Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > eqtr | Structured version Visualization version GIF version |
Description: Transitive law for class equality. Proposition 4.7(3) of [TakeutiZaring] p. 13. (Contributed by NM, 25-Jan-2004.) |
Ref | Expression |
---|---|
eqtr | ⊢ ((𝐴 = 𝐵 ∧ 𝐵 = 𝐶) → 𝐴 = 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqeq1 2763 | . 2 ⊢ (𝐴 = 𝐵 → (𝐴 = 𝐶 ↔ 𝐵 = 𝐶)) | |
2 | 1 | biimpar 482 | 1 ⊢ ((𝐴 = 𝐵 ∧ 𝐵 = 𝐶) → 𝐴 = 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 400 = wceq 1539 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1912 ax-6 1971 ax-7 2016 ax-9 2122 ax-ext 2730 |
This theorem depends on definitions: df-bi 210 df-an 401 df-ex 1783 df-cleq 2751 |
This theorem is referenced by: eqtr2 2780 eqtr3 2781 sylan9eq 2814 eqvincg 3560 disjeq0 4353 uneqdifeq 4387 propeqop 5367 relresfld 6106 unixpid 6114 fvmptdf 6766 eqer 8335 xpider 8379 undifixp 8517 wemaplem2 9037 infeq5 9126 ficard 10018 winalim2 10149 addlsub 11087 pospo 17642 istos 17704 symg2bas 18581 dmatmul 21190 uhgr2edg 27090 clwlkclwwlkf1lem3 27883 eqtrb 30337 bnj545 32388 bnj934 32428 bnj953 32432 poseq 33349 soseq 33350 ordcmp 34178 bj-snmoore 34801 bj-isclm 34978 bj-bary1lem1 34998 poimirlem26 35356 heicant 35365 ismblfin 35371 volsupnfl 35375 itg2addnclem2 35382 itg2addnc 35384 rngodm1dm2 35643 rngoidmlem 35647 rngo1cl 35650 rngoueqz 35651 zerdivemp1x 35658 dvheveccl 38681 rp-isfinite5 40591 clcnvlem 40689 relexpxpmin 40784 gneispace 41203 |
Copyright terms: Public domain | W3C validator |