈ (𝑧𝑖𝑦) |
14 | 5, 3, 9 | co 7255 |
. . . . . . . . . . . . 13
class (𝑥𝑖𝑧) |
15 | 7, 14 | wcel 2108 |
. . . . . . . . . . . 12
wff 𝑦 ∈ (𝑥𝑖𝑧) |
16 | 11, 13, 15 | w3o 1084 |
. . . . . . . . . . 11
wff (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧)) |
17 | 16 | wn 3 |
. . . . . . . . . 10
wff ¬
(𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧)) |
18 | | vp |
. . . . . . . . . . 11
setvar 𝑝 |
19 | 18 | cv 1538 |
. . . . . . . . . 10
class 𝑝 |
20 | 17, 2, 19 | wrex 3064 |
. . . . . . . . 9
wff
∃𝑧 ∈
𝑝 ¬ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧)) |
21 | 20, 6, 19 | wrex 3064 |
. . . . . . . 8
wff
∃𝑦 ∈
𝑝 ∃𝑧 ∈ 𝑝 ¬ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧)) |
22 | 21, 4, 19 | wrex 3064 |
. . . . . . 7
wff
∃𝑥 ∈
𝑝 ∃𝑦 ∈ 𝑝 ∃𝑧 ∈ 𝑝 ¬ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧)) |
23 | | vu |
. . . . . . . . . . . . . . . . . 18
setvar 𝑢 |
24 | 23 | cv 1538 |
. . . . . . . . . . . . . . . . 17
class 𝑢 |
25 | | vd |
. . . . . . . . . . . . . . . . . 18
setvar 𝑑 |
26 | 25 | cv 1538 |
. . . . . . . . . . . . . . . . 17
class 𝑑 |
27 | 5, 24, 26 | co 7255 |
. . . . . . . . . . . . . . . 16
class (𝑥𝑑𝑢) |
28 | | vv |
. . . . . . . . . . . . . . . . . 18
setvar 𝑣 |
29 | 28 | cv 1538 |
. . . . . . . . . . . . . . . . 17
class 𝑣 |
30 | 5, 29, 26 | co 7255 |
. . . . . . . . . . . . . . . 16
class (𝑥𝑑𝑣) |
31 | 27, 30 | wceq 1539 |
. . . . . . . . . . . . . . 15
wff (𝑥𝑑𝑢) = (𝑥𝑑𝑣) |
32 | 7, 24, 26 | co 7255 |
. . . . . . . . . . . . . . . 16
class (𝑦𝑑𝑢) |
33 | 7, 29, 26 | co 7255 |
. . . . . . . . . . . . . . . 16
class (𝑦𝑑𝑣) |
34 | 32, 33 | wceq 1539 |
. . . . . . . . . . . . . . 15
wff (𝑦𝑑𝑢) = (𝑦𝑑𝑣) |
35 | 3, 24, 26 | co 7255 |
. . . . . . . . . . . . . . . 16
class (𝑧𝑑𝑢) |
36 | 3, 29, 26 | co 7255 |
. . . . . . . . . . . . . . . 16
class (𝑧𝑑𝑣) |
37 | 35, 36 | wceq 1539 |
. . . . . . . . . . . . . . 15
wff (𝑧𝑑𝑢) = (𝑧𝑑𝑣) |
38 | 31, 34, 37 | w3a 1085 |
. . . . . . . . . . . . . 14
wff ((𝑥𝑑𝑢) = (𝑥𝑑𝑣) ∧ (𝑦𝑑𝑢) = (𝑦𝑑𝑣) ∧ (𝑧𝑑𝑢) = (𝑧𝑑𝑣)) |
39 | 24, 29 | wne 2942 |
. . . . . . . . . . . . . 14
wff 𝑢 ≠ 𝑣 |
40 | 38, 39 | wa 395 |
. . . . . . . . . . . . 13
wff (((𝑥𝑑𝑢) = (𝑥𝑑𝑣) ∧ (𝑦𝑑𝑢) = (𝑦𝑑𝑣) ∧ (𝑧𝑑𝑢) = (𝑧𝑑𝑣)) ∧ 𝑢 ≠ 𝑣) |
41 | 40, 16 | wi 4 |
. . . . . . . . . . . 12
wff ((((𝑥𝑑𝑢) = (𝑥𝑑𝑣) ∧ (𝑦𝑑𝑢) = (𝑦𝑑𝑣) ∧ (𝑧𝑑𝑢) = (𝑧𝑑𝑣)) ∧ 𝑢 ≠ 𝑣) → (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))) |
42 | 41, 28, 19 | wral 3063 |
. . . . . . . . . . 11
wff
∀𝑣 ∈
𝑝 ((((𝑥𝑑𝑢) = (𝑥𝑑𝑣) ∧ (𝑦𝑑𝑢) = (𝑦𝑑𝑣) ∧ (𝑧𝑑𝑢) = (𝑧𝑑𝑣)) ∧ 𝑢 ≠ 𝑣) → (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))) |
43 | 42, 23, 19 | wral 3063 |
. . . . . . . . . 10
wff
∀𝑢 ∈
𝑝 ∀𝑣 ∈ 𝑝 ((((𝑥𝑑𝑢) = (𝑥𝑑𝑣) ∧ (𝑦𝑑𝑢) = (𝑦𝑑𝑣) ∧ (𝑧𝑑𝑢) = (𝑧𝑑𝑣)) ∧ 𝑢 ≠ 𝑣) → (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))) |
44 | 43, 2, 19 | wral 3063 |
. . . . . . . . 9
wff
∀𝑧 ∈
𝑝 ∀𝑢 ∈ 𝑝 ∀𝑣 ∈ 𝑝 ((((𝑥𝑑𝑢) = (𝑥𝑑𝑣) ∧ (𝑦𝑑𝑢) = (𝑦𝑑𝑣) ∧ (𝑧𝑑𝑢) = (𝑧𝑑𝑣)) ∧ 𝑢 ≠ 𝑣) → (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))) |
45 | 44, 6, 19 | wral 3063 |
. . . . . . . 8
wff
∀𝑦 ∈
𝑝 ∀𝑧 ∈ 𝑝 ∀𝑢 ∈ 𝑝 ∀𝑣 ∈ 𝑝 ((((𝑥𝑑𝑢) = (𝑥𝑑𝑣) ∧ (𝑦𝑑𝑢) = (𝑦𝑑𝑣) ∧ (𝑧𝑑𝑢) = (𝑧𝑑𝑣)) ∧ 𝑢 ≠ 𝑣) → (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))) |
46 | 45, 4, 19 | wral 3063 |
. . . . . . 7
wff
∀𝑥 ∈
𝑝 ∀𝑦 ∈ 𝑝 ∀𝑧 ∈ 𝑝 ∀𝑢 ∈ 𝑝 ∀𝑣 ∈ 𝑝 ((((𝑥𝑑𝑢) = (𝑥𝑑𝑣) ∧ (𝑦𝑑𝑢) = (𝑦𝑑𝑣) ∧ (𝑧𝑑𝑢) = (𝑧𝑑𝑣)) ∧ 𝑢 ≠ 𝑣) → (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))) |
47 | 22, 46 | wa 395 |
. . . . . 6
wff
(∃𝑥 ∈
𝑝 ∃𝑦 ∈ 𝑝 ∃𝑧 ∈ 𝑝 ¬ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧)) ∧ ∀𝑥 ∈ 𝑝 ∀𝑦 ∈ 𝑝 ∀𝑧 ∈ 𝑝 ∀𝑢 ∈ 𝑝 ∀𝑣 ∈ 𝑝 ((((𝑥𝑑𝑢) = (𝑥𝑑𝑣) ∧ (𝑦𝑑𝑢) = (𝑦𝑑𝑣) ∧ (𝑧𝑑𝑢) = (𝑧𝑑𝑣)) ∧ 𝑢 ≠ 𝑣) → (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧)))) |
48 | | vf |
. . . . . . . 8
setvar 𝑓 |
49 | 48 | cv 1538 |
. . . . . . 7
class 𝑓 |
50 | | citv 26699 |
. . . . . . 7
class
Itv |
51 | 49, 50 | cfv 6418 |
. . . . . 6
class
(Itv‘𝑓) |
52 | 47, 8, 51 | wsbc 3711 |
. . . . 5
wff
[(Itv‘𝑓) / 𝑖](∃𝑥 ∈ 𝑝 ∃𝑦 ∈ 𝑝 ∃𝑧 ∈ 𝑝 ¬ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧)) ∧ ∀𝑥 ∈ 𝑝 ∀𝑦 ∈ 𝑝 ∀𝑧 ∈ 𝑝 ∀𝑢 ∈ 𝑝 ∀𝑣 ∈ 𝑝 ((((𝑥𝑑𝑢) = (𝑥𝑑𝑣) ∧ (𝑦𝑑𝑢) = (𝑦𝑑𝑣) ∧ (𝑧𝑑𝑢) = (𝑧𝑑𝑣)) ∧ 𝑢 ≠ 𝑣) → (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧)))) |
53 | | cds 16897 |
. . . . . 6
class
dist |
54 | 49, 53 | cfv 6418 |
. . . . 5
class
(dist‘𝑓) |
55 | 52, 25, 54 | wsbc 3711 |
. . . 4
wff
[(dist‘𝑓) / 𝑑][(Itv‘𝑓) / 𝑖](∃𝑥 ∈ 𝑝 ∃𝑦 ∈ 𝑝 ∃𝑧 ∈ 𝑝 ¬ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧)) ∧ ∀𝑥 ∈ 𝑝 ∀𝑦 ∈ 𝑝 ∀𝑧 ∈ 𝑝 ∀𝑢 ∈ 𝑝 ∀𝑣 ∈ 𝑝 ((((𝑥𝑑𝑢) = (𝑥𝑑𝑣) ∧ (𝑦𝑑𝑢) = (𝑦𝑑𝑣) ∧ (𝑧𝑑𝑢) = (𝑧𝑑𝑣)) ∧ 𝑢 ≠ 𝑣) → (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧)))) |
56 | | cbs 16840 |
. . . . 5
class
Base |
57 | 49, 56 | cfv 6418 |
. . . 4
class
(Base‘𝑓) |
58 | 55, 18, 57 | wsbc 3711 |
. . 3
wff
[(Base‘𝑓) / 𝑝][(dist‘𝑓) / 𝑑][(Itv‘𝑓) / 𝑖](∃𝑥 ∈ 𝑝 ∃𝑦 ∈ 𝑝 ∃𝑧 ∈ 𝑝 ¬ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧)) ∧ ∀𝑥 ∈ 𝑝 ∀𝑦 ∈ 𝑝 ∀𝑧 ∈ 𝑝 ∀𝑢 ∈ 𝑝 ∀𝑣 ∈ 𝑝 ((((𝑥𝑑𝑢) = (𝑥𝑑𝑣) ∧ (𝑦𝑑𝑢) = (𝑦𝑑𝑣) ∧ (𝑧𝑑𝑢) = (𝑧𝑑𝑣)) ∧ 𝑢 ≠ 𝑣) → (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧)))) |
59 | 58, 48 | cab 2715 |
. 2
class {𝑓 ∣
[(Base‘𝑓) /
𝑝][(dist‘𝑓) / 𝑑][(Itv‘𝑓) / 𝑖](∃𝑥 ∈ 𝑝 ∃𝑦 ∈ 𝑝 ∃𝑧 ∈ 𝑝 ¬ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧)) ∧ ∀𝑥 ∈ 𝑝 ∀𝑦 ∈ 𝑝 ∀𝑧 ∈ 𝑝 ∀𝑢 ∈ 𝑝 ∀𝑣 ∈ 𝑝 ((((𝑥𝑑𝑢) = (𝑥𝑑𝑣) ∧ (𝑦𝑑𝑢) = (𝑦𝑑𝑣) ∧ (𝑧𝑑𝑢) = (𝑧𝑑𝑣)) ∧ 𝑢 ≠ 𝑣) → (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))))} |
60 | 1, 59 | wceq 1539 |
1
wff
TarskiG2D = {𝑓 ∣ [(Base‘𝑓) / 𝑝][(dist‘𝑓) / 𝑑][(Itv‘𝑓) / 𝑖](∃𝑥 ∈ 𝑝 ∃𝑦 ∈ 𝑝 ∃𝑧 ∈ 𝑝 ¬ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧)) ∧ ∀𝑥 ∈ 𝑝 ∀𝑦 ∈ 𝑝 ∀𝑧 ∈ 𝑝 ∀𝑢 ∈ 𝑝 ∀𝑣 ∈ 𝑝 ((((𝑥𝑑𝑢) = (𝑥𝑑𝑣) ∧ (𝑦𝑑𝑢) = (𝑦𝑑𝑣) ∧ (𝑧𝑑𝑢) = (𝑧𝑑𝑣)) ∧ 𝑢 ≠ 𝑣) → (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))))} |