Step | Hyp | Ref
| Expression |
1 | | istrkg2d.p |
. . 3
⊢ 𝑃 = (Base‘𝐺) |
2 | | istrkg2d.d |
. . 3
⊢ − =
(dist‘𝐺) |
3 | | istrkg2d.i |
. . 3
⊢ 𝐼 = (Itv‘𝐺) |
4 | | simp1 1135 |
. . . . . 6
⊢ ((𝑝 = 𝑃 ∧ 𝑑 = − ∧ 𝑖 = 𝐼) → 𝑝 = 𝑃) |
5 | 4 | eqcomd 2744 |
. . . . 5
⊢ ((𝑝 = 𝑃 ∧ 𝑑 = − ∧ 𝑖 = 𝐼) → 𝑃 = 𝑝) |
6 | | simp3 1137 |
. . . . . . . . . . . 12
⊢ ((𝑝 = 𝑃 ∧ 𝑑 = − ∧ 𝑖 = 𝐼) → 𝑖 = 𝐼) |
7 | 6 | eqcomd 2744 |
. . . . . . . . . . 11
⊢ ((𝑝 = 𝑃 ∧ 𝑑 = − ∧ 𝑖 = 𝐼) → 𝐼 = 𝑖) |
8 | 7 | oveqd 7292 |
. . . . . . . . . 10
⊢ ((𝑝 = 𝑃 ∧ 𝑑 = − ∧ 𝑖 = 𝐼) → (𝑥𝐼𝑦) = (𝑥𝑖𝑦)) |
9 | 8 | eleq2d 2824 |
. . . . . . . . 9
⊢ ((𝑝 = 𝑃 ∧ 𝑑 = − ∧ 𝑖 = 𝐼) → (𝑧 ∈ (𝑥𝐼𝑦) ↔ 𝑧 ∈ (𝑥𝑖𝑦))) |
10 | 7 | oveqd 7292 |
. . . . . . . . . 10
⊢ ((𝑝 = 𝑃 ∧ 𝑑 = − ∧ 𝑖 = 𝐼) → (𝑧𝐼𝑦) = (𝑧𝑖𝑦)) |
11 | 10 | eleq2d 2824 |
. . . . . . . . 9
⊢ ((𝑝 = 𝑃 ∧ 𝑑 = − ∧ 𝑖 = 𝐼) → (𝑥 ∈ (𝑧𝐼𝑦) ↔ 𝑥 ∈ (𝑧𝑖𝑦))) |
12 | 7 | oveqd 7292 |
. . . . . . . . . 10
⊢ ((𝑝 = 𝑃 ∧ 𝑑 = − ∧ 𝑖 = 𝐼) → (𝑥𝐼𝑧) = (𝑥𝑖𝑧)) |
13 | 12 | eleq2d 2824 |
. . . . . . . . 9
⊢ ((𝑝 = 𝑃 ∧ 𝑑 = − ∧ 𝑖 = 𝐼) → (𝑦 ∈ (𝑥𝐼𝑧) ↔ 𝑦 ∈ (𝑥𝑖𝑧))) |
14 | 9, 11, 13 | 3orbi123d 1434 |
. . . . . . . 8
⊢ ((𝑝 = 𝑃 ∧ 𝑑 = − ∧ 𝑖 = 𝐼) → ((𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)) ↔ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧)))) |
15 | 14 | notbid 318 |
. . . . . . 7
⊢ ((𝑝 = 𝑃 ∧ 𝑑 = − ∧ 𝑖 = 𝐼) → (¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)) ↔ ¬ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧)))) |
16 | 5, 15 | rexeqbidv 3337 |
. . . . . 6
⊢ ((𝑝 = 𝑃 ∧ 𝑑 = − ∧ 𝑖 = 𝐼) → (∃𝑧 ∈ 𝑃 ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)) ↔ ∃𝑧 ∈ 𝑝 ¬ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧)))) |
17 | 5, 16 | rexeqbidv 3337 |
. . . . 5
⊢ ((𝑝 = 𝑃 ∧ 𝑑 = − ∧ 𝑖 = 𝐼) → (∃𝑦 ∈ 𝑃 ∃𝑧 ∈ 𝑃 ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)) ↔ ∃𝑦 ∈ 𝑝 ∃𝑧 ∈ 𝑝 ¬ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧)))) |
18 | 5, 17 | rexeqbidv 3337 |
. . . 4
⊢ ((𝑝 = 𝑃 ∧ 𝑑 = − ∧ 𝑖 = 𝐼) → (∃𝑥 ∈ 𝑃 ∃𝑦 ∈ 𝑃 ∃𝑧 ∈ 𝑃 ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)) ↔ ∃𝑥 ∈ 𝑝 ∃𝑦 ∈ 𝑝 ∃𝑧 ∈ 𝑝 ¬ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧)))) |
19 | | simp2 1136 |
. . . . . . . . . . . . . . 15
⊢ ((𝑝 = 𝑃 ∧ 𝑑 = − ∧ 𝑖 = 𝐼) → 𝑑 = − ) |
20 | 19 | eqcomd 2744 |
. . . . . . . . . . . . . 14
⊢ ((𝑝 = 𝑃 ∧ 𝑑 = − ∧ 𝑖 = 𝐼) → − = 𝑑) |
21 | 20 | oveqd 7292 |
. . . . . . . . . . . . 13
⊢ ((𝑝 = 𝑃 ∧ 𝑑 = − ∧ 𝑖 = 𝐼) → (𝑥 − 𝑢) = (𝑥𝑑𝑢)) |
22 | 20 | oveqd 7292 |
. . . . . . . . . . . . 13
⊢ ((𝑝 = 𝑃 ∧ 𝑑 = − ∧ 𝑖 = 𝐼) → (𝑥 − 𝑣) = (𝑥𝑑𝑣)) |
23 | 21, 22 | eqeq12d 2754 |
. . . . . . . . . . . 12
⊢ ((𝑝 = 𝑃 ∧ 𝑑 = − ∧ 𝑖 = 𝐼) → ((𝑥 − 𝑢) = (𝑥 − 𝑣) ↔ (𝑥𝑑𝑢) = (𝑥𝑑𝑣))) |
24 | 20 | oveqd 7292 |
. . . . . . . . . . . . 13
⊢ ((𝑝 = 𝑃 ∧ 𝑑 = − ∧ 𝑖 = 𝐼) → (𝑦 − 𝑢) = (𝑦𝑑𝑢)) |
25 | 20 | oveqd 7292 |
. . . . . . . . . . . . 13
⊢ ((𝑝 = 𝑃 ∧ 𝑑 = − ∧ 𝑖 = 𝐼) → (𝑦 − 𝑣) = (𝑦𝑑𝑣)) |
26 | 24, 25 | eqeq12d 2754 |
. . . . . . . . . . . 12
⊢ ((𝑝 = 𝑃 ∧ 𝑑 = − ∧ 𝑖 = 𝐼) → ((𝑦 − 𝑢) = (𝑦 − 𝑣) ↔ (𝑦𝑑𝑢) = (𝑦𝑑𝑣))) |
27 | 20 | oveqd 7292 |
. . . . . . . . . . . . 13
⊢ ((𝑝 = 𝑃 ∧ 𝑑 = − ∧ 𝑖 = 𝐼) → (𝑧 − 𝑢) = (𝑧𝑑𝑢)) |
28 | 20 | oveqd 7292 |
. . . . . . . . . . . . 13
⊢ ((𝑝 = 𝑃 ∧ 𝑑 = − ∧ 𝑖 = 𝐼) → (𝑧 − 𝑣) = (𝑧𝑑𝑣)) |
29 | 27, 28 | eqeq12d 2754 |
. . . . . . . . . . . 12
⊢ ((𝑝 = 𝑃 ∧ 𝑑 = − ∧ 𝑖 = 𝐼) → ((𝑧 − 𝑢) = (𝑧 − 𝑣) ↔ (𝑧𝑑𝑢) = (𝑧𝑑𝑣))) |
30 | 23, 26, 29 | 3anbi123d 1435 |
. . . . . . . . . . 11
⊢ ((𝑝 = 𝑃 ∧ 𝑑 = − ∧ 𝑖 = 𝐼) → (((𝑥 − 𝑢) = (𝑥 − 𝑣) ∧ (𝑦 − 𝑢) = (𝑦 − 𝑣) ∧ (𝑧 − 𝑢) = (𝑧 − 𝑣)) ↔ ((𝑥𝑑𝑢) = (𝑥𝑑𝑣) ∧ (𝑦𝑑𝑢) = (𝑦𝑑𝑣) ∧ (𝑧𝑑𝑢) = (𝑧𝑑𝑣)))) |
31 | 30 | anbi1d 630 |
. . . . . . . . . 10
⊢ ((𝑝 = 𝑃 ∧ 𝑑 = − ∧ 𝑖 = 𝐼) → ((((𝑥 − 𝑢) = (𝑥 − 𝑣) ∧ (𝑦 − 𝑢) = (𝑦 − 𝑣) ∧ (𝑧 − 𝑢) = (𝑧 − 𝑣)) ∧ 𝑢 ≠ 𝑣) ↔ (((𝑥𝑑𝑢) = (𝑥𝑑𝑣) ∧ (𝑦𝑑𝑢) = (𝑦𝑑𝑣) ∧ (𝑧𝑑𝑢) = (𝑧𝑑𝑣)) ∧ 𝑢 ≠ 𝑣))) |
32 | 31, 14 | imbi12d 345 |
. . . . . . . . 9
⊢ ((𝑝 = 𝑃 ∧ 𝑑 = − ∧ 𝑖 = 𝐼) → (((((𝑥 − 𝑢) = (𝑥 − 𝑣) ∧ (𝑦 − 𝑢) = (𝑦 − 𝑣) ∧ (𝑧 − 𝑢) = (𝑧 − 𝑣)) ∧ 𝑢 ≠ 𝑣) → (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))) ↔ ((((𝑥𝑑𝑢) = (𝑥𝑑𝑣) ∧ (𝑦𝑑𝑢) = (𝑦𝑑𝑣) ∧ (𝑧𝑑𝑢) = (𝑧𝑑𝑣)) ∧ 𝑢 ≠ 𝑣) → (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))))) |
33 | 5, 32 | raleqbidv 3336 |
. . . . . . . 8
⊢ ((𝑝 = 𝑃 ∧ 𝑑 = − ∧ 𝑖 = 𝐼) → (∀𝑣 ∈ 𝑃 ((((𝑥 − 𝑢) = (𝑥 − 𝑣) ∧ (𝑦 − 𝑢) = (𝑦 − 𝑣) ∧ (𝑧 − 𝑢) = (𝑧 − 𝑣)) ∧ 𝑢 ≠ 𝑣) → (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))) ↔ ∀𝑣 ∈ 𝑝 ((((𝑥𝑑𝑢) = (𝑥𝑑𝑣) ∧ (𝑦𝑑𝑢) = (𝑦𝑑𝑣) ∧ (𝑧𝑑𝑢) = (𝑧𝑑𝑣)) ∧ 𝑢 ≠ 𝑣) → (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))))) |
34 | 5, 33 | raleqbidv 3336 |
. . . . . . 7
⊢ ((𝑝 = 𝑃 ∧ 𝑑 = − ∧ 𝑖 = 𝐼) → (∀𝑢 ∈ 𝑃 ∀𝑣 ∈ 𝑃 ((((𝑥 − 𝑢) = (𝑥 − 𝑣) ∧ (𝑦 − 𝑢) = (𝑦 − 𝑣) ∧ (𝑧 − 𝑢) = (𝑧 − 𝑣)) ∧ 𝑢 ≠ 𝑣) → (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))) ↔ ∀𝑢 ∈ 𝑝 ∀𝑣 ∈ 𝑝 ((((𝑥𝑑𝑢) = (𝑥𝑑𝑣) ∧ (𝑦𝑑𝑢) = (𝑦𝑑𝑣) ∧ (𝑧𝑑𝑢) = (𝑧𝑑𝑣)) ∧ 𝑢 ≠ 𝑣) → (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))))) |
35 | 5, 34 | raleqbidv 3336 |
. . . . . 6
⊢ ((𝑝 = 𝑃 ∧ 𝑑 = − ∧ 𝑖 = 𝐼) → (∀𝑧 ∈ 𝑃 ∀𝑢 ∈ 𝑃 ∀𝑣 ∈ 𝑃 ((((𝑥 − 𝑢) = (𝑥 − 𝑣) ∧ (𝑦 − 𝑢) = (𝑦 − 𝑣) ∧ (𝑧 − 𝑢) = (𝑧 − 𝑣)) ∧ 𝑢 ≠ 𝑣) → (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))) ↔ ∀𝑧 ∈ 𝑝 ∀𝑢 ∈ 𝑝 ∀𝑣 ∈ 𝑝 ((((𝑥𝑑𝑢) = (𝑥𝑑𝑣) ∧ (𝑦𝑑𝑢) = (𝑦𝑑𝑣) ∧ (𝑧𝑑𝑢) = (𝑧𝑑𝑣)) ∧ 𝑢 ≠ 𝑣) → (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))))) |
36 | 5, 35 | raleqbidv 3336 |
. . . . 5
⊢ ((𝑝 = 𝑃 ∧ 𝑑 = − ∧ 𝑖 = 𝐼) → (∀𝑦 ∈ 𝑃 ∀𝑧 ∈ 𝑃 ∀𝑢 ∈ 𝑃 ∀𝑣 ∈ 𝑃 ((((𝑥 − 𝑢) = (𝑥 − 𝑣) ∧ (𝑦 − 𝑢) = (𝑦 − 𝑣) ∧ (𝑧 − 𝑢) = (𝑧 − 𝑣)) ∧ 𝑢 ≠ 𝑣) → (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))) ↔ ∀𝑦 ∈ 𝑝 ∀𝑧 ∈ 𝑝 ∀𝑢 ∈ 𝑝 ∀𝑣 ∈ 𝑝 ((((𝑥𝑑𝑢) = (𝑥𝑑𝑣) ∧ (𝑦𝑑𝑢) = (𝑦𝑑𝑣) ∧ (𝑧𝑑𝑢) = (𝑧𝑑𝑣)) ∧ 𝑢 ≠ 𝑣) → (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))))) |
37 | 5, 36 | raleqbidv 3336 |
. . . 4
⊢ ((𝑝 = 𝑃 ∧ 𝑑 = − ∧ 𝑖 = 𝐼) → (∀𝑥 ∈ 𝑃 ∀𝑦 ∈ 𝑃 ∀𝑧 ∈ 𝑃 ∀𝑢 ∈ 𝑃 ∀𝑣 ∈ 𝑃 ((((𝑥 − 𝑢) = (𝑥 − 𝑣) ∧ (𝑦 − 𝑢) = (𝑦 − 𝑣) ∧ (𝑧 − 𝑢) = (𝑧 − 𝑣)) ∧ 𝑢 ≠ 𝑣) → (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))) ↔ ∀𝑥 ∈ 𝑝 ∀𝑦 ∈ 𝑝 ∀𝑧 ∈ 𝑝 ∀𝑢 ∈ 𝑝 ∀𝑣 ∈ 𝑝 ((((𝑥𝑑𝑢) = (𝑥𝑑𝑣) ∧ (𝑦𝑑𝑢) = (𝑦𝑑𝑣) ∧ (𝑧𝑑𝑢) = (𝑧𝑑𝑣)) ∧ 𝑢 ≠ 𝑣) → (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))))) |
38 | 18, 37 | anbi12d 631 |
. . 3
⊢ ((𝑝 = 𝑃 ∧ 𝑑 = − ∧ 𝑖 = 𝐼) → ((∃𝑥 ∈ 𝑃 ∃𝑦 ∈ 𝑃 ∃𝑧 ∈ 𝑃 ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)) ∧ ∀𝑥 ∈ 𝑃 ∀𝑦 ∈ 𝑃 ∀𝑧 ∈ 𝑃 ∀𝑢 ∈ 𝑃 ∀𝑣 ∈ 𝑃 ((((𝑥 − 𝑢) = (𝑥 − 𝑣) ∧ (𝑦 − 𝑢) = (𝑦 − 𝑣) ∧ (𝑧 − 𝑢) = (𝑧 − 𝑣)) ∧ 𝑢 ≠ 𝑣) → (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)))) ↔ (∃𝑥 ∈ 𝑝 ∃𝑦 ∈ 𝑝 ∃𝑧 ∈ 𝑝 ¬ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧)) ∧ ∀𝑥 ∈ 𝑝 ∀𝑦 ∈ 𝑝 ∀𝑧 ∈ 𝑝 ∀𝑢 ∈ 𝑝 ∀𝑣 ∈ 𝑝 ((((𝑥𝑑𝑢) = (𝑥𝑑𝑣) ∧ (𝑦𝑑𝑢) = (𝑦𝑑𝑣) ∧ (𝑧𝑑𝑢) = (𝑧𝑑𝑣)) ∧ 𝑢 ≠ 𝑣) → (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧)))))) |
39 | 1, 2, 3, 38 | sbcie3s 16863 |
. 2
⊢ (𝑓 = 𝐺 → ([(Base‘𝑓) / 𝑝][(dist‘𝑓) / 𝑑][(Itv‘𝑓) / 𝑖](∃𝑥 ∈ 𝑝 ∃𝑦 ∈ 𝑝 ∃𝑧 ∈ 𝑝 ¬ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧)) ∧ ∀𝑥 ∈ 𝑝 ∀𝑦 ∈ 𝑝 ∀𝑧 ∈ 𝑝 ∀𝑢 ∈ 𝑝 ∀𝑣 ∈ 𝑝 ((((𝑥𝑑𝑢) = (𝑥𝑑𝑣) ∧ (𝑦𝑑𝑢) = (𝑦𝑑𝑣) ∧ (𝑧𝑑𝑢) = (𝑧𝑑𝑣)) ∧ 𝑢 ≠ 𝑣) → (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧)))) ↔ (∃𝑥 ∈ 𝑃 ∃𝑦 ∈ 𝑃 ∃𝑧 ∈ 𝑃 ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)) ∧ ∀𝑥 ∈ 𝑃 ∀𝑦 ∈ 𝑃 ∀𝑧 ∈ 𝑃 ∀𝑢 ∈ 𝑃 ∀𝑣 ∈ 𝑃 ((((𝑥 − 𝑢) = (𝑥 − 𝑣) ∧ (𝑦 − 𝑢) = (𝑦 − 𝑣) ∧ (𝑧 − 𝑢) = (𝑧 − 𝑣)) ∧ 𝑢 ≠ 𝑣) → (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)))))) |
40 | | df-trkg2d 32645 |
. 2
⊢
TarskiG2D = {𝑓 ∣ [(Base‘𝑓) / 𝑝][(dist‘𝑓) / 𝑑][(Itv‘𝑓) / 𝑖](∃𝑥 ∈ 𝑝 ∃𝑦 ∈ 𝑝 ∃𝑧 ∈ 𝑝 ¬ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧)) ∧ ∀𝑥 ∈ 𝑝 ∀𝑦 ∈ 𝑝 ∀𝑧 ∈ 𝑝 ∀𝑢 ∈ 𝑝 ∀𝑣 ∈ 𝑝 ((((𝑥𝑑𝑢) = (𝑥𝑑𝑣) ∧ (𝑦𝑑𝑢) = (𝑦𝑑𝑣) ∧ (𝑧𝑑𝑢) = (𝑧𝑑𝑣)) ∧ 𝑢 ≠ 𝑣) → (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))))} |
41 | 39, 40 | elab4g 3614 |
1
⊢ (𝐺 ∈ TarskiG2D
↔ (𝐺 ∈ V ∧
(∃𝑥 ∈ 𝑃 ∃𝑦 ∈ 𝑃 ∃𝑧 ∈ 𝑃 ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)) ∧ ∀𝑥 ∈ 𝑃 ∀𝑦 ∈ 𝑃 ∀𝑧 ∈ 𝑃 ∀𝑢 ∈ 𝑃 ∀𝑣 ∈ 𝑃 ((((𝑥 − 𝑢) = (𝑥 − 𝑣) ∧ (𝑦 − 𝑢) = (𝑦 − 𝑣) ∧ (𝑧 − 𝑢) = (𝑧 − 𝑣)) ∧ 𝑢 ≠ 𝑣) → (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)))))) |