| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eqtr | Structured version Visualization version GIF version | ||
| Description: Transitive law for class equality. Proposition 4.7(3) of [TakeutiZaring] p. 13. (Contributed by NM, 25-Jan-2004.) |
| Ref | Expression |
|---|---|
| eqtr | ⊢ ((𝐴 = 𝐵 ∧ 𝐵 = 𝐶) → 𝐴 = 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqeq1 2733 | . 2 ⊢ (𝐴 = 𝐵 → (𝐴 = 𝐶 ↔ 𝐵 = 𝐶)) | |
| 2 | 1 | biimpar 477 | 1 ⊢ ((𝐴 = 𝐵 ∧ 𝐵 = 𝐶) → 𝐴 = 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2721 |
| This theorem is referenced by: sylan9eq 2784 eqvincg 3603 disjeq0 4407 uneqdifeq 4444 propeqop 5450 relresfld 6224 unixpid 6232 fvmptdf 6936 poseq 8091 soseq 8092 eqer 8661 xpider 8715 undifixp 8861 wemaplem2 9439 infeq5 9533 ficard 10459 winalim2 10590 addlsub 11536 pospo 18249 istos 18322 symg2bas 19272 dmatmul 22382 uhgr2edg 29157 clwlkclwwlkf1lem3 29954 eqtrb 32422 bnj545 34878 bnj934 34918 bnj953 34922 ordcmp 36441 bj-snmoore 37107 bj-isclm 37285 bj-bary1lem1 37305 poimirlem26 37646 heicant 37655 ismblfin 37661 volsupnfl 37665 itg2addnclem2 37672 itg2addnc 37674 rngodm1dm2 37932 rngoidmlem 37936 rngo1cl 37939 rngoueqz 37940 zerdivemp1x 37947 disjdmqsss 38800 dvheveccl 41111 rp-isfinite5 43510 clcnvlem 43616 relexpxpmin 43710 gneispace 44127 resipos 48979 |
| Copyright terms: Public domain | W3C validator |