| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eqtr | Structured version Visualization version GIF version | ||
| Description: Transitive law for class equality. Proposition 4.7(3) of [TakeutiZaring] p. 13. (Contributed by NM, 25-Jan-2004.) |
| Ref | Expression |
|---|---|
| eqtr | ⊢ ((𝐴 = 𝐵 ∧ 𝐵 = 𝐶) → 𝐴 = 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqeq1 2734 | . 2 ⊢ (𝐴 = 𝐵 → (𝐴 = 𝐶 ↔ 𝐵 = 𝐶)) | |
| 2 | 1 | biimpar 477 | 1 ⊢ ((𝐴 = 𝐵 ∧ 𝐵 = 𝐶) → 𝐴 = 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2722 |
| This theorem is referenced by: sylan9eq 2785 eqvincg 3617 disjeq0 4422 uneqdifeq 4459 propeqop 5470 relresfld 6252 unixpid 6260 fvmptdf 6977 poseq 8140 soseq 8141 eqer 8710 xpider 8764 undifixp 8910 wemaplem2 9507 infeq5 9597 ficard 10525 winalim2 10656 addlsub 11601 pospo 18311 istos 18384 symg2bas 19330 dmatmul 22391 uhgr2edg 29142 clwlkclwwlkf1lem3 29942 eqtrb 32410 bnj545 34892 bnj934 34932 bnj953 34936 ordcmp 36442 bj-snmoore 37108 bj-isclm 37286 bj-bary1lem1 37306 poimirlem26 37647 heicant 37656 ismblfin 37662 volsupnfl 37666 itg2addnclem2 37673 itg2addnc 37675 rngodm1dm2 37933 rngoidmlem 37937 rngo1cl 37940 rngoueqz 37941 zerdivemp1x 37948 disjdmqsss 38801 dvheveccl 41113 rp-isfinite5 43513 clcnvlem 43619 relexpxpmin 43713 gneispace 44130 resipos 48967 |
| Copyright terms: Public domain | W3C validator |