Step | Hyp | Ref
| Expression |
1 | | istrkg2d.p |
. . 3
β’ π = (BaseβπΊ) |
2 | | istrkg2d.d |
. . 3
β’ β =
(distβπΊ) |
3 | | istrkg2d.i |
. . 3
β’ πΌ = (ItvβπΊ) |
4 | | simp1 1137 |
. . . . . 6
β’ ((π = π β§ π = β β§ π = πΌ) β π = π) |
5 | 4 | eqcomd 2739 |
. . . . 5
β’ ((π = π β§ π = β β§ π = πΌ) β π = π) |
6 | | simp3 1139 |
. . . . . . . . . . . 12
β’ ((π = π β§ π = β β§ π = πΌ) β π = πΌ) |
7 | 6 | eqcomd 2739 |
. . . . . . . . . . 11
β’ ((π = π β§ π = β β§ π = πΌ) β πΌ = π) |
8 | 7 | oveqd 7426 |
. . . . . . . . . 10
β’ ((π = π β§ π = β β§ π = πΌ) β (π₯πΌπ¦) = (π₯ππ¦)) |
9 | 8 | eleq2d 2820 |
. . . . . . . . 9
β’ ((π = π β§ π = β β§ π = πΌ) β (π§ β (π₯πΌπ¦) β π§ β (π₯ππ¦))) |
10 | 7 | oveqd 7426 |
. . . . . . . . . 10
β’ ((π = π β§ π = β β§ π = πΌ) β (π§πΌπ¦) = (π§ππ¦)) |
11 | 10 | eleq2d 2820 |
. . . . . . . . 9
β’ ((π = π β§ π = β β§ π = πΌ) β (π₯ β (π§πΌπ¦) β π₯ β (π§ππ¦))) |
12 | 7 | oveqd 7426 |
. . . . . . . . . 10
β’ ((π = π β§ π = β β§ π = πΌ) β (π₯πΌπ§) = (π₯ππ§)) |
13 | 12 | eleq2d 2820 |
. . . . . . . . 9
β’ ((π = π β§ π = β β§ π = πΌ) β (π¦ β (π₯πΌπ§) β π¦ β (π₯ππ§))) |
14 | 9, 11, 13 | 3orbi123d 1436 |
. . . . . . . 8
β’ ((π = π β§ π = β β§ π = πΌ) β ((π§ β (π₯πΌπ¦) β¨ π₯ β (π§πΌπ¦) β¨ π¦ β (π₯πΌπ§)) β (π§ β (π₯ππ¦) β¨ π₯ β (π§ππ¦) β¨ π¦ β (π₯ππ§)))) |
15 | 14 | notbid 318 |
. . . . . . 7
β’ ((π = π β§ π = β β§ π = πΌ) β (Β¬ (π§ β (π₯πΌπ¦) β¨ π₯ β (π§πΌπ¦) β¨ π¦ β (π₯πΌπ§)) β Β¬ (π§ β (π₯ππ¦) β¨ π₯ β (π§ππ¦) β¨ π¦ β (π₯ππ§)))) |
16 | 5, 15 | rexeqbidv 3344 |
. . . . . 6
β’ ((π = π β§ π = β β§ π = πΌ) β (βπ§ β π Β¬ (π§ β (π₯πΌπ¦) β¨ π₯ β (π§πΌπ¦) β¨ π¦ β (π₯πΌπ§)) β βπ§ β π Β¬ (π§ β (π₯ππ¦) β¨ π₯ β (π§ππ¦) β¨ π¦ β (π₯ππ§)))) |
17 | 5, 16 | rexeqbidv 3344 |
. . . . 5
β’ ((π = π β§ π = β β§ π = πΌ) β (βπ¦ β π βπ§ β π Β¬ (π§ β (π₯πΌπ¦) β¨ π₯ β (π§πΌπ¦) β¨ π¦ β (π₯πΌπ§)) β βπ¦ β π βπ§ β π Β¬ (π§ β (π₯ππ¦) β¨ π₯ β (π§ππ¦) β¨ π¦ β (π₯ππ§)))) |
18 | 5, 17 | rexeqbidv 3344 |
. . . 4
β’ ((π = π β§ π = β β§ π = πΌ) β (βπ₯ β π βπ¦ β π βπ§ β π Β¬ (π§ β (π₯πΌπ¦) β¨ π₯ β (π§πΌπ¦) β¨ π¦ β (π₯πΌπ§)) β βπ₯ β π βπ¦ β π βπ§ β π Β¬ (π§ β (π₯ππ¦) β¨ π₯ β (π§ππ¦) β¨ π¦ β (π₯ππ§)))) |
19 | | simp2 1138 |
. . . . . . . . . . . . . . 15
β’ ((π = π β§ π = β β§ π = πΌ) β π = β ) |
20 | 19 | eqcomd 2739 |
. . . . . . . . . . . . . 14
β’ ((π = π β§ π = β β§ π = πΌ) β β = π) |
21 | 20 | oveqd 7426 |
. . . . . . . . . . . . 13
β’ ((π = π β§ π = β β§ π = πΌ) β (π₯ β π’) = (π₯ππ’)) |
22 | 20 | oveqd 7426 |
. . . . . . . . . . . . 13
β’ ((π = π β§ π = β β§ π = πΌ) β (π₯ β π£) = (π₯ππ£)) |
23 | 21, 22 | eqeq12d 2749 |
. . . . . . . . . . . 12
β’ ((π = π β§ π = β β§ π = πΌ) β ((π₯ β π’) = (π₯ β π£) β (π₯ππ’) = (π₯ππ£))) |
24 | 20 | oveqd 7426 |
. . . . . . . . . . . . 13
β’ ((π = π β§ π = β β§ π = πΌ) β (π¦ β π’) = (π¦ππ’)) |
25 | 20 | oveqd 7426 |
. . . . . . . . . . . . 13
β’ ((π = π β§ π = β β§ π = πΌ) β (π¦ β π£) = (π¦ππ£)) |
26 | 24, 25 | eqeq12d 2749 |
. . . . . . . . . . . 12
β’ ((π = π β§ π = β β§ π = πΌ) β ((π¦ β π’) = (π¦ β π£) β (π¦ππ’) = (π¦ππ£))) |
27 | 20 | oveqd 7426 |
. . . . . . . . . . . . 13
β’ ((π = π β§ π = β β§ π = πΌ) β (π§ β π’) = (π§ππ’)) |
28 | 20 | oveqd 7426 |
. . . . . . . . . . . . 13
β’ ((π = π β§ π = β β§ π = πΌ) β (π§ β π£) = (π§ππ£)) |
29 | 27, 28 | eqeq12d 2749 |
. . . . . . . . . . . 12
β’ ((π = π β§ π = β β§ π = πΌ) β ((π§ β π’) = (π§ β π£) β (π§ππ’) = (π§ππ£))) |
30 | 23, 26, 29 | 3anbi123d 1437 |
. . . . . . . . . . 11
β’ ((π = π β§ π = β β§ π = πΌ) β (((π₯ β π’) = (π₯ β π£) β§ (π¦ β π’) = (π¦ β π£) β§ (π§ β π’) = (π§ β π£)) β ((π₯ππ’) = (π₯ππ£) β§ (π¦ππ’) = (π¦ππ£) β§ (π§ππ’) = (π§ππ£)))) |
31 | 30 | anbi1d 631 |
. . . . . . . . . 10
β’ ((π = π β§ π = β β§ π = πΌ) β ((((π₯ β π’) = (π₯ β π£) β§ (π¦ β π’) = (π¦ β π£) β§ (π§ β π’) = (π§ β π£)) β§ π’ β π£) β (((π₯ππ’) = (π₯ππ£) β§ (π¦ππ’) = (π¦ππ£) β§ (π§ππ’) = (π§ππ£)) β§ π’ β π£))) |
32 | 31, 14 | imbi12d 345 |
. . . . . . . . 9
β’ ((π = π β§ π = β β§ π = πΌ) β (((((π₯ β π’) = (π₯ β π£) β§ (π¦ β π’) = (π¦ β π£) β§ (π§ β π’) = (π§ β π£)) β§ π’ β π£) β (π§ β (π₯πΌπ¦) β¨ π₯ β (π§πΌπ¦) β¨ π¦ β (π₯πΌπ§))) β ((((π₯ππ’) = (π₯ππ£) β§ (π¦ππ’) = (π¦ππ£) β§ (π§ππ’) = (π§ππ£)) β§ π’ β π£) β (π§ β (π₯ππ¦) β¨ π₯ β (π§ππ¦) β¨ π¦ β (π₯ππ§))))) |
33 | 5, 32 | raleqbidv 3343 |
. . . . . . . 8
β’ ((π = π β§ π = β β§ π = πΌ) β (βπ£ β π ((((π₯ β π’) = (π₯ β π£) β§ (π¦ β π’) = (π¦ β π£) β§ (π§ β π’) = (π§ β π£)) β§ π’ β π£) β (π§ β (π₯πΌπ¦) β¨ π₯ β (π§πΌπ¦) β¨ π¦ β (π₯πΌπ§))) β βπ£ β π ((((π₯ππ’) = (π₯ππ£) β§ (π¦ππ’) = (π¦ππ£) β§ (π§ππ’) = (π§ππ£)) β§ π’ β π£) β (π§ β (π₯ππ¦) β¨ π₯ β (π§ππ¦) β¨ π¦ β (π₯ππ§))))) |
34 | 5, 33 | raleqbidv 3343 |
. . . . . . 7
β’ ((π = π β§ π = β β§ π = πΌ) β (βπ’ β π βπ£ β π ((((π₯ β π’) = (π₯ β π£) β§ (π¦ β π’) = (π¦ β π£) β§ (π§ β π’) = (π§ β π£)) β§ π’ β π£) β (π§ β (π₯πΌπ¦) β¨ π₯ β (π§πΌπ¦) β¨ π¦ β (π₯πΌπ§))) β βπ’ β π βπ£ β π ((((π₯ππ’) = (π₯ππ£) β§ (π¦ππ’) = (π¦ππ£) β§ (π§ππ’) = (π§ππ£)) β§ π’ β π£) β (π§ β (π₯ππ¦) β¨ π₯ β (π§ππ¦) β¨ π¦ β (π₯ππ§))))) |
35 | 5, 34 | raleqbidv 3343 |
. . . . . 6
β’ ((π = π β§ π = β β§ π = πΌ) β (βπ§ β π βπ’ β π βπ£ β π ((((π₯ β π’) = (π₯ β π£) β§ (π¦ β π’) = (π¦ β π£) β§ (π§ β π’) = (π§ β π£)) β§ π’ β π£) β (π§ β (π₯πΌπ¦) β¨ π₯ β (π§πΌπ¦) β¨ π¦ β (π₯πΌπ§))) β βπ§ β π βπ’ β π βπ£ β π ((((π₯ππ’) = (π₯ππ£) β§ (π¦ππ’) = (π¦ππ£) β§ (π§ππ’) = (π§ππ£)) β§ π’ β π£) β (π§ β (π₯ππ¦) β¨ π₯ β (π§ππ¦) β¨ π¦ β (π₯ππ§))))) |
36 | 5, 35 | raleqbidv 3343 |
. . . . 5
β’ ((π = π β§ π = β β§ π = πΌ) β (βπ¦ β π βπ§ β π βπ’ β π βπ£ β π ((((π₯ β π’) = (π₯ β π£) β§ (π¦ β π’) = (π¦ β π£) β§ (π§ β π’) = (π§ β π£)) β§ π’ β π£) β (π§ β (π₯πΌπ¦) β¨ π₯ β (π§πΌπ¦) β¨ π¦ β (π₯πΌπ§))) β βπ¦ β π βπ§ β π βπ’ β π βπ£ β π ((((π₯ππ’) = (π₯ππ£) β§ (π¦ππ’) = (π¦ππ£) β§ (π§ππ’) = (π§ππ£)) β§ π’ β π£) β (π§ β (π₯ππ¦) β¨ π₯ β (π§ππ¦) β¨ π¦ β (π₯ππ§))))) |
37 | 5, 36 | raleqbidv 3343 |
. . . 4
β’ ((π = π β§ π = β β§ π = πΌ) β (βπ₯ β π βπ¦ β π βπ§ β π βπ’ β π βπ£ β π ((((π₯ β π’) = (π₯ β π£) β§ (π¦ β π’) = (π¦ β π£) β§ (π§ β π’) = (π§ β π£)) β§ π’ β π£) β (π§ β (π₯πΌπ¦) β¨ π₯ β (π§πΌπ¦) β¨ π¦ β (π₯πΌπ§))) β βπ₯ β π βπ¦ β π βπ§ β π βπ’ β π βπ£ β π ((((π₯ππ’) = (π₯ππ£) β§ (π¦ππ’) = (π¦ππ£) β§ (π§ππ’) = (π§ππ£)) β§ π’ β π£) β (π§ β (π₯ππ¦) β¨ π₯ β (π§ππ¦) β¨ π¦ β (π₯ππ§))))) |
38 | 18, 37 | anbi12d 632 |
. . 3
β’ ((π = π β§ π = β β§ π = πΌ) β ((βπ₯ β π βπ¦ β π βπ§ β π Β¬ (π§ β (π₯πΌπ¦) β¨ π₯ β (π§πΌπ¦) β¨ π¦ β (π₯πΌπ§)) β§ βπ₯ β π βπ¦ β π βπ§ β π βπ’ β π βπ£ β π ((((π₯ β π’) = (π₯ β π£) β§ (π¦ β π’) = (π¦ β π£) β§ (π§ β π’) = (π§ β π£)) β§ π’ β π£) β (π§ β (π₯πΌπ¦) β¨ π₯ β (π§πΌπ¦) β¨ π¦ β (π₯πΌπ§)))) β (βπ₯ β π βπ¦ β π βπ§ β π Β¬ (π§ β (π₯ππ¦) β¨ π₯ β (π§ππ¦) β¨ π¦ β (π₯ππ§)) β§ βπ₯ β π βπ¦ β π βπ§ β π βπ’ β π βπ£ β π ((((π₯ππ’) = (π₯ππ£) β§ (π¦ππ’) = (π¦ππ£) β§ (π§ππ’) = (π§ππ£)) β§ π’ β π£) β (π§ β (π₯ππ¦) β¨ π₯ β (π§ππ¦) β¨ π¦ β (π₯ππ§)))))) |
39 | 1, 2, 3, 38 | sbcie3s 17095 |
. 2
β’ (π = πΊ β ([(Baseβπ) / π][(distβπ) / π][(Itvβπ) / π](βπ₯ β π βπ¦ β π βπ§ β π Β¬ (π§ β (π₯ππ¦) β¨ π₯ β (π§ππ¦) β¨ π¦ β (π₯ππ§)) β§ βπ₯ β π βπ¦ β π βπ§ β π βπ’ β π βπ£ β π ((((π₯ππ’) = (π₯ππ£) β§ (π¦ππ’) = (π¦ππ£) β§ (π§ππ’) = (π§ππ£)) β§ π’ β π£) β (π§ β (π₯ππ¦) β¨ π₯ β (π§ππ¦) β¨ π¦ β (π₯ππ§)))) β (βπ₯ β π βπ¦ β π βπ§ β π Β¬ (π§ β (π₯πΌπ¦) β¨ π₯ β (π§πΌπ¦) β¨ π¦ β (π₯πΌπ§)) β§ βπ₯ β π βπ¦ β π βπ§ β π βπ’ β π βπ£ β π ((((π₯ β π’) = (π₯ β π£) β§ (π¦ β π’) = (π¦ β π£) β§ (π§ β π’) = (π§ β π£)) β§ π’ β π£) β (π§ β (π₯πΌπ¦) β¨ π₯ β (π§πΌπ¦) β¨ π¦ β (π₯πΌπ§)))))) |
40 | | df-trkg2d 33677 |
. 2
β’
TarskiG2D = {π β£ [(Baseβπ) / π][(distβπ) / π][(Itvβπ) / π](βπ₯ β π βπ¦ β π βπ§ β π Β¬ (π§ β (π₯ππ¦) β¨ π₯ β (π§ππ¦) β¨ π¦ β (π₯ππ§)) β§ βπ₯ β π βπ¦ β π βπ§ β π βπ’ β π βπ£ β π ((((π₯ππ’) = (π₯ππ£) β§ (π¦ππ’) = (π¦ππ£) β§ (π§ππ’) = (π§ππ£)) β§ π’ β π£) β (π§ β (π₯ππ¦) β¨ π₯ β (π§ππ¦) β¨ π¦ β (π₯ππ§))))} |
41 | 39, 40 | elab4g 3674 |
1
β’ (πΊ β TarskiG2D
β (πΊ β V β§
(βπ₯ β π βπ¦ β π βπ§ β π Β¬ (π§ β (π₯πΌπ¦) β¨ π₯ β (π§πΌπ¦) β¨ π¦ β (π₯πΌπ§)) β§ βπ₯ β π βπ¦ β π βπ§ β π βπ’ β π βπ£ β π ((((π₯ β π’) = (π₯ β π£) β§ (π¦ β π’) = (π¦ β π£) β§ (π§ β π’) = (π§ β π£)) β§ π’ β π£) β (π§ β (π₯πΌπ¦) β¨ π₯ β (π§πΌπ¦) β¨ π¦ β (π₯πΌπ§)))))) |