Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > eqtr | Structured version Visualization version GIF version |
Description: Transitive law for class equality. Proposition 4.7(3) of [TakeutiZaring] p. 13. (Contributed by NM, 25-Jan-2004.) |
Ref | Expression |
---|---|
eqtr | ⊢ ((𝐴 = 𝐵 ∧ 𝐵 = 𝐶) → 𝐴 = 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqeq1 2742 | . 2 ⊢ (𝐴 = 𝐵 → (𝐴 = 𝐶 ↔ 𝐵 = 𝐶)) | |
2 | 1 | biimpar 477 | 1 ⊢ ((𝐴 = 𝐵 ∧ 𝐵 = 𝐶) → 𝐴 = 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1784 df-cleq 2730 |
This theorem is referenced by: eqtr2OLD 2763 eqtr3OLD 2765 sylan9eq 2799 eqvincg 3570 disjeq0 4386 uneqdifeq 4420 propeqop 5415 relresfld 6168 unixpid 6176 fvmptdf 6863 eqer 8491 xpider 8535 undifixp 8680 wemaplem2 9236 infeq5 9325 ficard 10252 winalim2 10383 addlsub 11321 pospo 17978 istos 18051 symg2bas 18915 dmatmul 21554 uhgr2edg 27478 clwlkclwwlkf1lem3 28271 eqtrb 30724 bnj545 32775 bnj934 32815 bnj953 32819 poseq 33729 soseq 33730 ordcmp 34563 bj-snmoore 35211 bj-isclm 35389 bj-bary1lem1 35409 poimirlem26 35730 heicant 35739 ismblfin 35745 volsupnfl 35749 itg2addnclem2 35756 itg2addnc 35758 rngodm1dm2 36017 rngoidmlem 36021 rngo1cl 36024 rngoueqz 36025 zerdivemp1x 36032 dvheveccl 39053 rp-isfinite5 41022 clcnvlem 41120 relexpxpmin 41214 gneispace 41633 |
Copyright terms: Public domain | W3C validator |