MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  istsr Structured version   Visualization version   GIF version

Theorem istsr 18574
Description: The predicate is a toset. (Contributed by FL, 1-Nov-2009.) (Revised by Mario Carneiro, 22-Nov-2013.)
Hypothesis
Ref Expression
istsr.1 𝑋 = dom 𝑅
Assertion
Ref Expression
istsr (𝑅 ∈ TosetRel ↔ (𝑅 ∈ PosetRel ∧ (𝑋 × 𝑋) ⊆ (𝑅𝑅)))

Proof of Theorem istsr
Dummy variable 𝑟 is distinct from all other variables.
StepHypRef Expression
1 dmeq 5906 . . . . 5 (𝑟 = 𝑅 → dom 𝑟 = dom 𝑅)
2 istsr.1 . . . . 5 𝑋 = dom 𝑅
31, 2eqtr4di 2786 . . . 4 (𝑟 = 𝑅 → dom 𝑟 = 𝑋)
43sqxpeqd 5710 . . 3 (𝑟 = 𝑅 → (dom 𝑟 × dom 𝑟) = (𝑋 × 𝑋))
5 id 22 . . . 4 (𝑟 = 𝑅𝑟 = 𝑅)
6 cnveq 5876 . . . 4 (𝑟 = 𝑅𝑟 = 𝑅)
75, 6uneq12d 4163 . . 3 (𝑟 = 𝑅 → (𝑟𝑟) = (𝑅𝑅))
84, 7sseq12d 4013 . 2 (𝑟 = 𝑅 → ((dom 𝑟 × dom 𝑟) ⊆ (𝑟𝑟) ↔ (𝑋 × 𝑋) ⊆ (𝑅𝑅)))
9 df-tsr 18558 . 2 TosetRel = {𝑟 ∈ PosetRel ∣ (dom 𝑟 × dom 𝑟) ⊆ (𝑟𝑟)}
108, 9elrab2 3685 1 (𝑅 ∈ TosetRel ↔ (𝑅 ∈ PosetRel ∧ (𝑋 × 𝑋) ⊆ (𝑅𝑅)))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 395   = wceq 1534  wcel 2099  cun 3945  wss 3947   × cxp 5676  ccnv 5677  dom cdm 5678  PosetRelcps 18555   TosetRel ctsr 18556
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-ext 2699
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-sb 2061  df-clab 2706  df-cleq 2720  df-clel 2806  df-rab 3430  df-v 3473  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-br 5149  df-opab 5211  df-xp 5684  df-cnv 5686  df-dm 5688  df-tsr 18558
This theorem is referenced by:  istsr2  18575  tsrlemax  18577  tsrps  18578  cnvtsr  18579  letsr  18584  tsrdir  18595
  Copyright terms: Public domain W3C validator