![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > eqtr | Structured version Visualization version GIF version |
Description: Transitive law for class equality. Proposition 4.7(3) of [TakeutiZaring] p. 13. (Contributed by NM, 25-Jan-2004.) |
Ref | Expression |
---|---|
eqtr | ⊢ ((𝐴 = 𝐵 ∧ 𝐵 = 𝐶) → 𝐴 = 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqeq1 2744 | . 2 ⊢ (𝐴 = 𝐵 → (𝐴 = 𝐶 ↔ 𝐵 = 𝐶)) | |
2 | 1 | biimpar 477 | 1 ⊢ ((𝐴 = 𝐵 ∧ 𝐵 = 𝐶) → 𝐴 = 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1778 df-cleq 2732 |
This theorem is referenced by: eqtr2OLD 2765 eqtr3OLD 2767 sylan9eq 2800 eqvincg 3661 disjeq0 4479 uneqdifeq 4516 propeqop 5526 relresfld 6307 unixpid 6315 fvmptdf 7035 poseq 8199 soseq 8200 eqer 8799 xpider 8846 undifixp 8992 wemaplem2 9616 infeq5 9706 ficard 10634 winalim2 10765 addlsub 11706 pospo 18415 istos 18488 symg2bas 19434 dmatmul 22524 uhgr2edg 29243 clwlkclwwlkf1lem3 30038 eqtrb 32502 bnj545 34871 bnj934 34911 bnj953 34915 ordcmp 36413 bj-snmoore 37079 bj-isclm 37257 bj-bary1lem1 37277 poimirlem26 37606 heicant 37615 ismblfin 37621 volsupnfl 37625 itg2addnclem2 37632 itg2addnc 37634 rngodm1dm2 37892 rngoidmlem 37896 rngo1cl 37899 rngoueqz 37900 zerdivemp1x 37907 disjdmqsss 38758 dvheveccl 41069 rp-isfinite5 43479 clcnvlem 43585 relexpxpmin 43679 gneispace 44096 |
Copyright terms: Public domain | W3C validator |