| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eqtr | Structured version Visualization version GIF version | ||
| Description: Transitive law for class equality. Proposition 4.7(3) of [TakeutiZaring] p. 13. (Contributed by NM, 25-Jan-2004.) |
| Ref | Expression |
|---|---|
| eqtr | ⊢ ((𝐴 = 𝐵 ∧ 𝐵 = 𝐶) → 𝐴 = 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqeq1 2733 | . 2 ⊢ (𝐴 = 𝐵 → (𝐴 = 𝐶 ↔ 𝐵 = 𝐶)) | |
| 2 | 1 | biimpar 477 | 1 ⊢ ((𝐴 = 𝐵 ∧ 𝐵 = 𝐶) → 𝐴 = 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2721 |
| This theorem is referenced by: sylan9eq 2784 eqvincg 3611 disjeq0 4415 uneqdifeq 4452 propeqop 5462 relresfld 6237 unixpid 6245 fvmptdf 6956 poseq 8114 soseq 8115 eqer 8684 xpider 8738 undifixp 8884 wemaplem2 9476 infeq5 9568 ficard 10496 winalim2 10627 addlsub 11572 pospo 18285 istos 18358 symg2bas 19308 dmatmul 22418 uhgr2edg 29189 clwlkclwwlkf1lem3 29986 eqtrb 32454 bnj545 34879 bnj934 34919 bnj953 34923 ordcmp 36429 bj-snmoore 37095 bj-isclm 37273 bj-bary1lem1 37293 poimirlem26 37634 heicant 37643 ismblfin 37649 volsupnfl 37653 itg2addnclem2 37660 itg2addnc 37662 rngodm1dm2 37920 rngoidmlem 37924 rngo1cl 37927 rngoueqz 37928 zerdivemp1x 37935 disjdmqsss 38788 dvheveccl 41100 rp-isfinite5 43500 clcnvlem 43606 relexpxpmin 43700 gneispace 44117 resipos 48957 |
| Copyright terms: Public domain | W3C validator |