Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  istrkg2d Structured version   Visualization version   GIF version

Theorem istrkg2d 33678
Description: Property of fulfilling dimension 2 axiom. (Contributed by Thierry Arnoux, 29-May-2019.) (New usage is discouraged.) (Proof modification is discouraged.)
Hypotheses
Ref Expression
istrkg2d.p 𝑃 = (Baseβ€˜πΊ)
istrkg2d.d βˆ’ = (distβ€˜πΊ)
istrkg2d.i 𝐼 = (Itvβ€˜πΊ)
Assertion
Ref Expression
istrkg2d (𝐺 ∈ TarskiG2D ↔ (𝐺 ∈ V ∧ (βˆƒπ‘₯ ∈ 𝑃 βˆƒπ‘¦ ∈ 𝑃 βˆƒπ‘§ ∈ 𝑃 Β¬ (𝑧 ∈ (π‘₯𝐼𝑦) ∨ π‘₯ ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (π‘₯𝐼𝑧)) ∧ βˆ€π‘₯ ∈ 𝑃 βˆ€π‘¦ ∈ 𝑃 βˆ€π‘§ ∈ 𝑃 βˆ€π‘’ ∈ 𝑃 βˆ€π‘£ ∈ 𝑃 ((((π‘₯ βˆ’ 𝑒) = (π‘₯ βˆ’ 𝑣) ∧ (𝑦 βˆ’ 𝑒) = (𝑦 βˆ’ 𝑣) ∧ (𝑧 βˆ’ 𝑒) = (𝑧 βˆ’ 𝑣)) ∧ 𝑒 β‰  𝑣) β†’ (𝑧 ∈ (π‘₯𝐼𝑦) ∨ π‘₯ ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (π‘₯𝐼𝑧))))))
Distinct variable groups:   𝑒, βˆ’ ,𝑣,π‘₯,𝑦,𝑧   𝑒,𝐼,𝑣,π‘₯,𝑦,𝑧   𝑒,𝑃,𝑣,π‘₯,𝑦,𝑧
Allowed substitution hints:   𝐺(π‘₯,𝑦,𝑧,𝑣,𝑒)

Proof of Theorem istrkg2d
Dummy variables 𝑑 𝑓 𝑖 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 istrkg2d.p . . 3 𝑃 = (Baseβ€˜πΊ)
2 istrkg2d.d . . 3 βˆ’ = (distβ€˜πΊ)
3 istrkg2d.i . . 3 𝐼 = (Itvβ€˜πΊ)
4 simp1 1137 . . . . . 6 ((𝑝 = 𝑃 ∧ 𝑑 = βˆ’ ∧ 𝑖 = 𝐼) β†’ 𝑝 = 𝑃)
54eqcomd 2739 . . . . 5 ((𝑝 = 𝑃 ∧ 𝑑 = βˆ’ ∧ 𝑖 = 𝐼) β†’ 𝑃 = 𝑝)
6 simp3 1139 . . . . . . . . . . . 12 ((𝑝 = 𝑃 ∧ 𝑑 = βˆ’ ∧ 𝑖 = 𝐼) β†’ 𝑖 = 𝐼)
76eqcomd 2739 . . . . . . . . . . 11 ((𝑝 = 𝑃 ∧ 𝑑 = βˆ’ ∧ 𝑖 = 𝐼) β†’ 𝐼 = 𝑖)
87oveqd 7426 . . . . . . . . . 10 ((𝑝 = 𝑃 ∧ 𝑑 = βˆ’ ∧ 𝑖 = 𝐼) β†’ (π‘₯𝐼𝑦) = (π‘₯𝑖𝑦))
98eleq2d 2820 . . . . . . . . 9 ((𝑝 = 𝑃 ∧ 𝑑 = βˆ’ ∧ 𝑖 = 𝐼) β†’ (𝑧 ∈ (π‘₯𝐼𝑦) ↔ 𝑧 ∈ (π‘₯𝑖𝑦)))
107oveqd 7426 . . . . . . . . . 10 ((𝑝 = 𝑃 ∧ 𝑑 = βˆ’ ∧ 𝑖 = 𝐼) β†’ (𝑧𝐼𝑦) = (𝑧𝑖𝑦))
1110eleq2d 2820 . . . . . . . . 9 ((𝑝 = 𝑃 ∧ 𝑑 = βˆ’ ∧ 𝑖 = 𝐼) β†’ (π‘₯ ∈ (𝑧𝐼𝑦) ↔ π‘₯ ∈ (𝑧𝑖𝑦)))
127oveqd 7426 . . . . . . . . . 10 ((𝑝 = 𝑃 ∧ 𝑑 = βˆ’ ∧ 𝑖 = 𝐼) β†’ (π‘₯𝐼𝑧) = (π‘₯𝑖𝑧))
1312eleq2d 2820 . . . . . . . . 9 ((𝑝 = 𝑃 ∧ 𝑑 = βˆ’ ∧ 𝑖 = 𝐼) β†’ (𝑦 ∈ (π‘₯𝐼𝑧) ↔ 𝑦 ∈ (π‘₯𝑖𝑧)))
149, 11, 133orbi123d 1436 . . . . . . . 8 ((𝑝 = 𝑃 ∧ 𝑑 = βˆ’ ∧ 𝑖 = 𝐼) β†’ ((𝑧 ∈ (π‘₯𝐼𝑦) ∨ π‘₯ ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (π‘₯𝐼𝑧)) ↔ (𝑧 ∈ (π‘₯𝑖𝑦) ∨ π‘₯ ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (π‘₯𝑖𝑧))))
1514notbid 318 . . . . . . 7 ((𝑝 = 𝑃 ∧ 𝑑 = βˆ’ ∧ 𝑖 = 𝐼) β†’ (Β¬ (𝑧 ∈ (π‘₯𝐼𝑦) ∨ π‘₯ ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (π‘₯𝐼𝑧)) ↔ Β¬ (𝑧 ∈ (π‘₯𝑖𝑦) ∨ π‘₯ ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (π‘₯𝑖𝑧))))
165, 15rexeqbidv 3344 . . . . . 6 ((𝑝 = 𝑃 ∧ 𝑑 = βˆ’ ∧ 𝑖 = 𝐼) β†’ (βˆƒπ‘§ ∈ 𝑃 Β¬ (𝑧 ∈ (π‘₯𝐼𝑦) ∨ π‘₯ ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (π‘₯𝐼𝑧)) ↔ βˆƒπ‘§ ∈ 𝑝 Β¬ (𝑧 ∈ (π‘₯𝑖𝑦) ∨ π‘₯ ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (π‘₯𝑖𝑧))))
175, 16rexeqbidv 3344 . . . . 5 ((𝑝 = 𝑃 ∧ 𝑑 = βˆ’ ∧ 𝑖 = 𝐼) β†’ (βˆƒπ‘¦ ∈ 𝑃 βˆƒπ‘§ ∈ 𝑃 Β¬ (𝑧 ∈ (π‘₯𝐼𝑦) ∨ π‘₯ ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (π‘₯𝐼𝑧)) ↔ βˆƒπ‘¦ ∈ 𝑝 βˆƒπ‘§ ∈ 𝑝 Β¬ (𝑧 ∈ (π‘₯𝑖𝑦) ∨ π‘₯ ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (π‘₯𝑖𝑧))))
185, 17rexeqbidv 3344 . . . 4 ((𝑝 = 𝑃 ∧ 𝑑 = βˆ’ ∧ 𝑖 = 𝐼) β†’ (βˆƒπ‘₯ ∈ 𝑃 βˆƒπ‘¦ ∈ 𝑃 βˆƒπ‘§ ∈ 𝑃 Β¬ (𝑧 ∈ (π‘₯𝐼𝑦) ∨ π‘₯ ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (π‘₯𝐼𝑧)) ↔ βˆƒπ‘₯ ∈ 𝑝 βˆƒπ‘¦ ∈ 𝑝 βˆƒπ‘§ ∈ 𝑝 Β¬ (𝑧 ∈ (π‘₯𝑖𝑦) ∨ π‘₯ ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (π‘₯𝑖𝑧))))
19 simp2 1138 . . . . . . . . . . . . . . 15 ((𝑝 = 𝑃 ∧ 𝑑 = βˆ’ ∧ 𝑖 = 𝐼) β†’ 𝑑 = βˆ’ )
2019eqcomd 2739 . . . . . . . . . . . . . 14 ((𝑝 = 𝑃 ∧ 𝑑 = βˆ’ ∧ 𝑖 = 𝐼) β†’ βˆ’ = 𝑑)
2120oveqd 7426 . . . . . . . . . . . . 13 ((𝑝 = 𝑃 ∧ 𝑑 = βˆ’ ∧ 𝑖 = 𝐼) β†’ (π‘₯ βˆ’ 𝑒) = (π‘₯𝑑𝑒))
2220oveqd 7426 . . . . . . . . . . . . 13 ((𝑝 = 𝑃 ∧ 𝑑 = βˆ’ ∧ 𝑖 = 𝐼) β†’ (π‘₯ βˆ’ 𝑣) = (π‘₯𝑑𝑣))
2321, 22eqeq12d 2749 . . . . . . . . . . . 12 ((𝑝 = 𝑃 ∧ 𝑑 = βˆ’ ∧ 𝑖 = 𝐼) β†’ ((π‘₯ βˆ’ 𝑒) = (π‘₯ βˆ’ 𝑣) ↔ (π‘₯𝑑𝑒) = (π‘₯𝑑𝑣)))
2420oveqd 7426 . . . . . . . . . . . . 13 ((𝑝 = 𝑃 ∧ 𝑑 = βˆ’ ∧ 𝑖 = 𝐼) β†’ (𝑦 βˆ’ 𝑒) = (𝑦𝑑𝑒))
2520oveqd 7426 . . . . . . . . . . . . 13 ((𝑝 = 𝑃 ∧ 𝑑 = βˆ’ ∧ 𝑖 = 𝐼) β†’ (𝑦 βˆ’ 𝑣) = (𝑦𝑑𝑣))
2624, 25eqeq12d 2749 . . . . . . . . . . . 12 ((𝑝 = 𝑃 ∧ 𝑑 = βˆ’ ∧ 𝑖 = 𝐼) β†’ ((𝑦 βˆ’ 𝑒) = (𝑦 βˆ’ 𝑣) ↔ (𝑦𝑑𝑒) = (𝑦𝑑𝑣)))
2720oveqd 7426 . . . . . . . . . . . . 13 ((𝑝 = 𝑃 ∧ 𝑑 = βˆ’ ∧ 𝑖 = 𝐼) β†’ (𝑧 βˆ’ 𝑒) = (𝑧𝑑𝑒))
2820oveqd 7426 . . . . . . . . . . . . 13 ((𝑝 = 𝑃 ∧ 𝑑 = βˆ’ ∧ 𝑖 = 𝐼) β†’ (𝑧 βˆ’ 𝑣) = (𝑧𝑑𝑣))
2927, 28eqeq12d 2749 . . . . . . . . . . . 12 ((𝑝 = 𝑃 ∧ 𝑑 = βˆ’ ∧ 𝑖 = 𝐼) β†’ ((𝑧 βˆ’ 𝑒) = (𝑧 βˆ’ 𝑣) ↔ (𝑧𝑑𝑒) = (𝑧𝑑𝑣)))
3023, 26, 293anbi123d 1437 . . . . . . . . . . 11 ((𝑝 = 𝑃 ∧ 𝑑 = βˆ’ ∧ 𝑖 = 𝐼) β†’ (((π‘₯ βˆ’ 𝑒) = (π‘₯ βˆ’ 𝑣) ∧ (𝑦 βˆ’ 𝑒) = (𝑦 βˆ’ 𝑣) ∧ (𝑧 βˆ’ 𝑒) = (𝑧 βˆ’ 𝑣)) ↔ ((π‘₯𝑑𝑒) = (π‘₯𝑑𝑣) ∧ (𝑦𝑑𝑒) = (𝑦𝑑𝑣) ∧ (𝑧𝑑𝑒) = (𝑧𝑑𝑣))))
3130anbi1d 631 . . . . . . . . . 10 ((𝑝 = 𝑃 ∧ 𝑑 = βˆ’ ∧ 𝑖 = 𝐼) β†’ ((((π‘₯ βˆ’ 𝑒) = (π‘₯ βˆ’ 𝑣) ∧ (𝑦 βˆ’ 𝑒) = (𝑦 βˆ’ 𝑣) ∧ (𝑧 βˆ’ 𝑒) = (𝑧 βˆ’ 𝑣)) ∧ 𝑒 β‰  𝑣) ↔ (((π‘₯𝑑𝑒) = (π‘₯𝑑𝑣) ∧ (𝑦𝑑𝑒) = (𝑦𝑑𝑣) ∧ (𝑧𝑑𝑒) = (𝑧𝑑𝑣)) ∧ 𝑒 β‰  𝑣)))
3231, 14imbi12d 345 . . . . . . . . 9 ((𝑝 = 𝑃 ∧ 𝑑 = βˆ’ ∧ 𝑖 = 𝐼) β†’ (((((π‘₯ βˆ’ 𝑒) = (π‘₯ βˆ’ 𝑣) ∧ (𝑦 βˆ’ 𝑒) = (𝑦 βˆ’ 𝑣) ∧ (𝑧 βˆ’ 𝑒) = (𝑧 βˆ’ 𝑣)) ∧ 𝑒 β‰  𝑣) β†’ (𝑧 ∈ (π‘₯𝐼𝑦) ∨ π‘₯ ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (π‘₯𝐼𝑧))) ↔ ((((π‘₯𝑑𝑒) = (π‘₯𝑑𝑣) ∧ (𝑦𝑑𝑒) = (𝑦𝑑𝑣) ∧ (𝑧𝑑𝑒) = (𝑧𝑑𝑣)) ∧ 𝑒 β‰  𝑣) β†’ (𝑧 ∈ (π‘₯𝑖𝑦) ∨ π‘₯ ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (π‘₯𝑖𝑧)))))
335, 32raleqbidv 3343 . . . . . . . 8 ((𝑝 = 𝑃 ∧ 𝑑 = βˆ’ ∧ 𝑖 = 𝐼) β†’ (βˆ€π‘£ ∈ 𝑃 ((((π‘₯ βˆ’ 𝑒) = (π‘₯ βˆ’ 𝑣) ∧ (𝑦 βˆ’ 𝑒) = (𝑦 βˆ’ 𝑣) ∧ (𝑧 βˆ’ 𝑒) = (𝑧 βˆ’ 𝑣)) ∧ 𝑒 β‰  𝑣) β†’ (𝑧 ∈ (π‘₯𝐼𝑦) ∨ π‘₯ ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (π‘₯𝐼𝑧))) ↔ βˆ€π‘£ ∈ 𝑝 ((((π‘₯𝑑𝑒) = (π‘₯𝑑𝑣) ∧ (𝑦𝑑𝑒) = (𝑦𝑑𝑣) ∧ (𝑧𝑑𝑒) = (𝑧𝑑𝑣)) ∧ 𝑒 β‰  𝑣) β†’ (𝑧 ∈ (π‘₯𝑖𝑦) ∨ π‘₯ ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (π‘₯𝑖𝑧)))))
345, 33raleqbidv 3343 . . . . . . 7 ((𝑝 = 𝑃 ∧ 𝑑 = βˆ’ ∧ 𝑖 = 𝐼) β†’ (βˆ€π‘’ ∈ 𝑃 βˆ€π‘£ ∈ 𝑃 ((((π‘₯ βˆ’ 𝑒) = (π‘₯ βˆ’ 𝑣) ∧ (𝑦 βˆ’ 𝑒) = (𝑦 βˆ’ 𝑣) ∧ (𝑧 βˆ’ 𝑒) = (𝑧 βˆ’ 𝑣)) ∧ 𝑒 β‰  𝑣) β†’ (𝑧 ∈ (π‘₯𝐼𝑦) ∨ π‘₯ ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (π‘₯𝐼𝑧))) ↔ βˆ€π‘’ ∈ 𝑝 βˆ€π‘£ ∈ 𝑝 ((((π‘₯𝑑𝑒) = (π‘₯𝑑𝑣) ∧ (𝑦𝑑𝑒) = (𝑦𝑑𝑣) ∧ (𝑧𝑑𝑒) = (𝑧𝑑𝑣)) ∧ 𝑒 β‰  𝑣) β†’ (𝑧 ∈ (π‘₯𝑖𝑦) ∨ π‘₯ ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (π‘₯𝑖𝑧)))))
355, 34raleqbidv 3343 . . . . . 6 ((𝑝 = 𝑃 ∧ 𝑑 = βˆ’ ∧ 𝑖 = 𝐼) β†’ (βˆ€π‘§ ∈ 𝑃 βˆ€π‘’ ∈ 𝑃 βˆ€π‘£ ∈ 𝑃 ((((π‘₯ βˆ’ 𝑒) = (π‘₯ βˆ’ 𝑣) ∧ (𝑦 βˆ’ 𝑒) = (𝑦 βˆ’ 𝑣) ∧ (𝑧 βˆ’ 𝑒) = (𝑧 βˆ’ 𝑣)) ∧ 𝑒 β‰  𝑣) β†’ (𝑧 ∈ (π‘₯𝐼𝑦) ∨ π‘₯ ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (π‘₯𝐼𝑧))) ↔ βˆ€π‘§ ∈ 𝑝 βˆ€π‘’ ∈ 𝑝 βˆ€π‘£ ∈ 𝑝 ((((π‘₯𝑑𝑒) = (π‘₯𝑑𝑣) ∧ (𝑦𝑑𝑒) = (𝑦𝑑𝑣) ∧ (𝑧𝑑𝑒) = (𝑧𝑑𝑣)) ∧ 𝑒 β‰  𝑣) β†’ (𝑧 ∈ (π‘₯𝑖𝑦) ∨ π‘₯ ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (π‘₯𝑖𝑧)))))
365, 35raleqbidv 3343 . . . . 5 ((𝑝 = 𝑃 ∧ 𝑑 = βˆ’ ∧ 𝑖 = 𝐼) β†’ (βˆ€π‘¦ ∈ 𝑃 βˆ€π‘§ ∈ 𝑃 βˆ€π‘’ ∈ 𝑃 βˆ€π‘£ ∈ 𝑃 ((((π‘₯ βˆ’ 𝑒) = (π‘₯ βˆ’ 𝑣) ∧ (𝑦 βˆ’ 𝑒) = (𝑦 βˆ’ 𝑣) ∧ (𝑧 βˆ’ 𝑒) = (𝑧 βˆ’ 𝑣)) ∧ 𝑒 β‰  𝑣) β†’ (𝑧 ∈ (π‘₯𝐼𝑦) ∨ π‘₯ ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (π‘₯𝐼𝑧))) ↔ βˆ€π‘¦ ∈ 𝑝 βˆ€π‘§ ∈ 𝑝 βˆ€π‘’ ∈ 𝑝 βˆ€π‘£ ∈ 𝑝 ((((π‘₯𝑑𝑒) = (π‘₯𝑑𝑣) ∧ (𝑦𝑑𝑒) = (𝑦𝑑𝑣) ∧ (𝑧𝑑𝑒) = (𝑧𝑑𝑣)) ∧ 𝑒 β‰  𝑣) β†’ (𝑧 ∈ (π‘₯𝑖𝑦) ∨ π‘₯ ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (π‘₯𝑖𝑧)))))
375, 36raleqbidv 3343 . . . 4 ((𝑝 = 𝑃 ∧ 𝑑 = βˆ’ ∧ 𝑖 = 𝐼) β†’ (βˆ€π‘₯ ∈ 𝑃 βˆ€π‘¦ ∈ 𝑃 βˆ€π‘§ ∈ 𝑃 βˆ€π‘’ ∈ 𝑃 βˆ€π‘£ ∈ 𝑃 ((((π‘₯ βˆ’ 𝑒) = (π‘₯ βˆ’ 𝑣) ∧ (𝑦 βˆ’ 𝑒) = (𝑦 βˆ’ 𝑣) ∧ (𝑧 βˆ’ 𝑒) = (𝑧 βˆ’ 𝑣)) ∧ 𝑒 β‰  𝑣) β†’ (𝑧 ∈ (π‘₯𝐼𝑦) ∨ π‘₯ ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (π‘₯𝐼𝑧))) ↔ βˆ€π‘₯ ∈ 𝑝 βˆ€π‘¦ ∈ 𝑝 βˆ€π‘§ ∈ 𝑝 βˆ€π‘’ ∈ 𝑝 βˆ€π‘£ ∈ 𝑝 ((((π‘₯𝑑𝑒) = (π‘₯𝑑𝑣) ∧ (𝑦𝑑𝑒) = (𝑦𝑑𝑣) ∧ (𝑧𝑑𝑒) = (𝑧𝑑𝑣)) ∧ 𝑒 β‰  𝑣) β†’ (𝑧 ∈ (π‘₯𝑖𝑦) ∨ π‘₯ ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (π‘₯𝑖𝑧)))))
3818, 37anbi12d 632 . . 3 ((𝑝 = 𝑃 ∧ 𝑑 = βˆ’ ∧ 𝑖 = 𝐼) β†’ ((βˆƒπ‘₯ ∈ 𝑃 βˆƒπ‘¦ ∈ 𝑃 βˆƒπ‘§ ∈ 𝑃 Β¬ (𝑧 ∈ (π‘₯𝐼𝑦) ∨ π‘₯ ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (π‘₯𝐼𝑧)) ∧ βˆ€π‘₯ ∈ 𝑃 βˆ€π‘¦ ∈ 𝑃 βˆ€π‘§ ∈ 𝑃 βˆ€π‘’ ∈ 𝑃 βˆ€π‘£ ∈ 𝑃 ((((π‘₯ βˆ’ 𝑒) = (π‘₯ βˆ’ 𝑣) ∧ (𝑦 βˆ’ 𝑒) = (𝑦 βˆ’ 𝑣) ∧ (𝑧 βˆ’ 𝑒) = (𝑧 βˆ’ 𝑣)) ∧ 𝑒 β‰  𝑣) β†’ (𝑧 ∈ (π‘₯𝐼𝑦) ∨ π‘₯ ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (π‘₯𝐼𝑧)))) ↔ (βˆƒπ‘₯ ∈ 𝑝 βˆƒπ‘¦ ∈ 𝑝 βˆƒπ‘§ ∈ 𝑝 Β¬ (𝑧 ∈ (π‘₯𝑖𝑦) ∨ π‘₯ ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (π‘₯𝑖𝑧)) ∧ βˆ€π‘₯ ∈ 𝑝 βˆ€π‘¦ ∈ 𝑝 βˆ€π‘§ ∈ 𝑝 βˆ€π‘’ ∈ 𝑝 βˆ€π‘£ ∈ 𝑝 ((((π‘₯𝑑𝑒) = (π‘₯𝑑𝑣) ∧ (𝑦𝑑𝑒) = (𝑦𝑑𝑣) ∧ (𝑧𝑑𝑒) = (𝑧𝑑𝑣)) ∧ 𝑒 β‰  𝑣) β†’ (𝑧 ∈ (π‘₯𝑖𝑦) ∨ π‘₯ ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (π‘₯𝑖𝑧))))))
391, 2, 3, 38sbcie3s 17095 . 2 (𝑓 = 𝐺 β†’ ([(Baseβ€˜π‘“) / 𝑝][(distβ€˜π‘“) / 𝑑][(Itvβ€˜π‘“) / 𝑖](βˆƒπ‘₯ ∈ 𝑝 βˆƒπ‘¦ ∈ 𝑝 βˆƒπ‘§ ∈ 𝑝 Β¬ (𝑧 ∈ (π‘₯𝑖𝑦) ∨ π‘₯ ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (π‘₯𝑖𝑧)) ∧ βˆ€π‘₯ ∈ 𝑝 βˆ€π‘¦ ∈ 𝑝 βˆ€π‘§ ∈ 𝑝 βˆ€π‘’ ∈ 𝑝 βˆ€π‘£ ∈ 𝑝 ((((π‘₯𝑑𝑒) = (π‘₯𝑑𝑣) ∧ (𝑦𝑑𝑒) = (𝑦𝑑𝑣) ∧ (𝑧𝑑𝑒) = (𝑧𝑑𝑣)) ∧ 𝑒 β‰  𝑣) β†’ (𝑧 ∈ (π‘₯𝑖𝑦) ∨ π‘₯ ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (π‘₯𝑖𝑧)))) ↔ (βˆƒπ‘₯ ∈ 𝑃 βˆƒπ‘¦ ∈ 𝑃 βˆƒπ‘§ ∈ 𝑃 Β¬ (𝑧 ∈ (π‘₯𝐼𝑦) ∨ π‘₯ ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (π‘₯𝐼𝑧)) ∧ βˆ€π‘₯ ∈ 𝑃 βˆ€π‘¦ ∈ 𝑃 βˆ€π‘§ ∈ 𝑃 βˆ€π‘’ ∈ 𝑃 βˆ€π‘£ ∈ 𝑃 ((((π‘₯ βˆ’ 𝑒) = (π‘₯ βˆ’ 𝑣) ∧ (𝑦 βˆ’ 𝑒) = (𝑦 βˆ’ 𝑣) ∧ (𝑧 βˆ’ 𝑒) = (𝑧 βˆ’ 𝑣)) ∧ 𝑒 β‰  𝑣) β†’ (𝑧 ∈ (π‘₯𝐼𝑦) ∨ π‘₯ ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (π‘₯𝐼𝑧))))))
40 df-trkg2d 33677 . 2 TarskiG2D = {𝑓 ∣ [(Baseβ€˜π‘“) / 𝑝][(distβ€˜π‘“) / 𝑑][(Itvβ€˜π‘“) / 𝑖](βˆƒπ‘₯ ∈ 𝑝 βˆƒπ‘¦ ∈ 𝑝 βˆƒπ‘§ ∈ 𝑝 Β¬ (𝑧 ∈ (π‘₯𝑖𝑦) ∨ π‘₯ ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (π‘₯𝑖𝑧)) ∧ βˆ€π‘₯ ∈ 𝑝 βˆ€π‘¦ ∈ 𝑝 βˆ€π‘§ ∈ 𝑝 βˆ€π‘’ ∈ 𝑝 βˆ€π‘£ ∈ 𝑝 ((((π‘₯𝑑𝑒) = (π‘₯𝑑𝑣) ∧ (𝑦𝑑𝑒) = (𝑦𝑑𝑣) ∧ (𝑧𝑑𝑒) = (𝑧𝑑𝑣)) ∧ 𝑒 β‰  𝑣) β†’ (𝑧 ∈ (π‘₯𝑖𝑦) ∨ π‘₯ ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (π‘₯𝑖𝑧))))}
4139, 40elab4g 3674 1 (𝐺 ∈ TarskiG2D ↔ (𝐺 ∈ V ∧ (βˆƒπ‘₯ ∈ 𝑃 βˆƒπ‘¦ ∈ 𝑃 βˆƒπ‘§ ∈ 𝑃 Β¬ (𝑧 ∈ (π‘₯𝐼𝑦) ∨ π‘₯ ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (π‘₯𝐼𝑧)) ∧ βˆ€π‘₯ ∈ 𝑃 βˆ€π‘¦ ∈ 𝑃 βˆ€π‘§ ∈ 𝑃 βˆ€π‘’ ∈ 𝑃 βˆ€π‘£ ∈ 𝑃 ((((π‘₯ βˆ’ 𝑒) = (π‘₯ βˆ’ 𝑣) ∧ (𝑦 βˆ’ 𝑒) = (𝑦 βˆ’ 𝑣) ∧ (𝑧 βˆ’ 𝑒) = (𝑧 βˆ’ 𝑣)) ∧ 𝑒 β‰  𝑣) β†’ (𝑧 ∈ (π‘₯𝐼𝑦) ∨ π‘₯ ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (π‘₯𝐼𝑧))))))
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ↔ wb 205   ∧ wa 397   ∨ w3o 1087   ∧ w3a 1088   = wceq 1542   ∈ wcel 2107   β‰  wne 2941  βˆ€wral 3062  βˆƒwrex 3071  Vcvv 3475  [wsbc 3778  β€˜cfv 6544  (class class class)co 7409  Basecbs 17144  distcds 17206  Itvcitv 27684  TarskiG2Dcstrkg2d 33676
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-ext 2704  ax-nul 5307
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-sb 2069  df-clab 2711  df-cleq 2725  df-clel 2811  df-ne 2942  df-ral 3063  df-rex 3072  df-rab 3434  df-v 3477  df-sbc 3779  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-br 5150  df-iota 6496  df-fv 6552  df-ov 7412  df-trkg2d 33677
This theorem is referenced by:  axtglowdim2ALTV  33679  axtgupdim2ALTV  33680
  Copyright terms: Public domain W3C validator