| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eqtr | Structured version Visualization version GIF version | ||
| Description: Transitive law for class equality. Proposition 4.7(3) of [TakeutiZaring] p. 13. (Contributed by NM, 25-Jan-2004.) |
| Ref | Expression |
|---|---|
| eqtr | ⊢ ((𝐴 = 𝐵 ∧ 𝐵 = 𝐶) → 𝐴 = 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqeq1 2739 | . 2 ⊢ (𝐴 = 𝐵 → (𝐴 = 𝐶 ↔ 𝐵 = 𝐶)) | |
| 2 | 1 | biimpar 477 | 1 ⊢ ((𝐴 = 𝐵 ∧ 𝐵 = 𝐶) → 𝐴 = 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2727 |
| This theorem is referenced by: sylan9eq 2790 eqvincg 3627 disjeq0 4431 uneqdifeq 4468 propeqop 5482 relresfld 6265 unixpid 6273 fvmptdf 6992 poseq 8157 soseq 8158 eqer 8755 xpider 8802 undifixp 8948 wemaplem2 9561 infeq5 9651 ficard 10579 winalim2 10710 addlsub 11653 pospo 18355 istos 18428 symg2bas 19374 dmatmul 22435 uhgr2edg 29187 clwlkclwwlkf1lem3 29987 eqtrb 32455 bnj545 34926 bnj934 34966 bnj953 34970 ordcmp 36465 bj-snmoore 37131 bj-isclm 37309 bj-bary1lem1 37329 poimirlem26 37670 heicant 37679 ismblfin 37685 volsupnfl 37689 itg2addnclem2 37696 itg2addnc 37698 rngodm1dm2 37956 rngoidmlem 37960 rngo1cl 37963 rngoueqz 37964 zerdivemp1x 37971 disjdmqsss 38820 dvheveccl 41131 rp-isfinite5 43541 clcnvlem 43647 relexpxpmin 43741 gneispace 44158 resipos 48949 |
| Copyright terms: Public domain | W3C validator |