![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > istsr | Structured version Visualization version GIF version |
Description: The predicate is a toset. (Contributed by FL, 1-Nov-2009.) (Revised by Mario Carneiro, 22-Nov-2013.) |
Ref | Expression |
---|---|
istsr.1 | ⊢ 𝑋 = dom 𝑅 |
Ref | Expression |
---|---|
istsr | ⊢ (𝑅 ∈ TosetRel ↔ (𝑅 ∈ PosetRel ∧ (𝑋 × 𝑋) ⊆ (𝑅 ∪ ◡𝑅))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dmeq 5901 | . . . . 5 ⊢ (𝑟 = 𝑅 → dom 𝑟 = dom 𝑅) | |
2 | istsr.1 | . . . . 5 ⊢ 𝑋 = dom 𝑅 | |
3 | 1, 2 | eqtr4di 2790 | . . . 4 ⊢ (𝑟 = 𝑅 → dom 𝑟 = 𝑋) |
4 | 3 | sqxpeqd 5707 | . . 3 ⊢ (𝑟 = 𝑅 → (dom 𝑟 × dom 𝑟) = (𝑋 × 𝑋)) |
5 | id 22 | . . . 4 ⊢ (𝑟 = 𝑅 → 𝑟 = 𝑅) | |
6 | cnveq 5871 | . . . 4 ⊢ (𝑟 = 𝑅 → ◡𝑟 = ◡𝑅) | |
7 | 5, 6 | uneq12d 4163 | . . 3 ⊢ (𝑟 = 𝑅 → (𝑟 ∪ ◡𝑟) = (𝑅 ∪ ◡𝑅)) |
8 | 4, 7 | sseq12d 4014 | . 2 ⊢ (𝑟 = 𝑅 → ((dom 𝑟 × dom 𝑟) ⊆ (𝑟 ∪ ◡𝑟) ↔ (𝑋 × 𝑋) ⊆ (𝑅 ∪ ◡𝑅))) |
9 | df-tsr 18516 | . 2 ⊢ TosetRel = {𝑟 ∈ PosetRel ∣ (dom 𝑟 × dom 𝑟) ⊆ (𝑟 ∪ ◡𝑟)} | |
10 | 8, 9 | elrab2 3685 | 1 ⊢ (𝑅 ∈ TosetRel ↔ (𝑅 ∈ PosetRel ∧ (𝑋 × 𝑋) ⊆ (𝑅 ∪ ◡𝑅))) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 396 = wceq 1541 ∈ wcel 2106 ∪ cun 3945 ⊆ wss 3947 × cxp 5673 ◡ccnv 5674 dom cdm 5675 PosetRelcps 18513 TosetRel ctsr 18514 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2703 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-rab 3433 df-v 3476 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-sn 4628 df-pr 4630 df-op 4634 df-br 5148 df-opab 5210 df-xp 5681 df-cnv 5683 df-dm 5685 df-tsr 18516 |
This theorem is referenced by: istsr2 18533 tsrlemax 18535 tsrps 18536 cnvtsr 18537 letsr 18542 tsrdir 18553 |
Copyright terms: Public domain | W3C validator |