Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > istsr | Structured version Visualization version GIF version |
Description: The predicate is a toset. (Contributed by FL, 1-Nov-2009.) (Revised by Mario Carneiro, 22-Nov-2013.) |
Ref | Expression |
---|---|
istsr.1 | ⊢ 𝑋 = dom 𝑅 |
Ref | Expression |
---|---|
istsr | ⊢ (𝑅 ∈ TosetRel ↔ (𝑅 ∈ PosetRel ∧ (𝑋 × 𝑋) ⊆ (𝑅 ∪ ◡𝑅))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dmeq 5825 | . . . . 5 ⊢ (𝑟 = 𝑅 → dom 𝑟 = dom 𝑅) | |
2 | istsr.1 | . . . . 5 ⊢ 𝑋 = dom 𝑅 | |
3 | 1, 2 | eqtr4di 2794 | . . . 4 ⊢ (𝑟 = 𝑅 → dom 𝑟 = 𝑋) |
4 | 3 | sqxpeqd 5632 | . . 3 ⊢ (𝑟 = 𝑅 → (dom 𝑟 × dom 𝑟) = (𝑋 × 𝑋)) |
5 | id 22 | . . . 4 ⊢ (𝑟 = 𝑅 → 𝑟 = 𝑅) | |
6 | cnveq 5795 | . . . 4 ⊢ (𝑟 = 𝑅 → ◡𝑟 = ◡𝑅) | |
7 | 5, 6 | uneq12d 4104 | . . 3 ⊢ (𝑟 = 𝑅 → (𝑟 ∪ ◡𝑟) = (𝑅 ∪ ◡𝑅)) |
8 | 4, 7 | sseq12d 3959 | . 2 ⊢ (𝑟 = 𝑅 → ((dom 𝑟 × dom 𝑟) ⊆ (𝑟 ∪ ◡𝑟) ↔ (𝑋 × 𝑋) ⊆ (𝑅 ∪ ◡𝑅))) |
9 | df-tsr 18334 | . 2 ⊢ TosetRel = {𝑟 ∈ PosetRel ∣ (dom 𝑟 × dom 𝑟) ⊆ (𝑟 ∪ ◡𝑟)} | |
10 | 8, 9 | elrab2 3632 | 1 ⊢ (𝑅 ∈ TosetRel ↔ (𝑅 ∈ PosetRel ∧ (𝑋 × 𝑋) ⊆ (𝑅 ∪ ◡𝑅))) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 397 = wceq 1539 ∈ wcel 2104 ∪ cun 3890 ⊆ wss 3892 × cxp 5598 ◡ccnv 5599 dom cdm 5600 PosetRelcps 18331 TosetRel ctsr 18332 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-ext 2707 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-sb 2066 df-clab 2714 df-cleq 2728 df-clel 2814 df-rab 3306 df-v 3439 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-sn 4566 df-pr 4568 df-op 4572 df-br 5082 df-opab 5144 df-xp 5606 df-cnv 5608 df-dm 5610 df-tsr 18334 |
This theorem is referenced by: istsr2 18351 tsrlemax 18353 tsrps 18354 cnvtsr 18355 letsr 18360 tsrdir 18371 |
Copyright terms: Public domain | W3C validator |