MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  istrkgc Structured version   Visualization version   GIF version

Theorem istrkgc 26815
Description: Property of being a Tarski geometry - congruence part. (Contributed by Thierry Arnoux, 14-Mar-2019.)
Hypotheses
Ref Expression
istrkg.p 𝑃 = (Base‘𝐺)
istrkg.d = (dist‘𝐺)
istrkg.i 𝐼 = (Itv‘𝐺)
Assertion
Ref Expression
istrkgc (𝐺 ∈ TarskiGC ↔ (𝐺 ∈ V ∧ (∀𝑥𝑃𝑦𝑃 (𝑥 𝑦) = (𝑦 𝑥) ∧ ∀𝑥𝑃𝑦𝑃𝑧𝑃 ((𝑥 𝑦) = (𝑧 𝑧) → 𝑥 = 𝑦))))
Distinct variable groups:   𝑥,𝑦,𝑧,𝐼   𝑥,𝑃,𝑦,𝑧   𝑥, ,𝑦,𝑧
Allowed substitution hints:   𝐺(𝑥,𝑦,𝑧)

Proof of Theorem istrkgc
Dummy variables 𝑓 𝑑 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 istrkg.p . . 3 𝑃 = (Base‘𝐺)
2 istrkg.d . . 3 = (dist‘𝐺)
3 simpl 483 . . . . . 6 ((𝑝 = 𝑃𝑑 = ) → 𝑝 = 𝑃)
43eqcomd 2744 . . . . 5 ((𝑝 = 𝑃𝑑 = ) → 𝑃 = 𝑝)
54adantr 481 . . . . . 6 (((𝑝 = 𝑃𝑑 = ) ∧ 𝑥𝑃) → 𝑃 = 𝑝)
6 simpllr 773 . . . . . . . . 9 ((((𝑝 = 𝑃𝑑 = ) ∧ 𝑥𝑃) ∧ 𝑦𝑃) → 𝑑 = )
76eqcomd 2744 . . . . . . . 8 ((((𝑝 = 𝑃𝑑 = ) ∧ 𝑥𝑃) ∧ 𝑦𝑃) → = 𝑑)
87oveqd 7292 . . . . . . 7 ((((𝑝 = 𝑃𝑑 = ) ∧ 𝑥𝑃) ∧ 𝑦𝑃) → (𝑥 𝑦) = (𝑥𝑑𝑦))
97oveqd 7292 . . . . . . 7 ((((𝑝 = 𝑃𝑑 = ) ∧ 𝑥𝑃) ∧ 𝑦𝑃) → (𝑦 𝑥) = (𝑦𝑑𝑥))
108, 9eqeq12d 2754 . . . . . 6 ((((𝑝 = 𝑃𝑑 = ) ∧ 𝑥𝑃) ∧ 𝑦𝑃) → ((𝑥 𝑦) = (𝑦 𝑥) ↔ (𝑥𝑑𝑦) = (𝑦𝑑𝑥)))
115, 10raleqbidva 3354 . . . . 5 (((𝑝 = 𝑃𝑑 = ) ∧ 𝑥𝑃) → (∀𝑦𝑃 (𝑥 𝑦) = (𝑦 𝑥) ↔ ∀𝑦𝑝 (𝑥𝑑𝑦) = (𝑦𝑑𝑥)))
124, 11raleqbidva 3354 . . . 4 ((𝑝 = 𝑃𝑑 = ) → (∀𝑥𝑃𝑦𝑃 (𝑥 𝑦) = (𝑦 𝑥) ↔ ∀𝑥𝑝𝑦𝑝 (𝑥𝑑𝑦) = (𝑦𝑑𝑥)))
135adantr 481 . . . . . . 7 ((((𝑝 = 𝑃𝑑 = ) ∧ 𝑥𝑃) ∧ 𝑦𝑃) → 𝑃 = 𝑝)
147oveqdr 7303 . . . . . . . . 9 (((((𝑝 = 𝑃𝑑 = ) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑧𝑃) → (𝑥 𝑦) = (𝑥𝑑𝑦))
157oveqdr 7303 . . . . . . . . 9 (((((𝑝 = 𝑃𝑑 = ) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑧𝑃) → (𝑧 𝑧) = (𝑧𝑑𝑧))
1614, 15eqeq12d 2754 . . . . . . . 8 (((((𝑝 = 𝑃𝑑 = ) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑧𝑃) → ((𝑥 𝑦) = (𝑧 𝑧) ↔ (𝑥𝑑𝑦) = (𝑧𝑑𝑧)))
1716imbi1d 342 . . . . . . 7 (((((𝑝 = 𝑃𝑑 = ) ∧ 𝑥𝑃) ∧ 𝑦𝑃) ∧ 𝑧𝑃) → (((𝑥 𝑦) = (𝑧 𝑧) → 𝑥 = 𝑦) ↔ ((𝑥𝑑𝑦) = (𝑧𝑑𝑧) → 𝑥 = 𝑦)))
1813, 17raleqbidva 3354 . . . . . 6 ((((𝑝 = 𝑃𝑑 = ) ∧ 𝑥𝑃) ∧ 𝑦𝑃) → (∀𝑧𝑃 ((𝑥 𝑦) = (𝑧 𝑧) → 𝑥 = 𝑦) ↔ ∀𝑧𝑝 ((𝑥𝑑𝑦) = (𝑧𝑑𝑧) → 𝑥 = 𝑦)))
195, 18raleqbidva 3354 . . . . 5 (((𝑝 = 𝑃𝑑 = ) ∧ 𝑥𝑃) → (∀𝑦𝑃𝑧𝑃 ((𝑥 𝑦) = (𝑧 𝑧) → 𝑥 = 𝑦) ↔ ∀𝑦𝑝𝑧𝑝 ((𝑥𝑑𝑦) = (𝑧𝑑𝑧) → 𝑥 = 𝑦)))
204, 19raleqbidva 3354 . . . 4 ((𝑝 = 𝑃𝑑 = ) → (∀𝑥𝑃𝑦𝑃𝑧𝑃 ((𝑥 𝑦) = (𝑧 𝑧) → 𝑥 = 𝑦) ↔ ∀𝑥𝑝𝑦𝑝𝑧𝑝 ((𝑥𝑑𝑦) = (𝑧𝑑𝑧) → 𝑥 = 𝑦)))
2112, 20anbi12d 631 . . 3 ((𝑝 = 𝑃𝑑 = ) → ((∀𝑥𝑃𝑦𝑃 (𝑥 𝑦) = (𝑦 𝑥) ∧ ∀𝑥𝑃𝑦𝑃𝑧𝑃 ((𝑥 𝑦) = (𝑧 𝑧) → 𝑥 = 𝑦)) ↔ (∀𝑥𝑝𝑦𝑝 (𝑥𝑑𝑦) = (𝑦𝑑𝑥) ∧ ∀𝑥𝑝𝑦𝑝𝑧𝑝 ((𝑥𝑑𝑦) = (𝑧𝑑𝑧) → 𝑥 = 𝑦))))
221, 2, 21sbcie2s 16862 . 2 (𝑓 = 𝐺 → ([(Base‘𝑓) / 𝑝][(dist‘𝑓) / 𝑑](∀𝑥𝑝𝑦𝑝 (𝑥𝑑𝑦) = (𝑦𝑑𝑥) ∧ ∀𝑥𝑝𝑦𝑝𝑧𝑝 ((𝑥𝑑𝑦) = (𝑧𝑑𝑧) → 𝑥 = 𝑦)) ↔ (∀𝑥𝑃𝑦𝑃 (𝑥 𝑦) = (𝑦 𝑥) ∧ ∀𝑥𝑃𝑦𝑃𝑧𝑃 ((𝑥 𝑦) = (𝑧 𝑧) → 𝑥 = 𝑦))))
23 df-trkgc 26809 . 2 TarskiGC = {𝑓[(Base‘𝑓) / 𝑝][(dist‘𝑓) / 𝑑](∀𝑥𝑝𝑦𝑝 (𝑥𝑑𝑦) = (𝑦𝑑𝑥) ∧ ∀𝑥𝑝𝑦𝑝𝑧𝑝 ((𝑥𝑑𝑦) = (𝑧𝑑𝑧) → 𝑥 = 𝑦))}
2422, 23elab4g 3614 1 (𝐺 ∈ TarskiGC ↔ (𝐺 ∈ V ∧ (∀𝑥𝑃𝑦𝑃 (𝑥 𝑦) = (𝑦 𝑥) ∧ ∀𝑥𝑃𝑦𝑃𝑧𝑃 ((𝑥 𝑦) = (𝑧 𝑧) → 𝑥 = 𝑦))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106  wral 3064  Vcvv 3432  [wsbc 3716  cfv 6433  (class class class)co 7275  Basecbs 16912  distcds 16971  TarskiGCcstrkgc 26789  Itvcitv 26794
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-nul 5230
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-sbc 3717  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-iota 6391  df-fv 6441  df-ov 7278  df-trkgc 26809
This theorem is referenced by:  axtgcgrrflx  26823  axtgcgrid  26824  f1otrg  27232  xmstrkgc  27253  eengtrkg  27354
  Copyright terms: Public domain W3C validator