Step | Hyp | Ref
| Expression |
1 | | istrkg.p |
. . 3
β’ π = (BaseβπΊ) |
2 | | istrkg.d |
. . 3
β’ β =
(distβπΊ) |
3 | | simpl 483 |
. . . . 5
β’ ((π = π β§ π = β ) β π = π) |
4 | | simpr 485 |
. . . . . . . 8
β’ ((π = π β§ π = β ) β π = β ) |
5 | 4 | oveqd 7422 |
. . . . . . 7
β’ ((π = π β§ π = β ) β (π₯ππ¦) = (π₯ β π¦)) |
6 | 4 | oveqd 7422 |
. . . . . . 7
β’ ((π = π β§ π = β ) β (π¦ππ₯) = (π¦ β π₯)) |
7 | 5, 6 | eqeq12d 2748 |
. . . . . 6
β’ ((π = π β§ π = β ) β ((π₯ππ¦) = (π¦ππ₯) β (π₯ β π¦) = (π¦ β π₯))) |
8 | 3, 7 | raleqbidv 3342 |
. . . . 5
β’ ((π = π β§ π = β ) β
(βπ¦ β π (π₯ππ¦) = (π¦ππ₯) β βπ¦ β π (π₯ β π¦) = (π¦ β π₯))) |
9 | 3, 8 | raleqbidv 3342 |
. . . 4
β’ ((π = π β§ π = β ) β
(βπ₯ β π βπ¦ β π (π₯ππ¦) = (π¦ππ₯) β βπ₯ β π βπ¦ β π (π₯ β π¦) = (π¦ β π₯))) |
10 | 4 | oveqd 7422 |
. . . . . . . . 9
β’ ((π = π β§ π = β ) β (π§ππ§) = (π§ β π§)) |
11 | 5, 10 | eqeq12d 2748 |
. . . . . . . 8
β’ ((π = π β§ π = β ) β ((π₯ππ¦) = (π§ππ§) β (π₯ β π¦) = (π§ β π§))) |
12 | 11 | imbi1d 341 |
. . . . . . 7
β’ ((π = π β§ π = β ) β (((π₯ππ¦) = (π§ππ§) β π₯ = π¦) β ((π₯ β π¦) = (π§ β π§) β π₯ = π¦))) |
13 | 3, 12 | raleqbidv 3342 |
. . . . . 6
β’ ((π = π β§ π = β ) β
(βπ§ β π ((π₯ππ¦) = (π§ππ§) β π₯ = π¦) β βπ§ β π ((π₯ β π¦) = (π§ β π§) β π₯ = π¦))) |
14 | 3, 13 | raleqbidv 3342 |
. . . . 5
β’ ((π = π β§ π = β ) β
(βπ¦ β π βπ§ β π ((π₯ππ¦) = (π§ππ§) β π₯ = π¦) β βπ¦ β π βπ§ β π ((π₯ β π¦) = (π§ β π§) β π₯ = π¦))) |
15 | 3, 14 | raleqbidv 3342 |
. . . 4
β’ ((π = π β§ π = β ) β
(βπ₯ β π βπ¦ β π βπ§ β π ((π₯ππ¦) = (π§ππ§) β π₯ = π¦) β βπ₯ β π βπ¦ β π βπ§ β π ((π₯ β π¦) = (π§ β π§) β π₯ = π¦))) |
16 | 9, 15 | anbi12d 631 |
. . 3
β’ ((π = π β§ π = β ) β
((βπ₯ β π βπ¦ β π (π₯ππ¦) = (π¦ππ₯) β§ βπ₯ β π βπ¦ β π βπ§ β π ((π₯ππ¦) = (π§ππ§) β π₯ = π¦)) β (βπ₯ β π βπ¦ β π (π₯ β π¦) = (π¦ β π₯) β§ βπ₯ β π βπ¦ β π βπ§ β π ((π₯ β π¦) = (π§ β π§) β π₯ = π¦)))) |
17 | 1, 2, 16 | sbcie2s 17090 |
. 2
β’ (π = πΊ β ([(Baseβπ) / π][(distβπ) / π](βπ₯ β π βπ¦ β π (π₯ππ¦) = (π¦ππ₯) β§ βπ₯ β π βπ¦ β π βπ§ β π ((π₯ππ¦) = (π§ππ§) β π₯ = π¦)) β (βπ₯ β π βπ¦ β π (π₯ β π¦) = (π¦ β π₯) β§ βπ₯ β π βπ¦ β π βπ§ β π ((π₯ β π¦) = (π§ β π§) β π₯ = π¦)))) |
18 | | df-trkgc 27688 |
. 2
β’
TarskiGC = {π β£ [(Baseβπ) / π][(distβπ) / π](βπ₯ β π βπ¦ β π (π₯ππ¦) = (π¦ππ₯) β§ βπ₯ β π βπ¦ β π βπ§ β π ((π₯ππ¦) = (π§ππ§) β π₯ = π¦))} |
19 | 17, 18 | elab4g 3672 |
1
β’ (πΊ β TarskiGC
β (πΊ β V β§
(βπ₯ β π βπ¦ β π (π₯ β π¦) = (π¦ β π₯) β§ βπ₯ β π βπ¦ β π βπ§ β π ((π₯ β π¦) = (π§ β π§) β π₯ = π¦)))) |