| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eqtr | Structured version Visualization version GIF version | ||
| Description: Transitive law for class equality. Proposition 4.7(3) of [TakeutiZaring] p. 13. (Contributed by NM, 25-Jan-2004.) |
| Ref | Expression |
|---|---|
| eqtr | ⊢ ((𝐴 = 𝐵 ∧ 𝐵 = 𝐶) → 𝐴 = 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqeq1 2735 | . 2 ⊢ (𝐴 = 𝐵 → (𝐴 = 𝐶 ↔ 𝐵 = 𝐶)) | |
| 2 | 1 | biimpar 477 | 1 ⊢ ((𝐴 = 𝐵 ∧ 𝐵 = 𝐶) → 𝐴 = 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-cleq 2723 |
| This theorem is referenced by: sylan9eq 2786 eqvincg 3598 disjeq0 4403 uneqdifeq 4440 propeqop 5445 relresfld 6223 unixpid 6231 fvmptdf 6935 poseq 8088 soseq 8089 eqer 8658 xpider 8712 undifixp 8858 wemaplem2 9433 infeq5 9527 ficard 10456 winalim2 10587 addlsub 11533 pospo 18249 istos 18322 symg2bas 19305 dmatmul 22412 uhgr2edg 29186 clwlkclwwlkf1lem3 29986 eqtrb 32453 bnj545 34907 bnj934 34947 bnj953 34951 ordcmp 36491 bj-snmoore 37157 bj-isclm 37335 bj-bary1lem1 37355 poimirlem26 37685 heicant 37694 ismblfin 37700 volsupnfl 37704 itg2addnclem2 37711 itg2addnc 37713 rngodm1dm2 37971 rngoidmlem 37975 rngo1cl 37978 rngoueqz 37979 zerdivemp1x 37986 disjdmqsss 38899 dvheveccl 41210 rp-isfinite5 43609 clcnvlem 43715 relexpxpmin 43809 gneispace 44226 resipos 49074 |
| Copyright terms: Public domain | W3C validator |