| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > istsr | Structured version Visualization version GIF version | ||
| Description: The predicate is a toset. (Contributed by FL, 1-Nov-2009.) (Revised by Mario Carneiro, 22-Nov-2013.) |
| Ref | Expression |
|---|---|
| istsr.1 | ⊢ 𝑋 = dom 𝑅 |
| Ref | Expression |
|---|---|
| istsr | ⊢ (𝑅 ∈ TosetRel ↔ (𝑅 ∈ PosetRel ∧ (𝑋 × 𝑋) ⊆ (𝑅 ∪ ◡𝑅))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dmeq 5914 | . . . . 5 ⊢ (𝑟 = 𝑅 → dom 𝑟 = dom 𝑅) | |
| 2 | istsr.1 | . . . . 5 ⊢ 𝑋 = dom 𝑅 | |
| 3 | 1, 2 | eqtr4di 2795 | . . . 4 ⊢ (𝑟 = 𝑅 → dom 𝑟 = 𝑋) |
| 4 | 3 | sqxpeqd 5717 | . . 3 ⊢ (𝑟 = 𝑅 → (dom 𝑟 × dom 𝑟) = (𝑋 × 𝑋)) |
| 5 | id 22 | . . . 4 ⊢ (𝑟 = 𝑅 → 𝑟 = 𝑅) | |
| 6 | cnveq 5884 | . . . 4 ⊢ (𝑟 = 𝑅 → ◡𝑟 = ◡𝑅) | |
| 7 | 5, 6 | uneq12d 4169 | . . 3 ⊢ (𝑟 = 𝑅 → (𝑟 ∪ ◡𝑟) = (𝑅 ∪ ◡𝑅)) |
| 8 | 4, 7 | sseq12d 4017 | . 2 ⊢ (𝑟 = 𝑅 → ((dom 𝑟 × dom 𝑟) ⊆ (𝑟 ∪ ◡𝑟) ↔ (𝑋 × 𝑋) ⊆ (𝑅 ∪ ◡𝑅))) |
| 9 | df-tsr 18612 | . 2 ⊢ TosetRel = {𝑟 ∈ PosetRel ∣ (dom 𝑟 × dom 𝑟) ⊆ (𝑟 ∪ ◡𝑟)} | |
| 10 | 8, 9 | elrab2 3695 | 1 ⊢ (𝑅 ∈ TosetRel ↔ (𝑅 ∈ PosetRel ∧ (𝑋 × 𝑋) ⊆ (𝑅 ∪ ◡𝑅))) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ∪ cun 3949 ⊆ wss 3951 × cxp 5683 ◡ccnv 5684 dom cdm 5685 PosetRelcps 18609 TosetRel ctsr 18610 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-rab 3437 df-v 3482 df-dif 3954 df-un 3956 df-ss 3968 df-nul 4334 df-if 4526 df-sn 4627 df-pr 4629 df-op 4633 df-br 5144 df-opab 5206 df-xp 5691 df-cnv 5693 df-dm 5695 df-tsr 18612 |
| This theorem is referenced by: istsr2 18629 tsrlemax 18631 tsrps 18632 cnvtsr 18633 letsr 18638 tsrdir 18649 |
| Copyright terms: Public domain | W3C validator |