![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > eqtr | Structured version Visualization version GIF version |
Description: Transitive law for class equality. Proposition 4.7(3) of [TakeutiZaring] p. 13. (Contributed by NM, 25-Jan-2004.) |
Ref | Expression |
---|---|
eqtr | ⊢ ((𝐴 = 𝐵 ∧ 𝐵 = 𝐶) → 𝐴 = 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqeq1 2739 | . 2 ⊢ (𝐴 = 𝐵 → (𝐴 = 𝐶 ↔ 𝐵 = 𝐶)) | |
2 | 1 | biimpar 477 | 1 ⊢ ((𝐴 = 𝐵 ∧ 𝐵 = 𝐶) → 𝐴 = 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-9 2116 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1777 df-cleq 2727 |
This theorem is referenced by: eqtr2OLD 2760 eqtr3OLD 2762 sylan9eq 2795 eqvincg 3648 disjeq0 4462 uneqdifeq 4499 propeqop 5517 relresfld 6298 unixpid 6306 fvmptdf 7022 poseq 8182 soseq 8183 eqer 8780 xpider 8827 undifixp 8973 wemaplem2 9585 infeq5 9675 ficard 10603 winalim2 10734 addlsub 11677 pospo 18403 istos 18476 symg2bas 19425 dmatmul 22519 uhgr2edg 29240 clwlkclwwlkf1lem3 30035 eqtrb 32502 bnj545 34888 bnj934 34928 bnj953 34932 ordcmp 36430 bj-snmoore 37096 bj-isclm 37274 bj-bary1lem1 37294 poimirlem26 37633 heicant 37642 ismblfin 37648 volsupnfl 37652 itg2addnclem2 37659 itg2addnc 37661 rngodm1dm2 37919 rngoidmlem 37923 rngo1cl 37926 rngoueqz 37927 zerdivemp1x 37934 disjdmqsss 38784 dvheveccl 41095 rp-isfinite5 43507 clcnvlem 43613 relexpxpmin 43707 gneispace 44124 |
Copyright terms: Public domain | W3C validator |