Detailed syntax breakdown of Definition df-trkgc
Step | Hyp | Ref
| Expression |
1 | | cstrkgc 26694 |
. 2
class
TarskiGC |
2 | | vx |
. . . . . . . . . . 11
setvar 𝑥 |
3 | 2 | cv 1538 |
. . . . . . . . . 10
class 𝑥 |
4 | | vy |
. . . . . . . . . . 11
setvar 𝑦 |
5 | 4 | cv 1538 |
. . . . . . . . . 10
class 𝑦 |
6 | | vd |
. . . . . . . . . . 11
setvar 𝑑 |
7 | 6 | cv 1538 |
. . . . . . . . . 10
class 𝑑 |
8 | 3, 5, 7 | co 7255 |
. . . . . . . . 9
class (𝑥𝑑𝑦) |
9 | 5, 3, 7 | co 7255 |
. . . . . . . . 9
class (𝑦𝑑𝑥) |
10 | 8, 9 | wceq 1539 |
. . . . . . . 8
wff (𝑥𝑑𝑦) = (𝑦𝑑𝑥) |
11 | | vp |
. . . . . . . . 9
setvar 𝑝 |
12 | 11 | cv 1538 |
. . . . . . . 8
class 𝑝 |
13 | 10, 4, 12 | wral 3063 |
. . . . . . 7
wff
∀𝑦 ∈
𝑝 (𝑥𝑑𝑦) = (𝑦𝑑𝑥) |
14 | 13, 2, 12 | wral 3063 |
. . . . . 6
wff
∀𝑥 ∈
𝑝 ∀𝑦 ∈ 𝑝 (𝑥𝑑𝑦) = (𝑦𝑑𝑥) |
15 | | vz |
. . . . . . . . . . . . 13
setvar 𝑧 |
16 | 15 | cv 1538 |
. . . . . . . . . . . 12
class 𝑧 |
17 | 16, 16, 7 | co 7255 |
. . . . . . . . . . 11
class (𝑧𝑑𝑧) |
18 | 8, 17 | wceq 1539 |
. . . . . . . . . 10
wff (𝑥𝑑𝑦) = (𝑧𝑑𝑧) |
19 | 2, 4 | weq 1967 |
. . . . . . . . . 10
wff 𝑥 = 𝑦 |
20 | 18, 19 | wi 4 |
. . . . . . . . 9
wff ((𝑥𝑑𝑦) = (𝑧𝑑𝑧) → 𝑥 = 𝑦) |
21 | 20, 15, 12 | wral 3063 |
. . . . . . . 8
wff
∀𝑧 ∈
𝑝 ((𝑥𝑑𝑦) = (𝑧𝑑𝑧) → 𝑥 = 𝑦) |
22 | 21, 4, 12 | wral 3063 |
. . . . . . 7
wff
∀𝑦 ∈
𝑝 ∀𝑧 ∈ 𝑝 ((𝑥𝑑𝑦) = (𝑧𝑑𝑧) → 𝑥 = 𝑦) |
23 | 22, 2, 12 | wral 3063 |
. . . . . 6
wff
∀𝑥 ∈
𝑝 ∀𝑦 ∈ 𝑝 ∀𝑧 ∈ 𝑝 ((𝑥𝑑𝑦) = (𝑧𝑑𝑧) → 𝑥 = 𝑦) |
24 | 14, 23 | wa 395 |
. . . . 5
wff
(∀𝑥 ∈
𝑝 ∀𝑦 ∈ 𝑝 (𝑥𝑑𝑦) = (𝑦𝑑𝑥) ∧ ∀𝑥 ∈ 𝑝 ∀𝑦 ∈ 𝑝 ∀𝑧 ∈ 𝑝 ((𝑥𝑑𝑦) = (𝑧𝑑𝑧) → 𝑥 = 𝑦)) |
25 | | vf |
. . . . . . 7
setvar 𝑓 |
26 | 25 | cv 1538 |
. . . . . 6
class 𝑓 |
27 | | cds 16897 |
. . . . . 6
class
dist |
28 | 26, 27 | cfv 6418 |
. . . . 5
class
(dist‘𝑓) |
29 | 24, 6, 28 | wsbc 3711 |
. . . 4
wff
[(dist‘𝑓) / 𝑑](∀𝑥 ∈ 𝑝 ∀𝑦 ∈ 𝑝 (𝑥𝑑𝑦) = (𝑦𝑑𝑥) ∧ ∀𝑥 ∈ 𝑝 ∀𝑦 ∈ 𝑝 ∀𝑧 ∈ 𝑝 ((𝑥𝑑𝑦) = (𝑧𝑑𝑧) → 𝑥 = 𝑦)) |
30 | | cbs 16840 |
. . . . 5
class
Base |
31 | 26, 30 | cfv 6418 |
. . . 4
class
(Base‘𝑓) |
32 | 29, 11, 31 | wsbc 3711 |
. . 3
wff
[(Base‘𝑓) / 𝑝][(dist‘𝑓) / 𝑑](∀𝑥 ∈ 𝑝 ∀𝑦 ∈ 𝑝 (𝑥𝑑𝑦) = (𝑦𝑑𝑥) ∧ ∀𝑥 ∈ 𝑝 ∀𝑦 ∈ 𝑝 ∀𝑧 ∈ 𝑝 ((𝑥𝑑𝑦) = (𝑧𝑑𝑧) → 𝑥 = 𝑦)) |
33 | 32, 25 | cab 2715 |
. 2
class {𝑓 ∣
[(Base‘𝑓) /
𝑝][(dist‘𝑓) / 𝑑](∀𝑥 ∈ 𝑝 ∀𝑦 ∈ 𝑝 (𝑥𝑑𝑦) = (𝑦𝑑𝑥) ∧ ∀𝑥 ∈ 𝑝 ∀𝑦 ∈ 𝑝 ∀𝑧 ∈ 𝑝 ((𝑥𝑑𝑦) = (𝑧𝑑𝑧) → 𝑥 = 𝑦))} |
34 | 1, 33 | wceq 1539 |
1
wff
TarskiGC = {𝑓 ∣ [(Base‘𝑓) / 𝑝][(dist‘𝑓) / 𝑑](∀𝑥 ∈ 𝑝 ∀𝑦 ∈ 𝑝 (𝑥𝑑𝑦) = (𝑦𝑑𝑥) ∧ ∀𝑥 ∈ 𝑝 ∀𝑦 ∈ 𝑝 ∀𝑧 ∈ 𝑝 ((𝑥𝑑𝑦) = (𝑧𝑑𝑧) → 𝑥 = 𝑦))} |