Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > istsr | Structured version Visualization version GIF version |
Description: The predicate is a toset. (Contributed by FL, 1-Nov-2009.) (Revised by Mario Carneiro, 22-Nov-2013.) |
Ref | Expression |
---|---|
istsr.1 | ⊢ 𝑋 = dom 𝑅 |
Ref | Expression |
---|---|
istsr | ⊢ (𝑅 ∈ TosetRel ↔ (𝑅 ∈ PosetRel ∧ (𝑋 × 𝑋) ⊆ (𝑅 ∪ ◡𝑅))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dmeq 5736 | . . . . 5 ⊢ (𝑟 = 𝑅 → dom 𝑟 = dom 𝑅) | |
2 | istsr.1 | . . . . 5 ⊢ 𝑋 = dom 𝑅 | |
3 | 1, 2 | eqtr4di 2812 | . . . 4 ⊢ (𝑟 = 𝑅 → dom 𝑟 = 𝑋) |
4 | 3 | sqxpeqd 5549 | . . 3 ⊢ (𝑟 = 𝑅 → (dom 𝑟 × dom 𝑟) = (𝑋 × 𝑋)) |
5 | id 22 | . . . 4 ⊢ (𝑟 = 𝑅 → 𝑟 = 𝑅) | |
6 | cnveq 5706 | . . . 4 ⊢ (𝑟 = 𝑅 → ◡𝑟 = ◡𝑅) | |
7 | 5, 6 | uneq12d 4065 | . . 3 ⊢ (𝑟 = 𝑅 → (𝑟 ∪ ◡𝑟) = (𝑅 ∪ ◡𝑅)) |
8 | 4, 7 | sseq12d 3921 | . 2 ⊢ (𝑟 = 𝑅 → ((dom 𝑟 × dom 𝑟) ⊆ (𝑟 ∪ ◡𝑟) ↔ (𝑋 × 𝑋) ⊆ (𝑅 ∪ ◡𝑅))) |
9 | df-tsr 17862 | . 2 ⊢ TosetRel = {𝑟 ∈ PosetRel ∣ (dom 𝑟 × dom 𝑟) ⊆ (𝑟 ∪ ◡𝑟)} | |
10 | 8, 9 | elrab2 3603 | 1 ⊢ (𝑅 ∈ TosetRel ↔ (𝑅 ∈ PosetRel ∧ (𝑋 × 𝑋) ⊆ (𝑅 ∪ ◡𝑅))) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 209 ∧ wa 400 = wceq 1539 ∈ wcel 2112 ∪ cun 3852 ⊆ wss 3854 × cxp 5515 ◡ccnv 5516 dom cdm 5517 PosetRelcps 17859 TosetRel ctsr 17860 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1912 ax-6 1971 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2159 ax-12 2176 ax-ext 2730 |
This theorem depends on definitions: df-bi 210 df-an 401 df-or 846 df-3an 1087 df-tru 1542 df-ex 1783 df-nf 1787 df-sb 2071 df-clab 2737 df-cleq 2751 df-clel 2831 df-nfc 2899 df-rab 3077 df-v 3409 df-un 3859 df-in 3861 df-ss 3871 df-sn 4516 df-pr 4518 df-op 4522 df-br 5026 df-opab 5088 df-xp 5523 df-cnv 5525 df-dm 5527 df-tsr 17862 |
This theorem is referenced by: istsr2 17879 tsrlemax 17881 tsrps 17882 cnvtsr 17883 letsr 17888 tsrdir 17899 |
Copyright terms: Public domain | W3C validator |