| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eqtr | Structured version Visualization version GIF version | ||
| Description: Transitive law for class equality. Proposition 4.7(3) of [TakeutiZaring] p. 13. (Contributed by NM, 25-Jan-2004.) |
| Ref | Expression |
|---|---|
| eqtr | ⊢ ((𝐴 = 𝐵 ∧ 𝐵 = 𝐶) → 𝐴 = 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqeq1 2733 | . 2 ⊢ (𝐴 = 𝐵 → (𝐴 = 𝐶 ↔ 𝐵 = 𝐶)) | |
| 2 | 1 | biimpar 477 | 1 ⊢ ((𝐴 = 𝐵 ∧ 𝐵 = 𝐶) → 𝐴 = 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2721 |
| This theorem is referenced by: sylan9eq 2784 eqvincg 3611 disjeq0 4415 uneqdifeq 4452 propeqop 5462 relresfld 6237 unixpid 6245 fvmptdf 6956 poseq 8114 soseq 8115 eqer 8684 xpider 8738 undifixp 8884 wemaplem2 9476 infeq5 9566 ficard 10494 winalim2 10625 addlsub 11570 pospo 18284 istos 18357 symg2bas 19307 dmatmul 22417 uhgr2edg 29188 clwlkclwwlkf1lem3 29985 eqtrb 32453 bnj545 34878 bnj934 34918 bnj953 34922 ordcmp 36428 bj-snmoore 37094 bj-isclm 37272 bj-bary1lem1 37292 poimirlem26 37633 heicant 37642 ismblfin 37648 volsupnfl 37652 itg2addnclem2 37659 itg2addnc 37661 rngodm1dm2 37919 rngoidmlem 37923 rngo1cl 37926 rngoueqz 37927 zerdivemp1x 37934 disjdmqsss 38787 dvheveccl 41099 rp-isfinite5 43499 clcnvlem 43605 relexpxpmin 43699 gneispace 44116 resipos 48956 |
| Copyright terms: Public domain | W3C validator |