MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  istrkgc Structured version   Visualization version   GIF version

Theorem istrkgc 28462
Description: Property of being a Tarski geometry - congruence part. (Contributed by Thierry Arnoux, 14-Mar-2019.)
Hypotheses
Ref Expression
istrkg.p 𝑃 = (Base‘𝐺)
istrkg.d = (dist‘𝐺)
istrkg.i 𝐼 = (Itv‘𝐺)
Assertion
Ref Expression
istrkgc (𝐺 ∈ TarskiGC ↔ (𝐺 ∈ V ∧ (∀𝑥𝑃𝑦𝑃 (𝑥 𝑦) = (𝑦 𝑥) ∧ ∀𝑥𝑃𝑦𝑃𝑧𝑃 ((𝑥 𝑦) = (𝑧 𝑧) → 𝑥 = 𝑦))))
Distinct variable groups:   𝑥,𝑦,𝑧,𝐼   𝑥,𝑃,𝑦,𝑧   𝑥, ,𝑦,𝑧
Allowed substitution hints:   𝐺(𝑥,𝑦,𝑧)

Proof of Theorem istrkgc
Dummy variables 𝑓 𝑑 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 istrkg.p . . 3 𝑃 = (Base‘𝐺)
2 istrkg.d . . 3 = (dist‘𝐺)
3 simpl 482 . . . . 5 ((𝑝 = 𝑃𝑑 = ) → 𝑝 = 𝑃)
4 simpr 484 . . . . . . . 8 ((𝑝 = 𝑃𝑑 = ) → 𝑑 = )
54oveqd 7448 . . . . . . 7 ((𝑝 = 𝑃𝑑 = ) → (𝑥𝑑𝑦) = (𝑥 𝑦))
64oveqd 7448 . . . . . . 7 ((𝑝 = 𝑃𝑑 = ) → (𝑦𝑑𝑥) = (𝑦 𝑥))
75, 6eqeq12d 2753 . . . . . 6 ((𝑝 = 𝑃𝑑 = ) → ((𝑥𝑑𝑦) = (𝑦𝑑𝑥) ↔ (𝑥 𝑦) = (𝑦 𝑥)))
83, 7raleqbidv 3346 . . . . 5 ((𝑝 = 𝑃𝑑 = ) → (∀𝑦𝑝 (𝑥𝑑𝑦) = (𝑦𝑑𝑥) ↔ ∀𝑦𝑃 (𝑥 𝑦) = (𝑦 𝑥)))
93, 8raleqbidv 3346 . . . 4 ((𝑝 = 𝑃𝑑 = ) → (∀𝑥𝑝𝑦𝑝 (𝑥𝑑𝑦) = (𝑦𝑑𝑥) ↔ ∀𝑥𝑃𝑦𝑃 (𝑥 𝑦) = (𝑦 𝑥)))
104oveqd 7448 . . . . . . . . 9 ((𝑝 = 𝑃𝑑 = ) → (𝑧𝑑𝑧) = (𝑧 𝑧))
115, 10eqeq12d 2753 . . . . . . . 8 ((𝑝 = 𝑃𝑑 = ) → ((𝑥𝑑𝑦) = (𝑧𝑑𝑧) ↔ (𝑥 𝑦) = (𝑧 𝑧)))
1211imbi1d 341 . . . . . . 7 ((𝑝 = 𝑃𝑑 = ) → (((𝑥𝑑𝑦) = (𝑧𝑑𝑧) → 𝑥 = 𝑦) ↔ ((𝑥 𝑦) = (𝑧 𝑧) → 𝑥 = 𝑦)))
133, 12raleqbidv 3346 . . . . . 6 ((𝑝 = 𝑃𝑑 = ) → (∀𝑧𝑝 ((𝑥𝑑𝑦) = (𝑧𝑑𝑧) → 𝑥 = 𝑦) ↔ ∀𝑧𝑃 ((𝑥 𝑦) = (𝑧 𝑧) → 𝑥 = 𝑦)))
143, 13raleqbidv 3346 . . . . 5 ((𝑝 = 𝑃𝑑 = ) → (∀𝑦𝑝𝑧𝑝 ((𝑥𝑑𝑦) = (𝑧𝑑𝑧) → 𝑥 = 𝑦) ↔ ∀𝑦𝑃𝑧𝑃 ((𝑥 𝑦) = (𝑧 𝑧) → 𝑥 = 𝑦)))
153, 14raleqbidv 3346 . . . 4 ((𝑝 = 𝑃𝑑 = ) → (∀𝑥𝑝𝑦𝑝𝑧𝑝 ((𝑥𝑑𝑦) = (𝑧𝑑𝑧) → 𝑥 = 𝑦) ↔ ∀𝑥𝑃𝑦𝑃𝑧𝑃 ((𝑥 𝑦) = (𝑧 𝑧) → 𝑥 = 𝑦)))
169, 15anbi12d 632 . . 3 ((𝑝 = 𝑃𝑑 = ) → ((∀𝑥𝑝𝑦𝑝 (𝑥𝑑𝑦) = (𝑦𝑑𝑥) ∧ ∀𝑥𝑝𝑦𝑝𝑧𝑝 ((𝑥𝑑𝑦) = (𝑧𝑑𝑧) → 𝑥 = 𝑦)) ↔ (∀𝑥𝑃𝑦𝑃 (𝑥 𝑦) = (𝑦 𝑥) ∧ ∀𝑥𝑃𝑦𝑃𝑧𝑃 ((𝑥 𝑦) = (𝑧 𝑧) → 𝑥 = 𝑦))))
171, 2, 16sbcie2s 17198 . 2 (𝑓 = 𝐺 → ([(Base‘𝑓) / 𝑝][(dist‘𝑓) / 𝑑](∀𝑥𝑝𝑦𝑝 (𝑥𝑑𝑦) = (𝑦𝑑𝑥) ∧ ∀𝑥𝑝𝑦𝑝𝑧𝑝 ((𝑥𝑑𝑦) = (𝑧𝑑𝑧) → 𝑥 = 𝑦)) ↔ (∀𝑥𝑃𝑦𝑃 (𝑥 𝑦) = (𝑦 𝑥) ∧ ∀𝑥𝑃𝑦𝑃𝑧𝑃 ((𝑥 𝑦) = (𝑧 𝑧) → 𝑥 = 𝑦))))
18 df-trkgc 28456 . 2 TarskiGC = {𝑓[(Base‘𝑓) / 𝑝][(dist‘𝑓) / 𝑑](∀𝑥𝑝𝑦𝑝 (𝑥𝑑𝑦) = (𝑦𝑑𝑥) ∧ ∀𝑥𝑝𝑦𝑝𝑧𝑝 ((𝑥𝑑𝑦) = (𝑧𝑑𝑧) → 𝑥 = 𝑦))}
1917, 18elab4g 3683 1 (𝐺 ∈ TarskiGC ↔ (𝐺 ∈ V ∧ (∀𝑥𝑃𝑦𝑃 (𝑥 𝑦) = (𝑦 𝑥) ∧ ∀𝑥𝑃𝑦𝑃𝑧𝑃 ((𝑥 𝑦) = (𝑧 𝑧) → 𝑥 = 𝑦))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  wral 3061  Vcvv 3480  [wsbc 3788  cfv 6561  (class class class)co 7431  Basecbs 17247  distcds 17306  TarskiGCcstrkgc 28436  Itvcitv 28441
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2708  ax-nul 5306
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2065  df-clab 2715  df-cleq 2729  df-clel 2816  df-ne 2941  df-ral 3062  df-rab 3437  df-v 3482  df-sbc 3789  df-dif 3954  df-un 3956  df-ss 3968  df-nul 4334  df-if 4526  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-br 5144  df-iota 6514  df-fv 6569  df-ov 7434  df-trkgc 28456
This theorem is referenced by:  axtgcgrrflx  28470  axtgcgrid  28471  f1otrg  28879  xmstrkgc  28900  eengtrkg  29001
  Copyright terms: Public domain W3C validator