Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > eqtr | Structured version Visualization version GIF version |
Description: Transitive law for class equality. Proposition 4.7(3) of [TakeutiZaring] p. 13. (Contributed by NM, 25-Jan-2004.) |
Ref | Expression |
---|---|
eqtr | ⊢ ((𝐴 = 𝐵 ∧ 𝐵 = 𝐶) → 𝐴 = 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqeq1 2740 | . 2 ⊢ (𝐴 = 𝐵 → (𝐴 = 𝐶 ↔ 𝐵 = 𝐶)) | |
2 | 1 | biimpar 478 | 1 ⊢ ((𝐴 = 𝐵 ∧ 𝐵 = 𝐶) → 𝐴 = 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1540 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-9 2115 ax-ext 2707 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ex 1781 df-cleq 2728 |
This theorem is referenced by: eqtr2OLD 2761 eqtr3OLD 2763 sylan9eq 2796 eqvincg 3587 disjeq0 4402 uneqdifeq 4437 propeqop 5451 relresfld 6214 unixpid 6222 fvmptdf 6937 poseq 8045 soseq 8046 eqer 8604 xpider 8648 undifixp 8793 wemaplem2 9404 infeq5 9494 ficard 10422 winalim2 10553 addlsub 11492 pospo 18160 istos 18233 symg2bas 19096 dmatmul 21752 uhgr2edg 27864 clwlkclwwlkf1lem3 28658 eqtrb 31111 bnj545 33174 bnj934 33214 bnj953 33218 ordcmp 34732 bj-snmoore 35389 bj-isclm 35567 bj-bary1lem1 35587 poimirlem26 35908 heicant 35917 ismblfin 35923 volsupnfl 35927 itg2addnclem2 35934 itg2addnc 35936 rngodm1dm2 36195 rngoidmlem 36199 rngo1cl 36202 rngoueqz 36203 zerdivemp1x 36210 disjdmqsss 37069 dvheveccl 39380 rp-isfinite5 41446 clcnvlem 41552 relexpxpmin 41646 gneispace 42065 |
Copyright terms: Public domain | W3C validator |