Detailed syntax breakdown of Definition df-trkgc
| Step | Hyp | Ref
| Expression |
| 1 | | cstrkgc 28436 |
. 2
class
TarskiGC |
| 2 | | vx |
. . . . . . . . . . 11
setvar 𝑥 |
| 3 | 2 | cv 1539 |
. . . . . . . . . 10
class 𝑥 |
| 4 | | vy |
. . . . . . . . . . 11
setvar 𝑦 |
| 5 | 4 | cv 1539 |
. . . . . . . . . 10
class 𝑦 |
| 6 | | vd |
. . . . . . . . . . 11
setvar 𝑑 |
| 7 | 6 | cv 1539 |
. . . . . . . . . 10
class 𝑑 |
| 8 | 3, 5, 7 | co 7431 |
. . . . . . . . 9
class (𝑥𝑑𝑦) |
| 9 | 5, 3, 7 | co 7431 |
. . . . . . . . 9
class (𝑦𝑑𝑥) |
| 10 | 8, 9 | wceq 1540 |
. . . . . . . 8
wff (𝑥𝑑𝑦) = (𝑦𝑑𝑥) |
| 11 | | vp |
. . . . . . . . 9
setvar 𝑝 |
| 12 | 11 | cv 1539 |
. . . . . . . 8
class 𝑝 |
| 13 | 10, 4, 12 | wral 3061 |
. . . . . . 7
wff
∀𝑦 ∈
𝑝 (𝑥𝑑𝑦) = (𝑦𝑑𝑥) |
| 14 | 13, 2, 12 | wral 3061 |
. . . . . 6
wff
∀𝑥 ∈
𝑝 ∀𝑦 ∈ 𝑝 (𝑥𝑑𝑦) = (𝑦𝑑𝑥) |
| 15 | | vz |
. . . . . . . . . . . . 13
setvar 𝑧 |
| 16 | 15 | cv 1539 |
. . . . . . . . . . . 12
class 𝑧 |
| 17 | 16, 16, 7 | co 7431 |
. . . . . . . . . . 11
class (𝑧𝑑𝑧) |
| 18 | 8, 17 | wceq 1540 |
. . . . . . . . . 10
wff (𝑥𝑑𝑦) = (𝑧𝑑𝑧) |
| 19 | 2, 4 | weq 1962 |
. . . . . . . . . 10
wff 𝑥 = 𝑦 |
| 20 | 18, 19 | wi 4 |
. . . . . . . . 9
wff ((𝑥𝑑𝑦) = (𝑧𝑑𝑧) → 𝑥 = 𝑦) |
| 21 | 20, 15, 12 | wral 3061 |
. . . . . . . 8
wff
∀𝑧 ∈
𝑝 ((𝑥𝑑𝑦) = (𝑧𝑑𝑧) → 𝑥 = 𝑦) |
| 22 | 21, 4, 12 | wral 3061 |
. . . . . . 7
wff
∀𝑦 ∈
𝑝 ∀𝑧 ∈ 𝑝 ((𝑥𝑑𝑦) = (𝑧𝑑𝑧) → 𝑥 = 𝑦) |
| 23 | 22, 2, 12 | wral 3061 |
. . . . . 6
wff
∀𝑥 ∈
𝑝 ∀𝑦 ∈ 𝑝 ∀𝑧 ∈ 𝑝 ((𝑥𝑑𝑦) = (𝑧𝑑𝑧) → 𝑥 = 𝑦) |
| 24 | 14, 23 | wa 395 |
. . . . 5
wff
(∀𝑥 ∈
𝑝 ∀𝑦 ∈ 𝑝 (𝑥𝑑𝑦) = (𝑦𝑑𝑥) ∧ ∀𝑥 ∈ 𝑝 ∀𝑦 ∈ 𝑝 ∀𝑧 ∈ 𝑝 ((𝑥𝑑𝑦) = (𝑧𝑑𝑧) → 𝑥 = 𝑦)) |
| 25 | | vf |
. . . . . . 7
setvar 𝑓 |
| 26 | 25 | cv 1539 |
. . . . . 6
class 𝑓 |
| 27 | | cds 17306 |
. . . . . 6
class
dist |
| 28 | 26, 27 | cfv 6561 |
. . . . 5
class
(dist‘𝑓) |
| 29 | 24, 6, 28 | wsbc 3788 |
. . . 4
wff
[(dist‘𝑓) / 𝑑](∀𝑥 ∈ 𝑝 ∀𝑦 ∈ 𝑝 (𝑥𝑑𝑦) = (𝑦𝑑𝑥) ∧ ∀𝑥 ∈ 𝑝 ∀𝑦 ∈ 𝑝 ∀𝑧 ∈ 𝑝 ((𝑥𝑑𝑦) = (𝑧𝑑𝑧) → 𝑥 = 𝑦)) |
| 30 | | cbs 17247 |
. . . . 5
class
Base |
| 31 | 26, 30 | cfv 6561 |
. . . 4
class
(Base‘𝑓) |
| 32 | 29, 11, 31 | wsbc 3788 |
. . 3
wff
[(Base‘𝑓) / 𝑝][(dist‘𝑓) / 𝑑](∀𝑥 ∈ 𝑝 ∀𝑦 ∈ 𝑝 (𝑥𝑑𝑦) = (𝑦𝑑𝑥) ∧ ∀𝑥 ∈ 𝑝 ∀𝑦 ∈ 𝑝 ∀𝑧 ∈ 𝑝 ((𝑥𝑑𝑦) = (𝑧𝑑𝑧) → 𝑥 = 𝑦)) |
| 33 | 32, 25 | cab 2714 |
. 2
class {𝑓 ∣
[(Base‘𝑓) /
𝑝][(dist‘𝑓) / 𝑑](∀𝑥 ∈ 𝑝 ∀𝑦 ∈ 𝑝 (𝑥𝑑𝑦) = (𝑦𝑑𝑥) ∧ ∀𝑥 ∈ 𝑝 ∀𝑦 ∈ 𝑝 ∀𝑧 ∈ 𝑝 ((𝑥𝑑𝑦) = (𝑧𝑑𝑧) → 𝑥 = 𝑦))} |
| 34 | 1, 33 | wceq 1540 |
1
wff
TarskiGC = {𝑓 ∣ [(Base‘𝑓) / 𝑝][(dist‘𝑓) / 𝑑](∀𝑥 ∈ 𝑝 ∀𝑦 ∈ 𝑝 (𝑥𝑑𝑦) = (𝑦𝑑𝑥) ∧ ∀𝑥 ∈ 𝑝 ∀𝑦 ∈ 𝑝 ∀𝑧 ∈ 𝑝 ((𝑥𝑑𝑦) = (𝑧𝑑𝑧) → 𝑥 = 𝑦))} |