| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eqtr | Structured version Visualization version GIF version | ||
| Description: Transitive law for class equality. Proposition 4.7(3) of [TakeutiZaring] p. 13. (Contributed by NM, 25-Jan-2004.) |
| Ref | Expression |
|---|---|
| eqtr | ⊢ ((𝐴 = 𝐵 ∧ 𝐵 = 𝐶) → 𝐴 = 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqeq1 2733 | . 2 ⊢ (𝐴 = 𝐵 → (𝐴 = 𝐶 ↔ 𝐵 = 𝐶)) | |
| 2 | 1 | biimpar 477 | 1 ⊢ ((𝐴 = 𝐵 ∧ 𝐵 = 𝐶) → 𝐴 = 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2721 |
| This theorem is referenced by: sylan9eq 2784 eqvincg 3614 disjeq0 4419 uneqdifeq 4456 propeqop 5467 relresfld 6249 unixpid 6257 fvmptdf 6974 poseq 8137 soseq 8138 eqer 8707 xpider 8761 undifixp 8907 wemaplem2 9500 infeq5 9590 ficard 10518 winalim2 10649 addlsub 11594 pospo 18304 istos 18377 symg2bas 19323 dmatmul 22384 uhgr2edg 29135 clwlkclwwlkf1lem3 29935 eqtrb 32403 bnj545 34885 bnj934 34925 bnj953 34929 ordcmp 36435 bj-snmoore 37101 bj-isclm 37279 bj-bary1lem1 37299 poimirlem26 37640 heicant 37649 ismblfin 37655 volsupnfl 37659 itg2addnclem2 37666 itg2addnc 37668 rngodm1dm2 37926 rngoidmlem 37930 rngo1cl 37933 rngoueqz 37934 zerdivemp1x 37941 disjdmqsss 38794 dvheveccl 41106 rp-isfinite5 43506 clcnvlem 43612 relexpxpmin 43706 gneispace 44123 resipos 48963 |
| Copyright terms: Public domain | W3C validator |