MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  istrkgc Structured version   Visualization version   GIF version

Theorem istrkgc 26154
Description: Property of being a Tarski geometry - congruence part. (Contributed by Thierry Arnoux, 14-Mar-2019.)
Hypotheses
Ref Expression
istrkg.p 𝑃 = (Base‘𝐺)
istrkg.d = (dist‘𝐺)
istrkg.i 𝐼 = (Itv‘𝐺)
Assertion
Ref Expression
istrkgc (𝐺 ∈ TarskiGC ↔ (𝐺 ∈ V ∧ (∀𝑥𝑃𝑦𝑃 (𝑥 𝑦) = (𝑦 𝑥) ∧ ∀𝑥𝑃𝑦𝑃𝑧𝑃 ((𝑥 𝑦) = (𝑧 𝑧) → 𝑥 = 𝑦))))
Distinct variable groups:   𝑥,𝑦,𝑧,𝐼   𝑥,𝑃,𝑦,𝑧   𝑥, ,𝑦,𝑧
Allowed substitution hints:   𝐺(𝑥,𝑦,𝑧)

Proof of Theorem istrkgc
Dummy variables 𝑓 𝑑 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 istrkg.p . . 3 𝑃 = (Base‘𝐺)
2 istrkg.d . . 3 = (dist‘𝐺)
3 simpl 483 . . . . . 6 ((𝑝 = 𝑃𝑑 = ) → 𝑝 = 𝑃)
43eqcomd 2830 . . . . 5 ((𝑝 = 𝑃𝑑 = ) → 𝑃 = 𝑝)
54adantr 481 . . . . . 6 (((𝑝 = 𝑃𝑑 = ) ∧ 𝑥𝑃) → 𝑃 = 𝑝)
6 simpllr 772 . . . . . . . . 9 ((((𝑝 = 𝑃𝑑 = ) ∧ 𝑥𝑃) ∧ 𝑦𝑃) → 𝑑 = )
76eqcomd 2830 . . . . . . . 8 ((((𝑝 = 𝑃𝑑 = ) ∧ 𝑥𝑃) ∧ 𝑦𝑃) → = 𝑑)
87oveqd 7168 . . . . . . 7 ((((𝑝 = 𝑃𝑑 = ) ∧ 𝑥𝑃) ∧ 𝑦𝑃) → (𝑥 𝑦) = (𝑥𝑑𝑦))
97oveqd 7168 . . . . . . 7 ((((𝑝 = 𝑃𝑑 = ) ∧ 𝑥𝑃) ∧ 𝑦𝑃) → (𝑦 𝑥) = (𝑦𝑑𝑥))
108, 9eqeq12d 2840 . . . . . 6 ((((𝑝 = 𝑃𝑑 = ) ∧ 𝑥𝑃) ∧ 𝑦𝑃) → ((𝑥 𝑦) = (𝑦 𝑥) ↔ (𝑥𝑑𝑦) = (𝑦𝑑𝑥)))
115, 10raleqbidva 3430 . . . . 5 (((𝑝 = 𝑃𝑑 = ) ∧ 𝑥𝑃) → (∀𝑦𝑃 (𝑥 𝑦) = (𝑦 𝑥) ↔ ∀𝑦𝑝 (𝑥𝑑𝑦) = (𝑦𝑑𝑥)))
124, 11raleqbidva 3430 . . . 4 ((𝑝 = 𝑃𝑑 = ) → (∀𝑥𝑃𝑦𝑃 (𝑥 𝑦) = (𝑦 𝑥) ↔ ∀𝑥𝑝𝑦𝑝 (𝑥𝑑𝑦) = (𝑦𝑑𝑥)))
135adantr 481 . . . . . . 7 ((((𝑝 = 𝑃𝑑 = ) ∧ 𝑥𝑃) ∧ 𝑦𝑃) → 𝑃 = 𝑝)
147oveqdr 7179 . . . . . . . . 9 (((((𝑝 = 𝑃𝑑 = ) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑧𝑃) → (𝑥 𝑦) = (𝑥𝑑𝑦))
157oveqdr 7179 . . . . . . . . 9 (((((𝑝 = 𝑃𝑑 = ) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑧𝑃) → (𝑧 𝑧) = (𝑧𝑑𝑧))
1614, 15eqeq12d 2840 . . . . . . . 8 (((((𝑝 = 𝑃𝑑 = ) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑧𝑃) → ((𝑥 𝑦) = (𝑧 𝑧) ↔ (𝑥𝑑𝑦) = (𝑧𝑑𝑧)))
1716imbi1d 343 . . . . . . 7 (((((𝑝 = 𝑃𝑑 = ) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑧𝑃) → (((𝑥 𝑦) = (𝑧 𝑧) → 𝑥 = 𝑦) ↔ ((𝑥𝑑𝑦) = (𝑧𝑑𝑧) → 𝑥 = 𝑦)))
1813, 17raleqbidva 3430 . . . . . 6 ((((𝑝 = 𝑃𝑑 = ) ∧ 𝑥𝑃) ∧ 𝑦𝑃) → (∀𝑧𝑃 ((𝑥 𝑦) = (𝑧 𝑧) → 𝑥 = 𝑦) ↔ ∀𝑧𝑝 ((𝑥𝑑𝑦) = (𝑧𝑑𝑧) → 𝑥 = 𝑦)))
195, 18raleqbidva 3430 . . . . 5 (((𝑝 = 𝑃𝑑 = ) ∧ 𝑥𝑃) → (∀𝑦𝑃𝑧𝑃 ((𝑥 𝑦) = (𝑧 𝑧) → 𝑥 = 𝑦) ↔ ∀𝑦𝑝𝑧𝑝 ((𝑥𝑑𝑦) = (𝑧𝑑𝑧) → 𝑥 = 𝑦)))
204, 19raleqbidva 3430 . . . 4 ((𝑝 = 𝑃𝑑 = ) → (∀𝑥𝑃𝑦𝑃𝑧𝑃 ((𝑥 𝑦) = (𝑧 𝑧) → 𝑥 = 𝑦) ↔ ∀𝑥𝑝𝑦𝑝𝑧𝑝 ((𝑥𝑑𝑦) = (𝑧𝑑𝑧) → 𝑥 = 𝑦)))
2112, 20anbi12d 630 . . 3 ((𝑝 = 𝑃𝑑 = ) → ((∀𝑥𝑃𝑦𝑃 (𝑥 𝑦) = (𝑦 𝑥) ∧ ∀𝑥𝑃𝑦𝑃𝑧𝑃 ((𝑥 𝑦) = (𝑧 𝑧) → 𝑥 = 𝑦)) ↔ (∀𝑥𝑝𝑦𝑝 (𝑥𝑑𝑦) = (𝑦𝑑𝑥) ∧ ∀𝑥𝑝𝑦𝑝𝑧𝑝 ((𝑥𝑑𝑦) = (𝑧𝑑𝑧) → 𝑥 = 𝑦))))
221, 2, 21sbcie2s 16532 . 2 (𝑓 = 𝐺 → ([(Base‘𝑓) / 𝑝][(dist‘𝑓) / 𝑑](∀𝑥𝑝𝑦𝑝 (𝑥𝑑𝑦) = (𝑦𝑑𝑥) ∧ ∀𝑥𝑝𝑦𝑝𝑧𝑝 ((𝑥𝑑𝑦) = (𝑧𝑑𝑧) → 𝑥 = 𝑦)) ↔ (∀𝑥𝑃𝑦𝑃 (𝑥 𝑦) = (𝑦 𝑥) ∧ ∀𝑥𝑃𝑦𝑃𝑧𝑃 ((𝑥 𝑦) = (𝑧 𝑧) → 𝑥 = 𝑦))))
23 df-trkgc 26148 . 2 TarskiGC = {𝑓[(Base‘𝑓) / 𝑝][(dist‘𝑓) / 𝑑](∀𝑥𝑝𝑦𝑝 (𝑥𝑑𝑦) = (𝑦𝑑𝑥) ∧ ∀𝑥𝑝𝑦𝑝𝑧𝑝 ((𝑥𝑑𝑦) = (𝑧𝑑𝑧) → 𝑥 = 𝑦))}
2422, 23elab4g 3674 1 (𝐺 ∈ TarskiGC ↔ (𝐺 ∈ V ∧ (∀𝑥𝑃𝑦𝑃 (𝑥 𝑦) = (𝑦 𝑥) ∧ ∀𝑥𝑃𝑦𝑃𝑧𝑃 ((𝑥 𝑦) = (𝑧 𝑧) → 𝑥 = 𝑦))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396   = wceq 1530  wcel 2106  wral 3142  Vcvv 3499  [wsbc 3775  cfv 6351  (class class class)co 7151  Basecbs 16475  distcds 16566  TarskiGCcstrkgc 26131  Itvcitv 26136
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2152  ax-12 2167  ax-ext 2796  ax-nul 5206
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2615  df-eu 2649  df-clab 2803  df-cleq 2817  df-clel 2897  df-nfc 2967  df-ral 3147  df-rex 3148  df-rab 3151  df-v 3501  df-sbc 3776  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-nul 4295  df-if 4470  df-sn 4564  df-pr 4566  df-op 4570  df-uni 4837  df-br 5063  df-iota 6311  df-fv 6359  df-ov 7154  df-trkgc 26148
This theorem is referenced by:  axtgcgrrflx  26162  axtgcgrid  26163  f1otrg  26572  xmstrkgc  26587  eengtrkg  26687
  Copyright terms: Public domain W3C validator