MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-trkgc Structured version   Visualization version   GIF version

Definition df-trkgc 26713
Description: Define the class of geometries fulfilling the congruence axioms of reflexivity, identity and transitivity. These are axioms A1 to A3 of [Schwabhauser] p. 10. With our distance based notation for congruence, transitivity of congruence boils down to transitivity of equality and is already given by eqtr 2761, so it is not listed in this definition. (Contributed by Thierry Arnoux, 24-Aug-2017.)
Assertion
Ref Expression
df-trkgc TarskiGC = {𝑓[(Base‘𝑓) / 𝑝][(dist‘𝑓) / 𝑑](∀𝑥𝑝𝑦𝑝 (𝑥𝑑𝑦) = (𝑦𝑑𝑥) ∧ ∀𝑥𝑝𝑦𝑝𝑧𝑝 ((𝑥𝑑𝑦) = (𝑧𝑑𝑧) → 𝑥 = 𝑦))}
Distinct variable group:   𝑓,𝑑,𝑝,𝑥,𝑦,𝑧

Detailed syntax breakdown of Definition df-trkgc
StepHypRef Expression
1 cstrkgc 26694 . 2 class TarskiGC
2 vx . . . . . . . . . . 11 setvar 𝑥
32cv 1538 . . . . . . . . . 10 class 𝑥
4 vy . . . . . . . . . . 11 setvar 𝑦
54cv 1538 . . . . . . . . . 10 class 𝑦
6 vd . . . . . . . . . . 11 setvar 𝑑
76cv 1538 . . . . . . . . . 10 class 𝑑
83, 5, 7co 7255 . . . . . . . . 9 class (𝑥𝑑𝑦)
95, 3, 7co 7255 . . . . . . . . 9 class (𝑦𝑑𝑥)
108, 9wceq 1539 . . . . . . . 8 wff (𝑥𝑑𝑦) = (𝑦𝑑𝑥)
11 vp . . . . . . . . 9 setvar 𝑝
1211cv 1538 . . . . . . . 8 class 𝑝
1310, 4, 12wral 3063 . . . . . . 7 wff 𝑦𝑝 (𝑥𝑑𝑦) = (𝑦𝑑𝑥)
1413, 2, 12wral 3063 . . . . . 6 wff 𝑥𝑝𝑦𝑝 (𝑥𝑑𝑦) = (𝑦𝑑𝑥)
15 vz . . . . . . . . . . . . 13 setvar 𝑧
1615cv 1538 . . . . . . . . . . . 12 class 𝑧
1716, 16, 7co 7255 . . . . . . . . . . 11 class (𝑧𝑑𝑧)
188, 17wceq 1539 . . . . . . . . . 10 wff (𝑥𝑑𝑦) = (𝑧𝑑𝑧)
192, 4weq 1967 . . . . . . . . . 10 wff 𝑥 = 𝑦
2018, 19wi 4 . . . . . . . . 9 wff ((𝑥𝑑𝑦) = (𝑧𝑑𝑧) → 𝑥 = 𝑦)
2120, 15, 12wral 3063 . . . . . . . 8 wff 𝑧𝑝 ((𝑥𝑑𝑦) = (𝑧𝑑𝑧) → 𝑥 = 𝑦)
2221, 4, 12wral 3063 . . . . . . 7 wff 𝑦𝑝𝑧𝑝 ((𝑥𝑑𝑦) = (𝑧𝑑𝑧) → 𝑥 = 𝑦)
2322, 2, 12wral 3063 . . . . . 6 wff 𝑥𝑝𝑦𝑝𝑧𝑝 ((𝑥𝑑𝑦) = (𝑧𝑑𝑧) → 𝑥 = 𝑦)
2414, 23wa 395 . . . . 5 wff (∀𝑥𝑝𝑦𝑝 (𝑥𝑑𝑦) = (𝑦𝑑𝑥) ∧ ∀𝑥𝑝𝑦𝑝𝑧𝑝 ((𝑥𝑑𝑦) = (𝑧𝑑𝑧) → 𝑥 = 𝑦))
25 vf . . . . . . 7 setvar 𝑓
2625cv 1538 . . . . . 6 class 𝑓
27 cds 16897 . . . . . 6 class dist
2826, 27cfv 6418 . . . . 5 class (dist‘𝑓)
2924, 6, 28wsbc 3711 . . . 4 wff [(dist‘𝑓) / 𝑑](∀𝑥𝑝𝑦𝑝 (𝑥𝑑𝑦) = (𝑦𝑑𝑥) ∧ ∀𝑥𝑝𝑦𝑝𝑧𝑝 ((𝑥𝑑𝑦) = (𝑧𝑑𝑧) → 𝑥 = 𝑦))
30 cbs 16840 . . . . 5 class Base
3126, 30cfv 6418 . . . 4 class (Base‘𝑓)
3229, 11, 31wsbc 3711 . . 3 wff [(Base‘𝑓) / 𝑝][(dist‘𝑓) / 𝑑](∀𝑥𝑝𝑦𝑝 (𝑥𝑑𝑦) = (𝑦𝑑𝑥) ∧ ∀𝑥𝑝𝑦𝑝𝑧𝑝 ((𝑥𝑑𝑦) = (𝑧𝑑𝑧) → 𝑥 = 𝑦))
3332, 25cab 2715 . 2 class {𝑓[(Base‘𝑓) / 𝑝][(dist‘𝑓) / 𝑑](∀𝑥𝑝𝑦𝑝 (𝑥𝑑𝑦) = (𝑦𝑑𝑥) ∧ ∀𝑥𝑝𝑦𝑝𝑧𝑝 ((𝑥𝑑𝑦) = (𝑧𝑑𝑧) → 𝑥 = 𝑦))}
341, 33wceq 1539 1 wff TarskiGC = {𝑓[(Base‘𝑓) / 𝑝][(dist‘𝑓) / 𝑑](∀𝑥𝑝𝑦𝑝 (𝑥𝑑𝑦) = (𝑦𝑑𝑥) ∧ ∀𝑥𝑝𝑦𝑝𝑧𝑝 ((𝑥𝑑𝑦) = (𝑧𝑑𝑧) → 𝑥 = 𝑦))}
Colors of variables: wff setvar class
This definition is referenced by:  istrkgc  26719
  Copyright terms: Public domain W3C validator