| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | istrkg2d.p | . . 3
⊢ 𝑃 = (Base‘𝐺) | 
| 2 |  | istrkg2d.d | . . 3
⊢  − =
(dist‘𝐺) | 
| 3 |  | istrkg2d.i | . . 3
⊢ 𝐼 = (Itv‘𝐺) | 
| 4 |  | simp1 1137 | . . . . . 6
⊢ ((𝑝 = 𝑃 ∧ 𝑑 = − ∧ 𝑖 = 𝐼) → 𝑝 = 𝑃) | 
| 5 | 4 | eqcomd 2743 | . . . . 5
⊢ ((𝑝 = 𝑃 ∧ 𝑑 = − ∧ 𝑖 = 𝐼) → 𝑃 = 𝑝) | 
| 6 |  | simp3 1139 | . . . . . . . . . . . 12
⊢ ((𝑝 = 𝑃 ∧ 𝑑 = − ∧ 𝑖 = 𝐼) → 𝑖 = 𝐼) | 
| 7 | 6 | eqcomd 2743 | . . . . . . . . . . 11
⊢ ((𝑝 = 𝑃 ∧ 𝑑 = − ∧ 𝑖 = 𝐼) → 𝐼 = 𝑖) | 
| 8 | 7 | oveqd 7448 | . . . . . . . . . 10
⊢ ((𝑝 = 𝑃 ∧ 𝑑 = − ∧ 𝑖 = 𝐼) → (𝑥𝐼𝑦) = (𝑥𝑖𝑦)) | 
| 9 | 8 | eleq2d 2827 | . . . . . . . . 9
⊢ ((𝑝 = 𝑃 ∧ 𝑑 = − ∧ 𝑖 = 𝐼) → (𝑧 ∈ (𝑥𝐼𝑦) ↔ 𝑧 ∈ (𝑥𝑖𝑦))) | 
| 10 | 7 | oveqd 7448 | . . . . . . . . . 10
⊢ ((𝑝 = 𝑃 ∧ 𝑑 = − ∧ 𝑖 = 𝐼) → (𝑧𝐼𝑦) = (𝑧𝑖𝑦)) | 
| 11 | 10 | eleq2d 2827 | . . . . . . . . 9
⊢ ((𝑝 = 𝑃 ∧ 𝑑 = − ∧ 𝑖 = 𝐼) → (𝑥 ∈ (𝑧𝐼𝑦) ↔ 𝑥 ∈ (𝑧𝑖𝑦))) | 
| 12 | 7 | oveqd 7448 | . . . . . . . . . 10
⊢ ((𝑝 = 𝑃 ∧ 𝑑 = − ∧ 𝑖 = 𝐼) → (𝑥𝐼𝑧) = (𝑥𝑖𝑧)) | 
| 13 | 12 | eleq2d 2827 | . . . . . . . . 9
⊢ ((𝑝 = 𝑃 ∧ 𝑑 = − ∧ 𝑖 = 𝐼) → (𝑦 ∈ (𝑥𝐼𝑧) ↔ 𝑦 ∈ (𝑥𝑖𝑧))) | 
| 14 | 9, 11, 13 | 3orbi123d 1437 | . . . . . . . 8
⊢ ((𝑝 = 𝑃 ∧ 𝑑 = − ∧ 𝑖 = 𝐼) → ((𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)) ↔ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧)))) | 
| 15 | 14 | notbid 318 | . . . . . . 7
⊢ ((𝑝 = 𝑃 ∧ 𝑑 = − ∧ 𝑖 = 𝐼) → (¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)) ↔ ¬ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧)))) | 
| 16 | 5, 15 | rexeqbidv 3347 | . . . . . 6
⊢ ((𝑝 = 𝑃 ∧ 𝑑 = − ∧ 𝑖 = 𝐼) → (∃𝑧 ∈ 𝑃 ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)) ↔ ∃𝑧 ∈ 𝑝 ¬ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧)))) | 
| 17 | 5, 16 | rexeqbidv 3347 | . . . . 5
⊢ ((𝑝 = 𝑃 ∧ 𝑑 = − ∧ 𝑖 = 𝐼) → (∃𝑦 ∈ 𝑃 ∃𝑧 ∈ 𝑃 ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)) ↔ ∃𝑦 ∈ 𝑝 ∃𝑧 ∈ 𝑝 ¬ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧)))) | 
| 18 | 5, 17 | rexeqbidv 3347 | . . . 4
⊢ ((𝑝 = 𝑃 ∧ 𝑑 = − ∧ 𝑖 = 𝐼) → (∃𝑥 ∈ 𝑃 ∃𝑦 ∈ 𝑃 ∃𝑧 ∈ 𝑃 ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)) ↔ ∃𝑥 ∈ 𝑝 ∃𝑦 ∈ 𝑝 ∃𝑧 ∈ 𝑝 ¬ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧)))) | 
| 19 |  | simp2 1138 | . . . . . . . . . . . . . . 15
⊢ ((𝑝 = 𝑃 ∧ 𝑑 = − ∧ 𝑖 = 𝐼) → 𝑑 = − ) | 
| 20 | 19 | eqcomd 2743 | . . . . . . . . . . . . . 14
⊢ ((𝑝 = 𝑃 ∧ 𝑑 = − ∧ 𝑖 = 𝐼) → − = 𝑑) | 
| 21 | 20 | oveqd 7448 | . . . . . . . . . . . . 13
⊢ ((𝑝 = 𝑃 ∧ 𝑑 = − ∧ 𝑖 = 𝐼) → (𝑥 − 𝑢) = (𝑥𝑑𝑢)) | 
| 22 | 20 | oveqd 7448 | . . . . . . . . . . . . 13
⊢ ((𝑝 = 𝑃 ∧ 𝑑 = − ∧ 𝑖 = 𝐼) → (𝑥 − 𝑣) = (𝑥𝑑𝑣)) | 
| 23 | 21, 22 | eqeq12d 2753 | . . . . . . . . . . . 12
⊢ ((𝑝 = 𝑃 ∧ 𝑑 = − ∧ 𝑖 = 𝐼) → ((𝑥 − 𝑢) = (𝑥 − 𝑣) ↔ (𝑥𝑑𝑢) = (𝑥𝑑𝑣))) | 
| 24 | 20 | oveqd 7448 | . . . . . . . . . . . . 13
⊢ ((𝑝 = 𝑃 ∧ 𝑑 = − ∧ 𝑖 = 𝐼) → (𝑦 − 𝑢) = (𝑦𝑑𝑢)) | 
| 25 | 20 | oveqd 7448 | . . . . . . . . . . . . 13
⊢ ((𝑝 = 𝑃 ∧ 𝑑 = − ∧ 𝑖 = 𝐼) → (𝑦 − 𝑣) = (𝑦𝑑𝑣)) | 
| 26 | 24, 25 | eqeq12d 2753 | . . . . . . . . . . . 12
⊢ ((𝑝 = 𝑃 ∧ 𝑑 = − ∧ 𝑖 = 𝐼) → ((𝑦 − 𝑢) = (𝑦 − 𝑣) ↔ (𝑦𝑑𝑢) = (𝑦𝑑𝑣))) | 
| 27 | 20 | oveqd 7448 | . . . . . . . . . . . . 13
⊢ ((𝑝 = 𝑃 ∧ 𝑑 = − ∧ 𝑖 = 𝐼) → (𝑧 − 𝑢) = (𝑧𝑑𝑢)) | 
| 28 | 20 | oveqd 7448 | . . . . . . . . . . . . 13
⊢ ((𝑝 = 𝑃 ∧ 𝑑 = − ∧ 𝑖 = 𝐼) → (𝑧 − 𝑣) = (𝑧𝑑𝑣)) | 
| 29 | 27, 28 | eqeq12d 2753 | . . . . . . . . . . . 12
⊢ ((𝑝 = 𝑃 ∧ 𝑑 = − ∧ 𝑖 = 𝐼) → ((𝑧 − 𝑢) = (𝑧 − 𝑣) ↔ (𝑧𝑑𝑢) = (𝑧𝑑𝑣))) | 
| 30 | 23, 26, 29 | 3anbi123d 1438 | . . . . . . . . . . 11
⊢ ((𝑝 = 𝑃 ∧ 𝑑 = − ∧ 𝑖 = 𝐼) → (((𝑥 − 𝑢) = (𝑥 − 𝑣) ∧ (𝑦 − 𝑢) = (𝑦 − 𝑣) ∧ (𝑧 − 𝑢) = (𝑧 − 𝑣)) ↔ ((𝑥𝑑𝑢) = (𝑥𝑑𝑣) ∧ (𝑦𝑑𝑢) = (𝑦𝑑𝑣) ∧ (𝑧𝑑𝑢) = (𝑧𝑑𝑣)))) | 
| 31 | 30 | anbi1d 631 | . . . . . . . . . 10
⊢ ((𝑝 = 𝑃 ∧ 𝑑 = − ∧ 𝑖 = 𝐼) → ((((𝑥 − 𝑢) = (𝑥 − 𝑣) ∧ (𝑦 − 𝑢) = (𝑦 − 𝑣) ∧ (𝑧 − 𝑢) = (𝑧 − 𝑣)) ∧ 𝑢 ≠ 𝑣) ↔ (((𝑥𝑑𝑢) = (𝑥𝑑𝑣) ∧ (𝑦𝑑𝑢) = (𝑦𝑑𝑣) ∧ (𝑧𝑑𝑢) = (𝑧𝑑𝑣)) ∧ 𝑢 ≠ 𝑣))) | 
| 32 | 31, 14 | imbi12d 344 | . . . . . . . . 9
⊢ ((𝑝 = 𝑃 ∧ 𝑑 = − ∧ 𝑖 = 𝐼) → (((((𝑥 − 𝑢) = (𝑥 − 𝑣) ∧ (𝑦 − 𝑢) = (𝑦 − 𝑣) ∧ (𝑧 − 𝑢) = (𝑧 − 𝑣)) ∧ 𝑢 ≠ 𝑣) → (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))) ↔ ((((𝑥𝑑𝑢) = (𝑥𝑑𝑣) ∧ (𝑦𝑑𝑢) = (𝑦𝑑𝑣) ∧ (𝑧𝑑𝑢) = (𝑧𝑑𝑣)) ∧ 𝑢 ≠ 𝑣) → (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))))) | 
| 33 | 5, 32 | raleqbidv 3346 | . . . . . . . 8
⊢ ((𝑝 = 𝑃 ∧ 𝑑 = − ∧ 𝑖 = 𝐼) → (∀𝑣 ∈ 𝑃 ((((𝑥 − 𝑢) = (𝑥 − 𝑣) ∧ (𝑦 − 𝑢) = (𝑦 − 𝑣) ∧ (𝑧 − 𝑢) = (𝑧 − 𝑣)) ∧ 𝑢 ≠ 𝑣) → (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))) ↔ ∀𝑣 ∈ 𝑝 ((((𝑥𝑑𝑢) = (𝑥𝑑𝑣) ∧ (𝑦𝑑𝑢) = (𝑦𝑑𝑣) ∧ (𝑧𝑑𝑢) = (𝑧𝑑𝑣)) ∧ 𝑢 ≠ 𝑣) → (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))))) | 
| 34 | 5, 33 | raleqbidv 3346 | . . . . . . 7
⊢ ((𝑝 = 𝑃 ∧ 𝑑 = − ∧ 𝑖 = 𝐼) → (∀𝑢 ∈ 𝑃 ∀𝑣 ∈ 𝑃 ((((𝑥 − 𝑢) = (𝑥 − 𝑣) ∧ (𝑦 − 𝑢) = (𝑦 − 𝑣) ∧ (𝑧 − 𝑢) = (𝑧 − 𝑣)) ∧ 𝑢 ≠ 𝑣) → (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))) ↔ ∀𝑢 ∈ 𝑝 ∀𝑣 ∈ 𝑝 ((((𝑥𝑑𝑢) = (𝑥𝑑𝑣) ∧ (𝑦𝑑𝑢) = (𝑦𝑑𝑣) ∧ (𝑧𝑑𝑢) = (𝑧𝑑𝑣)) ∧ 𝑢 ≠ 𝑣) → (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))))) | 
| 35 | 5, 34 | raleqbidv 3346 | . . . . . 6
⊢ ((𝑝 = 𝑃 ∧ 𝑑 = − ∧ 𝑖 = 𝐼) → (∀𝑧 ∈ 𝑃 ∀𝑢 ∈ 𝑃 ∀𝑣 ∈ 𝑃 ((((𝑥 − 𝑢) = (𝑥 − 𝑣) ∧ (𝑦 − 𝑢) = (𝑦 − 𝑣) ∧ (𝑧 − 𝑢) = (𝑧 − 𝑣)) ∧ 𝑢 ≠ 𝑣) → (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))) ↔ ∀𝑧 ∈ 𝑝 ∀𝑢 ∈ 𝑝 ∀𝑣 ∈ 𝑝 ((((𝑥𝑑𝑢) = (𝑥𝑑𝑣) ∧ (𝑦𝑑𝑢) = (𝑦𝑑𝑣) ∧ (𝑧𝑑𝑢) = (𝑧𝑑𝑣)) ∧ 𝑢 ≠ 𝑣) → (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))))) | 
| 36 | 5, 35 | raleqbidv 3346 | . . . . 5
⊢ ((𝑝 = 𝑃 ∧ 𝑑 = − ∧ 𝑖 = 𝐼) → (∀𝑦 ∈ 𝑃 ∀𝑧 ∈ 𝑃 ∀𝑢 ∈ 𝑃 ∀𝑣 ∈ 𝑃 ((((𝑥 − 𝑢) = (𝑥 − 𝑣) ∧ (𝑦 − 𝑢) = (𝑦 − 𝑣) ∧ (𝑧 − 𝑢) = (𝑧 − 𝑣)) ∧ 𝑢 ≠ 𝑣) → (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))) ↔ ∀𝑦 ∈ 𝑝 ∀𝑧 ∈ 𝑝 ∀𝑢 ∈ 𝑝 ∀𝑣 ∈ 𝑝 ((((𝑥𝑑𝑢) = (𝑥𝑑𝑣) ∧ (𝑦𝑑𝑢) = (𝑦𝑑𝑣) ∧ (𝑧𝑑𝑢) = (𝑧𝑑𝑣)) ∧ 𝑢 ≠ 𝑣) → (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))))) | 
| 37 | 5, 36 | raleqbidv 3346 | . . . 4
⊢ ((𝑝 = 𝑃 ∧ 𝑑 = − ∧ 𝑖 = 𝐼) → (∀𝑥 ∈ 𝑃 ∀𝑦 ∈ 𝑃 ∀𝑧 ∈ 𝑃 ∀𝑢 ∈ 𝑃 ∀𝑣 ∈ 𝑃 ((((𝑥 − 𝑢) = (𝑥 − 𝑣) ∧ (𝑦 − 𝑢) = (𝑦 − 𝑣) ∧ (𝑧 − 𝑢) = (𝑧 − 𝑣)) ∧ 𝑢 ≠ 𝑣) → (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))) ↔ ∀𝑥 ∈ 𝑝 ∀𝑦 ∈ 𝑝 ∀𝑧 ∈ 𝑝 ∀𝑢 ∈ 𝑝 ∀𝑣 ∈ 𝑝 ((((𝑥𝑑𝑢) = (𝑥𝑑𝑣) ∧ (𝑦𝑑𝑢) = (𝑦𝑑𝑣) ∧ (𝑧𝑑𝑢) = (𝑧𝑑𝑣)) ∧ 𝑢 ≠ 𝑣) → (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))))) | 
| 38 | 18, 37 | anbi12d 632 | . . 3
⊢ ((𝑝 = 𝑃 ∧ 𝑑 = − ∧ 𝑖 = 𝐼) → ((∃𝑥 ∈ 𝑃 ∃𝑦 ∈ 𝑃 ∃𝑧 ∈ 𝑃 ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)) ∧ ∀𝑥 ∈ 𝑃 ∀𝑦 ∈ 𝑃 ∀𝑧 ∈ 𝑃 ∀𝑢 ∈ 𝑃 ∀𝑣 ∈ 𝑃 ((((𝑥 − 𝑢) = (𝑥 − 𝑣) ∧ (𝑦 − 𝑢) = (𝑦 − 𝑣) ∧ (𝑧 − 𝑢) = (𝑧 − 𝑣)) ∧ 𝑢 ≠ 𝑣) → (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)))) ↔ (∃𝑥 ∈ 𝑝 ∃𝑦 ∈ 𝑝 ∃𝑧 ∈ 𝑝 ¬ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧)) ∧ ∀𝑥 ∈ 𝑝 ∀𝑦 ∈ 𝑝 ∀𝑧 ∈ 𝑝 ∀𝑢 ∈ 𝑝 ∀𝑣 ∈ 𝑝 ((((𝑥𝑑𝑢) = (𝑥𝑑𝑣) ∧ (𝑦𝑑𝑢) = (𝑦𝑑𝑣) ∧ (𝑧𝑑𝑢) = (𝑧𝑑𝑣)) ∧ 𝑢 ≠ 𝑣) → (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧)))))) | 
| 39 | 1, 2, 3, 38 | sbcie3s 17199 | . 2
⊢ (𝑓 = 𝐺 → ([(Base‘𝑓) / 𝑝][(dist‘𝑓) / 𝑑][(Itv‘𝑓) / 𝑖](∃𝑥 ∈ 𝑝 ∃𝑦 ∈ 𝑝 ∃𝑧 ∈ 𝑝 ¬ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧)) ∧ ∀𝑥 ∈ 𝑝 ∀𝑦 ∈ 𝑝 ∀𝑧 ∈ 𝑝 ∀𝑢 ∈ 𝑝 ∀𝑣 ∈ 𝑝 ((((𝑥𝑑𝑢) = (𝑥𝑑𝑣) ∧ (𝑦𝑑𝑢) = (𝑦𝑑𝑣) ∧ (𝑧𝑑𝑢) = (𝑧𝑑𝑣)) ∧ 𝑢 ≠ 𝑣) → (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧)))) ↔ (∃𝑥 ∈ 𝑃 ∃𝑦 ∈ 𝑃 ∃𝑧 ∈ 𝑃 ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)) ∧ ∀𝑥 ∈ 𝑃 ∀𝑦 ∈ 𝑃 ∀𝑧 ∈ 𝑃 ∀𝑢 ∈ 𝑃 ∀𝑣 ∈ 𝑃 ((((𝑥 − 𝑢) = (𝑥 − 𝑣) ∧ (𝑦 − 𝑢) = (𝑦 − 𝑣) ∧ (𝑧 − 𝑢) = (𝑧 − 𝑣)) ∧ 𝑢 ≠ 𝑣) → (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)))))) | 
| 40 |  | df-trkg2d 34680 | . 2
⊢
TarskiG2D = {𝑓 ∣ [(Base‘𝑓) / 𝑝][(dist‘𝑓) / 𝑑][(Itv‘𝑓) / 𝑖](∃𝑥 ∈ 𝑝 ∃𝑦 ∈ 𝑝 ∃𝑧 ∈ 𝑝 ¬ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧)) ∧ ∀𝑥 ∈ 𝑝 ∀𝑦 ∈ 𝑝 ∀𝑧 ∈ 𝑝 ∀𝑢 ∈ 𝑝 ∀𝑣 ∈ 𝑝 ((((𝑥𝑑𝑢) = (𝑥𝑑𝑣) ∧ (𝑦𝑑𝑢) = (𝑦𝑑𝑣) ∧ (𝑧𝑑𝑢) = (𝑧𝑑𝑣)) ∧ 𝑢 ≠ 𝑣) → (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))))} | 
| 41 | 39, 40 | elab4g 3683 | 1
⊢ (𝐺 ∈ TarskiG2D
↔ (𝐺 ∈ V ∧
(∃𝑥 ∈ 𝑃 ∃𝑦 ∈ 𝑃 ∃𝑧 ∈ 𝑃 ¬ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)) ∧ ∀𝑥 ∈ 𝑃 ∀𝑦 ∈ 𝑃 ∀𝑧 ∈ 𝑃 ∀𝑢 ∈ 𝑃 ∀𝑣 ∈ 𝑃 ((((𝑥 − 𝑢) = (𝑥 − 𝑣) ∧ (𝑦 − 𝑢) = (𝑦 − 𝑣) ∧ (𝑧 − 𝑢) = (𝑧 − 𝑣)) ∧ 𝑢 ≠ 𝑣) → (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)))))) |