MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  istsr Structured version   Visualization version   GIF version

Theorem istsr 18628
Description: The predicate is a toset. (Contributed by FL, 1-Nov-2009.) (Revised by Mario Carneiro, 22-Nov-2013.)
Hypothesis
Ref Expression
istsr.1 𝑋 = dom 𝑅
Assertion
Ref Expression
istsr (𝑅 ∈ TosetRel ↔ (𝑅 ∈ PosetRel ∧ (𝑋 × 𝑋) ⊆ (𝑅𝑅)))

Proof of Theorem istsr
Dummy variable 𝑟 is distinct from all other variables.
StepHypRef Expression
1 dmeq 5914 . . . . 5 (𝑟 = 𝑅 → dom 𝑟 = dom 𝑅)
2 istsr.1 . . . . 5 𝑋 = dom 𝑅
31, 2eqtr4di 2795 . . . 4 (𝑟 = 𝑅 → dom 𝑟 = 𝑋)
43sqxpeqd 5717 . . 3 (𝑟 = 𝑅 → (dom 𝑟 × dom 𝑟) = (𝑋 × 𝑋))
5 id 22 . . . 4 (𝑟 = 𝑅𝑟 = 𝑅)
6 cnveq 5884 . . . 4 (𝑟 = 𝑅𝑟 = 𝑅)
75, 6uneq12d 4169 . . 3 (𝑟 = 𝑅 → (𝑟𝑟) = (𝑅𝑅))
84, 7sseq12d 4017 . 2 (𝑟 = 𝑅 → ((dom 𝑟 × dom 𝑟) ⊆ (𝑟𝑟) ↔ (𝑋 × 𝑋) ⊆ (𝑅𝑅)))
9 df-tsr 18612 . 2 TosetRel = {𝑟 ∈ PosetRel ∣ (dom 𝑟 × dom 𝑟) ⊆ (𝑟𝑟)}
108, 9elrab2 3695 1 (𝑅 ∈ TosetRel ↔ (𝑅 ∈ PosetRel ∧ (𝑋 × 𝑋) ⊆ (𝑅𝑅)))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1540  wcel 2108  cun 3949  wss 3951   × cxp 5683  ccnv 5684  dom cdm 5685  PosetRelcps 18609   TosetRel ctsr 18610
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2708
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2065  df-clab 2715  df-cleq 2729  df-clel 2816  df-rab 3437  df-v 3482  df-dif 3954  df-un 3956  df-ss 3968  df-nul 4334  df-if 4526  df-sn 4627  df-pr 4629  df-op 4633  df-br 5144  df-opab 5206  df-xp 5691  df-cnv 5693  df-dm 5695  df-tsr 18612
This theorem is referenced by:  istsr2  18629  tsrlemax  18631  tsrps  18632  cnvtsr  18633  letsr  18638  tsrdir  18649
  Copyright terms: Public domain W3C validator